Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4048
  • E-ISSN: 1875-6581

Abstract

Antimicrobial peptides (AMPs) have emerged as promising candidates for dual-action contraceptive agents, offering both spermicidal and antimicrobial properties. This perspective explores the potential of AMPs in developing novel contraceptive technologies, focusing on their application in condom coatings and vaginal formulations. AMPs exert their effects through membrane disruption mechanisms, targeting both microbial pathogens and sperm cells. Their broad-spectrum activity against various microorganisms, coupled with spermicidal effects, makes them ideal for multipurpose prevention technologies. The incorporation of AMPs into condoms could enhance barrier protection, while vaginal applications offer non-hormonal, on-demand contraceptive options. However, challenges, such as potential vaginal irritation, microbiome disruption, and the need for long-term safety studies, must be addressed. Future research should focus on optimizing AMP selectivity, developing stable formulations, and conducting comprehensive efficacy and safety trials. The dual-action nature of AMPs aligns with the growing demand for integrated approaches to sexual and reproductive health, potentially revolutionizing contraception and STI prevention. By addressing current challenges and leveraging the unique properties of AMPs, researchers can develop a new generation of contraceptive products that offer improved efficacy, safety, and user acceptability.

Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048307970240902095704
2024-09-18
2025-05-14
Loading full text...

Full text loading...

References

  1. Zare-ZardiniH. AlemiA. ZahediM. SoltaninejadH. GhasemiH. FarrokhifarM. HosseiniS.A. DehghanbaghiN. Design of a new coating agent based on graphene oxide and antimicrobial/spermicidal peptide (sarcotoxin pd) for condom coating: New strategy for prevention of unplanned pregnancy and sexually transmitted infections.J. Nanomater.2023202311910.1155/2023/2487468
    [Google Scholar]
  2. Perez-FernandezJ. Arroyo-VelascoD.O. HuamanM.R. Chavez-BustamanteS.G. Llamo-VilcherrezA.P. Delgado-FloresC.J. Toro-HuamanchumoC.J. Association between early sexual initiation and sexually transmitted infections among Peruvian reproductive-age women.Front. Public Health202311119172210.3389/fpubh.2023.119172237790721
    [Google Scholar]
  3. Zare-ZardiniH. FesahatF. AnbariF. HalvaeiI. EbrahimiL. Assessment of spermicidal activity of the antimicrobial peptide sarcotoxin Pd: A potent contraceptive agent.Eur. J. Contracept. Reprod. Health Care2016211152110.3109/13625187.2015.105239526052043
    [Google Scholar]
  4. SetoO. Effects of comprehensive sex education on unplanned pregnancy rates and STI occurrences among chinese american adolescents.Senior Thesis202410.33015/dominican.edu/2024.NURS.ST.25
    [Google Scholar]
  5. PandyaI. MarfatiaY.S. MehtaK. Condoms: Past, present, and future.Indian J. Sex. Transm. Dis. AIDS201536213313910.4103/0253‑7184.16713526692603
    [Google Scholar]
  6. RanaM.S. KhanamS.J. AlamM.B. HassenM.T. KabirM.I. KhanM.N. Exploration of modern contraceptive methods using patterns among later reproductive-aged women in Bangladesh.PLoS One2024194e029110010.1371/journal.pone.029110038557777
    [Google Scholar]
  7. CooperD.B. PatelP. MahdyH. Oral contraceptive pills.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  8. GandhiA.B. SupeP.A. Evolution of oral contraceptive pills.J. Obstet. Gynecol. India20241410.1007/s13224‑024‑01988‑4
    [Google Scholar]
  9. WadmanM. Contraceptive risk of HIV long suspected.Natnews2011
    [Google Scholar]
  10. SpevackE. The long-term health implications of depo-provera.Integr. Med.201327
    [Google Scholar]
