Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Introduction/Objective

Atrial fibrillation (AF) could present with slow ventricular-response; bradycardia could facilitate the emergence of AF. The conviction that one “does not succumb” from bradycardia as an escape rhythm will emerge unless one sustains a fatal injury following syncope is in stark difference with ventricular tachyarrhythmia (VA), which may promptly cause cardiac arrest. However, this is not always the case, as a life-threatening situation may emerge during the bradycardic episode, ., the development of bradycardia-induced VAs, which could be fatal if there is no prompt intervention.

Methods

An extensive review of the literature was undertaken with key words including but not limited to AF, bradycardia, bradyarrhythmia, AF and bradycardia, slow ventricular response, sinus node dysfunction, sick sinus syndrome, tachycardia-bradycardia syndrome.

Results

AF is the commonest cardia arrhythmia worldwide and may be part of sick sinus syndrome, commonly presenting as bradycardia-tachycardia syndrome. Importantly, bradycardia-related cardiomyopathy and heart failure, as well as an adverse influence on brain function, may all be eluding consequences of this type of syndrome. Bradycardia could be the inciting mechanism for the occurrence of AF, and when the bradycardia is eliminated, AF may not recur. The bradycardia-related long-short-long sequence triggering VAs can be averted by pacing at rates ~80-110 bpm either temporary or permanent pacing as needed.

Conclusion

Balancing the benefits and risks of bradycardia together with other risks of antiarrhythmic drug and/or pacing management of AF versus those of catheter ablation is indeed a vexing problem; all these issues are herein discussed, tabulated, and pictorially illustrated.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611336002241030072954
2025-01-01
2025-04-06
Loading full text...

Full text loading...