  11. WiseA. O’BrienK. WoodruffT. Are oral contraceptives a significant contributor to the estrogenicity of drinking water?Environ. Sci. Technol.2011451516010.1021/es101448220977246
    [Google Scholar]
  12. RaymondE.G. Lien ChenP. LuotoJ. Spermicide Trial Group Contraceptive effectiveness and safety of five nonoxynol-9 spermicides: A randomized trial.Obstet. Gynecol.2004103343043910.1097/01.AOG.0000113620.18395.0b14990402
    [Google Scholar]
  13. HughesL. GriffithR. AitkenR. The search for a topical dual action spermicide/microbicide.Curr. Med. Chem.200714777578610.2174/09298670778009097217346162
    [Google Scholar]
  14. XuM. ZhaoM. LiR.H.W. LinZ. ChungJ.P.W. LiT.C. LeeT.L. ChanD.Y.L. Effects of nonoxynol-9 (N-9) on sperm functions: Systematic review and meta-analysis.Reproduction and Fertility202231R19R3310.1530/RAF‑21‑002435350652
    [Google Scholar]
  15. SchreiberC.A. MeynL.A. CreininM.D. BarnhartK.T. HillierS.L. Effects of long-term use of nonoxynol-9 on vaginal flora.Obstet. Gynecol.2006107113614310.1097/01.AOG.0000189094.21099.4a16394051
    [Google Scholar]
  16. SoltaninejadH. Zare-ZardiniH. Antimicrobial peptides from amphibian innate immune system as potent antidiabetic agents: A literature review and bioinformatics analysis.J. Diabetes Res.202120212894722
    [Google Scholar]
  17. ChenP. YeT. LiC. PraveenP. HuZ. LiW. ShangC. Embracing the era of antimicrobial peptides with marine organisms.Nat. Prod. Rep.202441333134610.1039/D3NP00031A37743806
    [Google Scholar]
  18. MonsalveD. MesaA. MiraL.M. MeraC. OrduzS. Branch-BedoyaJ.W. Antimicrobial peptides designed by computational analysis of proteomes.Antonie van Leeuwenhoek202411715510.1007/s10482‑024‑01946‑038488950
    [Google Scholar]
  19. KhaniS. SeyedjavadiS.S. Zare-ZardiniH. HosseiniH.M. GoudarziM. KhatamiS. AmaniJ. Imani FooladiA.A. Razzaghi-AbyanehM. Isolation and functional characterization of an antifungal hydrophilic peptide, Skh-AMP1, derived from Satureja khuzistanica leaves.Phytochemistry201916413614310.1016/j.phytochem.2019.05.01131128493
    [Google Scholar]
  20. SeyedjavadiS.S. KhaniS. Zare-ZardiniH. HalabianR. GoudarziM. KhatamiS. Imani FooladiA.A. AmaniJ. Razzaghi-AbyanehM. Isolation, functional characterization, and biological properties of MCh‐AMP1, a novel antifungal peptide from Matricaria chamomilla L.Chem. Biol. Drug Des.201993594995910.1111/cbdd.1350030773822
    [Google Scholar]
  21. Memarpoor-YazdiM. Zare-ZardiniH. MogharrabN. NavapourL. Purification, characterization and mechanistic evaluation of angiotensin converting enzyme inhibitory peptides derived from Zizyphus jujuba fruit.Sci. Rep.2020101397610.1038/s41598‑020‑60972‑w32132600
    [Google Scholar]
  22. SteinstraesserL. Innate defense regulator peptide 1018 in wound healing and wound infection.PLoS One201278e3937310.1371/journal.pone.0039373
    [Google Scholar]
  23. CarreteroM. EscámezM.J. GarcíaM. DuarteB. HolguínA. RetamosaL. JorcanoJ.L. RíoM. LarcherF. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37.J. Invest. Dermatol.2008128122323610.1038/sj.jid.570104317805349
    [Google Scholar]
  24. SeyedjavadiS.S. KhaniS. GoudarziM. Zare-ZardiniH. Shams-GhahfarokhiM. JamzivarF. Razzaghi-AbyanehM. Characterization, biological activity, and mechanism of action of a plant-based novel antifungal peptide, Cc-AFP1, Isolated From Carum carvi.Front. Cell. Infect. Microbiol.20211174334610.3389/fcimb.2021.74334634708005
    [Google Scholar]
  25. TanphaichitrN. SrakaewN. AlonziR. KiattiburutW. KongmanasK. ZhiR. LiW. BakerM. WangG. HicklingD. Potential use of antimicrobial peptides as vaginal spermicides/microbic'ides.Pharmaceuticals2016911310.3390/ph901001326978373
    [Google Scholar]