References

  1. MahantaD. BarikR. BudhiaA.K. DasD. AcharyaD. A case of bradycardia-induced torsades de pointes in a patient presenting to the emergency room with cardiac arrest.Cureus20231510e4683110.7759/cureus.4683137954743
    [Google Scholar]
  2. BhattadP.B. JhaA. WholeyR. Bradycardia-induced torsades de pointes in atrioventricular block.Cureus2023154e3750710.7759/cureus.3750737193431
    [Google Scholar]
  3. MartinS.S. AdayA.W. AlmarzooqZ.I. 2024 heart disease and stroke statistics: A report of US and global data from the American Heart Association.Circulation20241498e347e91310.1161/CIR.000000000000120938264914
    [Google Scholar]
  4. SchnabelR.B. MarinelliE.A. ArbeloE. Early diagnosis and better rhythm management to improve outcomes in patients with atrial fibrillation: The 8th AFNET/EHRA consensus conference.Europace202325162710.1093/europace/euac06235894842
    [Google Scholar]
  5. ManolisA.S. Rhythm or rate control management of atrial fibrillation: An overrated dilemma.Hellenic J. Cardiol.201556649550026685293
    [Google Scholar]
  6. LiuY. ZhengY. TseG. Association between sick sinus syndrome and atrial fibrillation: A systematic review and meta-analysis.Int. J. Cardiol.2023381203610.1016/j.ijcard.2023.03.06637023861
    [Google Scholar]
  7. ChangW. LiG. Clinical review of sick sinus syndrome and atrial fibrillation.Herz202247324425010.1007/s00059‑021‑05046‑x34156514
    [Google Scholar]
  8. GaoD.K. YeX.L. DuanZ. Cardiac remodeling in patients with atrial fibrillation reversing bradycardia-induced cardiomyopathy: A case report.World J. Clin. Cases20241271339134510.12998/wjcc.v12.i7.133938524509
    [Google Scholar]
  9. HaïssaguerreM. JaïsP. ShahD.C. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins.N. Engl. J. Med.19983391065966610.1056/NEJM1998090333910039725923
    [Google Scholar]
  10. ZhaoY. ZhangJ. WangX. ZhangJ. Catheter ablation of extra-pulmonary vein foci improves the clinical outcome in patients with paroxysmal atrial fibrillation.Int. J. Cardiol.2014172245845910.1016/j.ijcard.2013.12.29224508107
    [Google Scholar]
  11. KimD. HwangT. KimM. Extra-pulmonary vein triggers at de novo and the repeat atrial fibrillation catheter ablation.Front. Cardiovasc. Med.2021875996710.3389/fcvm.2021.75996734805314
    [Google Scholar]
  12. KimY.G. LeeH.S. KimH. Association of antiarrhythmic drug therapy with syncope and pacemaker implantation in patients with atrial fibrillation.J. Am. Coll. Cardiol.202483111027103810.1016/j.jacc.2024.01.01338479951
    [Google Scholar]
  13. MarcuD.T.M. AdamC.A. DorobanțuD.M. Beta-blocker-related atrioventricular conduction disorders - A single tertiary referral center experience.Medicina (Kaunas)202258232010.3390/medicina5802032035208643
    [Google Scholar]
  14. MayowA.H. SinhaT. AhmadM. Comparison of the effectiveness and safety of metoprolol and diltiazem in atrial fibrillation with rapid ventricular rate patients: A systematic review and meta-analysis.Cureus2024163e5656010.7759/cureus.5656038646329
    [Google Scholar]
  15. KoldenhofT. Van GelderI.C. CrijnsH.J.G.M. RienstraM. TielemanR.G. Rate control in atrial fibrillation, calcium channel blockers versus beta-blockers.Heart2023109231759176410.1136/heartjnl‑2023‑32263537433659
    [Google Scholar]
  16. GriffithsC. IoannouA. DickinsonB. Atrial fibrillation is a predictor of drug-related bradycardia and hospital admission in older adults.Aging Dis.20211251138113910.14336/AD.2021.020834341696
    [Google Scholar]
  17. ChowG.V. MarineJ.E. FlegJ.L. Epidemiology of arrhythmias and conduction disorders in older adults.Clin. Geriatr. Med.201228453955310.1016/j.cger.2012.07.00323101570
    [Google Scholar]
  18. ZachariaE. PapageorgiouN. IoannouA. Inflammatory biomarkers in atrial fibrillation.Curr. Med. Chem.201926583785410.2174/092986732466617072710335728748764
    [Google Scholar]
  19. BorianiG. PadelettiL. Management of atrial fibrillation in bradyarrhythmias.Nat. Rev. Cardiol.201512633734910.1038/nrcardio.2015.3025781413
    [Google Scholar]
  20. KezerashviliA. KrumermanA.K. FisherJ.D. Sinus node dysfunction in atrial fibrillation: Cause or effect?J. Atr. Fibrillation2008133028496586
    [Google Scholar]
  21. SuL. WangX. KangF. GongC. ChenD. Atrial fibrillation ablation compared to pacemaker therapy in patients with tachycardia–bradycardia syndrome: A systematic review and updated meta-analysis.Medicine (Baltimore)202410316e3754310.1097/MD.000000000003754338640303
    [Google Scholar]
  22. PadelettiL. PürerfellnerH. MontL. New-generation atrial antitachycardia pacing (Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in patients with bradycardia: Results from the MINERVA randomized multicenter international trial.Heart Rhythm20151281717172510.1016/j.hrthm.2015.04.01525869753
    [Google Scholar]
  23. SzumowskiB.A. Beshay-TaylorY.M. SadekR. AttiaN. Complete heart block induced torsades de pointes.Cureus2024162e5516910.7759/cureus.5516938558635
    [Google Scholar]
  24. TaoY. XuJ. GongX. SunJ. YangD. Premature atrial complexes can predict atrial fibrillation in ischemic stroke patients: A systematic review and meta‐analysis.Pacing Clin. Electrophysiol.20214491599160610.1111/pace.1430234170567
    [Google Scholar]