  26. KhalilM.B. ChakrabandhuK. XuH. WeerachatyanukulW. BuhrM. BergerT. CarmonaE. VuongN. KumarathasanP. WongP.T.T. CarrierD. TanphaichitrN. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid.Dev. Biol.2006290122023510.1016/j.ydbio.2005.11.03016387295
    [Google Scholar]
  27. ParkY. HahmK-S. Antimicrobial peptides (AMPs): Peptide structure and mode of action.J. Biochem. Mol. Biol.200538550751616202228
    [Google Scholar]
  28. Erdem BüyükkirazM. KesmenZ. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J. Appl. Microbiol.202213231573159610.1111/jam.1531434606679
    [Google Scholar]
  29. LuoY. SongY. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities.Int. J. Mol. Sci.202122211140110.3390/ijms22211140134768832
    [Google Scholar]
  30. YederyR.D. ReddyK.V.R. Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics – A mini review.Eur. J. Contracept. Reprod. Health Care2005101324210.1080/1362518050003512416036297
    [Google Scholar]
  31. Zare-ZardiniH. FesahatF. HalvaeiI. NabiA. Zare-ShehnehM. ShamsiF. EbrahimiL. Evaluating the spermicidal activity of an antimicrobial peptide from the Bufo kavirensis, MaximinBk: In vitro study.Turk Biyokim. Derg.201742329930510.1515/tjb‑2016‑0269
    [Google Scholar]
  32. ZairiA. TangyF. BouassidaK. HaniK. Dermaseptins and magainins: Antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review.J. Biomed. Biotechnol.20092009145256719893636
    [Google Scholar]
  33. LoJ.C.Y. Novel antimicrobial peptide coating to prevent catheter-associated urinary tract infections.University of British Columbia2015
    [Google Scholar]
  34. SinghaP. LocklinJ. HandaH. A review of the recent advances in antimicrobial coatings for urinary catheters.Acta Biomater.201750204010.1016/j.actbio.2016.11.07027916738
    [Google Scholar]
  35. GaoZ. FuR. LiX. WangJ. HeY. Safety assessment of microbicide 2P23 on the rectal and vaginal microbiota and its antiviral activity on HIV infection.Front. Immunol.20211270217210.3389/fimmu.2021.70217234447373
    [Google Scholar]
  36. NakraN.A. MadanR.P. BuckleyN. HuberA.M. FreiermuthJ.L. EspinozaL. WalshJ. ParikhU.M. PenroseK.J. KellerM.J. HeroldB.C. Loss of innate host defense following unprotected vaginal sex.J. Infect. Dis.2016213584084710.1093/infdis/jiv48826464206
    [Google Scholar]
  37. LeeS.G. KiattiburutW. Burke SchinkelS.C. AngelJ. TanphaichitrN. Safety of multiple administrations of spermicidal LL-37 antimicrobial peptide into the mouse female reproductive tract.Mol. Hum. Reprod.2023297gaad02310.1093/molehr/gaad02337326833
    [Google Scholar]
  38. HowardS.A. BenhabbourS.R. Non-hormonal contraception.J. Clin. Med.20231214479110.3390/jcm12144791
    [Google Scholar]
  39. KroviS.A. JohnsonL.M. LueckeE. AchillesS.L. van der StratenA. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention.Adv. Drug Deliv. Rev.202117611384910.1016/j.addr.2021.11384934186143
    [Google Scholar]
  40. HaddadL.B. TownsendJ.W. Sitruk-WareR. Contraceptive technologies: Looking ahead to new approaches to increase options for family planning.Clin. Obstet. Gynecol.202164343544810.1097/GRF.000000000000062834323226
    [Google Scholar]
  41. ZairiA. SerresC. TangyF. JouannetP. HaniK. In vitro spermicidal activity of peptides from amphibian skin: Dermaseptin S4 and derivatives.Bioorg. Med. Chem.200816126627510.1016/j.bmc.2007.09.04517942313
    [Google Scholar]
  42. MadanchiH. SardariS. The role of antimicrobial peptides in the prevention of sexually transmitted infection (STI).Womens Health201982192194
    [Google Scholar]
  43. GhoshP. BhoumikA. SahaS. MukherjeeS. AzmiS. GhoshJ.K. DungdungS.R. Spermicidal efficacy of VRP, a synthetic cationic antimicrobial peptide, inducing apoptosis and membrane disruption.J. Cell. Physiol.201823321041105010.1002/jcp.2595828409819
    [Google Scholar]
  44. SanchoS. BrizM. YesteM. BonetS. BussalleuE. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses.Reprod. Domest. Anim.201752S4Suppl. 4697110.1111/rda.1306129052326
    [Google Scholar]
  45. SrakaewN. YoungC.D. Sae-wuA. XuH. QuesnelK.L. di BriscoR. KongmanasK. FongmoonD. HommalaiG. WeerachatyanukulW. HallS.H. ZhangY.L. PanzaL. FranchiniL. CompostellaF. PearsonT.W. HancockR.E. OkoR.J. HermoL.S. TanphaichitrN. Antimicrobial host defence peptide, LL-37, as a potential vaginal contraceptive.Hum. Reprod.201429468369610.1093/humrep/deu01824549217
    [Google Scholar]
  46. AranhaC. GuptaS. ReddyK.V.R. Contraceptive efficacy of antimicrobial peptide Nisin: In vitro and in vivo studies.Contraception200469433333810.1016/j.contraception.2003.11.00215033410
    [Google Scholar]
  47. ReddyK.V.R. YederyR.D. AranhaC. Antimicrobial peptides: Premises and promises.Int. J. Antimicrob. Agents200424653654710.1016/j.ijantimicag.2004.09.00515555874
    [Google Scholar]
  48. LeeS.G. KiattiburutW. KhongkhaT. SchinkelS.C.B. LunnY. DeckerA.P. MohammadiA. Vera-CruzA. MisraA. AngelJ.B. AndersonD.J. BakerM. KaulR. WangG. TanphaichitrN. 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, is an effective spermicide and microbicide against Neisseria gonorrhoeae.Hum. Reprod.202237112503251710.1093/humrep/deac18836053257
    [Google Scholar]
  49. SchulzeM. JunkesC. MuellerP. SpeckS. RuedigerK. DatheM. MuellerK. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa.PLoS One201496e10049010.1371/journal.pone.010049024940997
    [Google Scholar]
  50. MorettaA. ScieuzoC. PetroneA.M. SalviaR. MannielloM.D. FrancoA. LucchettiD. VassalloA. VogelH. SgambatoA. FalabellaP. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields.Front. Cell. Infect. Microbiol.20211166863210.3389/fcimb.2021.66863234195099
    [Google Scholar]
  51. RaiA. FerrãoR. PalmaP. PatricioT. ParreiraP. AnesE. Tonda-TuroC. MartinsM.C.L. AlvesN. FerreiraL. Antimicrobial peptide-based materials: Opportunities and challenges.J. Mater. Chem. B Mater. Biol. Med.202210142384242910.1039/D1TB02617H35244122
    [Google Scholar]
  52. MulderK.C.L. LimaL.A. MirandaV.J. DiasS.C. FrancoO.L. Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides.Front. Microbiol.2013432110.3389/fmicb.2013.0032124198814
    [Google Scholar]
  53. MaganaM. PushpanathanM. SantosA.L. LeanseL. FernandezM. IoannidisA. GiulianottiM.A. ApidianakisY. BradfuteS. FergusonA.L. CherkasovA. SeleemM.N. PinillaC. de la Fuente-NunezC. LazaridisT. DaiT. HoughtenR.A. HancockR.E.W. TegosG.P. The value of antimicrobial peptides in the age of resistance.Lancet Infect. Dis.2020209e216e23010.1016/S1473‑3099(20)30327‑332653070
    [Google Scholar]
  54. WiesnerJ. VilcinskasA. Antimicrobial peptides: The ancient arm of the human immune system.Virulence20101544046410.4161/viru.1.5.1298321178486
    [Google Scholar]
  55. MookherjeeN. AndersonM.A. HaagsmanH.P. DavidsonD.J. Antimicrobial host defence peptides: Functions and clinical potential.Nat. Rev. Drug Discov.202019531133210.1038/s41573‑019‑0058‑832107480
    [Google Scholar]
  56. NegahdaripourM. OwjiH. EslamiM. ZamaniM. VakiliB. SabetianS. NezafatN. GhasemiY. Selected application of peptide molecules as pharmaceutical agents and in cosmeceuticals.Expert Opin. Biol. Ther.201919121275128710.1080/14712598.2019.165259231382850
    [Google Scholar]
  57. AhmedA. Siman-TovG. HallG. BhallaN. NarayananA. Human antimicrobial peptides as therapeutics for viral infections.Viruses201911870410.3390/v1108070431374901
    [Google Scholar]
  58. MahlapuuM. BjörnC. EkblomJ. Antimicrobial peptides as therapeutic agents: Opportunities and challenges.Crit. Rev. Biotechnol.202040797899210.1080/07388551.2020.179657632781848
    [Google Scholar]
  59. TangZ. Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs).Antibiotics2021108990
    [Google Scholar]
  60. MunakampeM.N. ZuluJ.M. MicheloC. Contraception and abortion knowledge, attitudes and practices among adolescents from low and middle-income countries: A systematic review.BMC Health Serv. Res.201818190910.1186/s12913‑018‑3722‑530497464
    [Google Scholar]
  61. WangG. LiX. WangZ. APD3: the antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv127826602694
    [Google Scholar]
  62. PantN.C. SinghR. GuptaV. ChauhanA. MavuduruR. PrabhaV. SharmaP. Contraceptive efficacy of sperm agglutinating factor from Staphylococcus warneri, isolated from the cervix of a woman with inexplicable infertility.Reprod. Biol. Endocrinol.20191718510.1186/s12958‑019‑0531‑631656198
    [Google Scholar]
  63. WangG. Natural antimicrobial peptides as promising anti-HIV candidates.Curr. Top. Pept. Protein Res.2012139311026834391
    [Google Scholar]
  64. MakhlynetsO.V. CaputoG.A. Characteristics and therapeutic applications of antimicrobial peptides.Biophys. Rev.20212101130110.1063/5.003573138505398
    [Google Scholar]
  65. XuB. WangL. YangC. YanR. ZhangP. JinM. DuH. WangY. Specifically targeted antimicrobial peptides synergize with bacterial-entrapping peptide against systemic MRSA infections.J. Adv. Res.2024S2090-1232(24)00036-510.1016/j.jare.2024.01.02338266820
    [Google Scholar]
  66. XuanJ. FengW. WangJ. WangR. ZhangB. BoL. ChenZ.S. YangH. SunL. Antimicrobial peptides for combating drug-resistant bacterial infections.Drug Resist. Updat.20236810095410.1016/j.drup.2023.10095436905712
    [Google Scholar]
  67. BakareO.O. GokulA. Recent progress in the characterization, synthesis, delivery procedures, treatment strategies, and precision of antimicrobial peptides.Int. J. Mol. Sci.202324141186410.3390/ijms241411864
    [Google Scholar]
  68. FadakaA.O. SibuyiN.R.S. Nanotechnology-based delivery systems for antimicrobial peptides.Pharmaceutics20211311179510.3390/pharmaceutics13111795
    [Google Scholar]
  69. ZhaiY.J. FengY. MaX. Defensins: Defenders of human reproductive health.Hum. Reprod. Update202329112615410.1093/humupd/dmac032
    [Google Scholar]
  70. BucciniD.F. CardosoM.H. FrancoO.L. Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections.Front. Cell. Infect. Microbiol.20211061293110.3389/fcimb.2020.61293133614528
    [Google Scholar]
  71. HaoZ. ChenR. ChaiC. WangY. ChenT. LiH. HuY. FengQ. LiJ. Antimicrobial peptides for bone tissue engineering: Diversity, effects and applications.Front. Bioeng. Biotechnol.202210103016210.3389/fbioe.2022.103016236277377
    [Google Scholar]
  72. LaiP.K. TresnakD.T. HackelB.J. Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery.Biotechnol. Bioeng.2019116102439245010.1002/bit.27092
    [Google Scholar]
  73. KiM.R. KimS.H. ParkT.I. Self-entrapment of antimicrobial peptides in silica particles for stable and effective antimicrobial peptide delivery system.Int. J. Mol. Sci.202324221642310.3390/ijms242216423
    [Google Scholar]
  74. SumiC.D. YangB.W. YeoI.C. HahmY.T. Antimicrobial peptides of the genus Bacillus : A new era for antibiotics.Can. J. Microbiol.20156129310310.1139/cjm‑2014‑061325629960
    [Google Scholar]
  75. MoravejH. MoravejZ. YazdanparastM. HeiatM. MirhosseiniA. Moosazadeh MoghaddamM. MirnejadR. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria.Microb. Drug Resist.201824674776710.1089/mdr.2017.039229957118
    [Google Scholar]
  76. ZharkovaM.S. OrlovD.S. GolubevaO.Y. ChakchirO.B. EliseevI.E. GrinchukT.M. ShamovaO.V. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance?Front. Cell. Infect. Microbiol.2019912810.3389/fcimb.2019.0012831114762
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048307970240902095704
Loading
/content/journals/cwhr/10.2174/0115734048307970240902095704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test