  25. CunnG. WillnerJ. JohnR.M. Ablation of ectopic atrial foci for successful management of symptomatic bradycardia: A case series (bradycardia and ectopic atrial beats).Pacing Clin. Electrophysiol.202346650450910.1111/pace.1463936660967
    [Google Scholar]
  26. ManolisA.S. ManolisA.A. ManolisT.A. Chronic atrial overdrive pacing to suppress recurrences of atrial fibrillation.Rhythmos2021168283
    [Google Scholar]
  27. JacksonL.R. RathakrishnanB. CampbellK. Sinus node dysfunction and atrial fibrillation: A reversible phenomenon?Pacing Clin. Electrophysiol.201740444245010.1111/pace.1303028155995
    [Google Scholar]
  28. FrausingM.H.J.P. Van De LandeM.E. MaassA.H. Brady- and tachyarrhythmias detected by continuous rhythm monitoring in paroxysmal atrial fibrillation.Heart2023109171286129310.1136/heartjnl‑2022‑32225336948572
    [Google Scholar]
  29. DuanS. DuJ. Sinus node dysfunction and atrial fibrillation - Relationships, clinical phenotypes, new mechanisms, and treatment approaches.Ageing Res. Rev.20238610189010.1016/j.arr.2023.10189036813137
    [Google Scholar]
  30. GuoY.H. YangY.Q. Atrial fibrillation: Focus on myocardial connexins and gap junctions.Biology (Basel)202211448910.3390/biology1104048935453689
    [Google Scholar]
  31. AksuT. GopinathannairR. GuptaD. PauzaD.H. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the “heart brain”?J. Cardiovasc. Electrophysiol.20213261737174710.1111/jce.1505833928710
    [Google Scholar]
  32. AksuT. GuptaD. SkeeteJ.R. HuangH.H. Intrinsic cardiac neuromodulation in the management of atrial fibrillation - A potential missing link?Life (Basel)202313238310.3390/life1302038336836740
    [Google Scholar]
  33. CiacaruA. TusaA. MagdasA. PodoleanuC. The role of detailed medical history for the early diagnosis of familial bradycardia in a patient with associated atrial fibrillation – case report.Eur. Heart J. Case Rep.202483ytae11610.1093/ehjcr/ytae11638476290
    [Google Scholar]
  34. GuerrierK. CzosekR.J. SparD.S. AndersonJ. Long QT genetics manifesting as atrial fibrillation.Heart Rhythm20131091351135310.1016/j.hrthm.2013.07.01223851063
    [Google Scholar]
  35. LiR.G. XuY.J. YeW.G. Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease.Heart Rhythm202118568469310.1016/j.hrthm.2020.12.03333429106
    [Google Scholar]
  36. DuhmeN. SchweizerP.A. ThomasD. Altered HCN4 channel C-linker interaction is associated with familial tachycardia–bradycardia syndrome and atrial fibrillation.Eur. Heart J.201334352768277510.1093/eurheartj/ehs39123178648
    [Google Scholar]
  37. van OuwerkerkA.F. BosadaF.M. LiuJ. Identification of functional variant enhancers associated with atrial fibrillation.Circ. Res.2020127222924310.1161/CIRCRESAHA.119.31600632248749
    [Google Scholar]
  38. YamadaN. AsanoY. FujitaM. Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation.Circulation2019139182157216910.1161/CIRCULATIONAHA.118.03676130764634
    [Google Scholar]
  39. HoffmannS. PaoneC. SumerS.A. Functional characterization of rare variants in the SHOX2 gene identified in sinus node dysfunction and atrial fibrillation.Front. Genet.20191064810.3389/fgene.2019.0064831354791
    [Google Scholar]
  40. RighiD. SilvettiM.S. DragoF. Sinus bradycardia, junctional rhythm, and low-rate atrial fibrillation in Short QT syndrome during 20 years of follow-up: Three faces of the same genetic problem.Cardiol. Young201626358959210.1017/S104795111500143226279191
    [Google Scholar]
  41. KiC.S. JungC.L. KimH. A KCNQ1 mutation causes age-dependant bradycardia and persistent atrial fibrillation.Pflugers Arch.2014466352954010.1007/s00424‑013‑1337‑623989646
    [Google Scholar]
  42. MesircaP. FedorovV.V. HundT.J. Pharmacologic approach to sinoatrial node dysfunction.Annu. Rev. Pharmacol. Toxicol.202161175777810.1146/annurev‑pharmtox‑031120‑11581533017571
    [Google Scholar]
  43. CingolaniE. GoldhaberJ.I. MarbánE. Next-generation pacemakers: From small devices to biological pacemakers.Nat. Rev. Cardiol.201815313915010.1038/nrcardio.2017.16529143810
    [Google Scholar]
  44. BoinkG.J.J. ChristoffelsV.M. RobinsonR.B. TanH.L. The past, present, and future of pacemaker therapies.Trends Cardiovasc. Med.201525866167310.1016/j.tcm.2015.02.00526001958
    [Google Scholar]
  45. van der MaarelL.E. PostmaA.V. ChristoffelsV.M. Genetics of sinoatrial node function and heart rate disorders.Dis. Model. Mech.2023165dmm05010110.1242/dmm.05010137194974
    [Google Scholar]
  46. WieseC. GrieskampT. AirikR. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3.Circ. Res.2009104338839710.1161/CIRCRESAHA.108.18706219096026
    [Google Scholar]
  47. WiesingerA. LiJ. FokkertL. A single cell transcriptional roadmap of human pacemaker cell differentiation.eLife202211e7678110.7554/eLife.7678136217819
    [Google Scholar]
  48. ThiyagarajahA. LauD.H. SandersP. Atrial fibrillation and conduction system disease: The roles of catheter ablation and permanent pacing.J. Interv. Card. Electrophysiol.201852339540210.1007/s10840‑018‑0429‑930074119
    [Google Scholar]
  49. JønsC. Bloch ThomsenP.E. RiahiS. Arrhythmia monitoring and outcome after myocardial infarction (BIO|GUARD-MI): aA randomized trial.Front. Cardiovasc. Med.202411130007410.3389/fcvm.2024.130007438807948
    [Google Scholar]
  50. SugumarH. NanayakkaraS. PrabhuS. Pathophysiology of atrial fibrillation and heart failure.Cardiol. Clin.201937213113810.1016/j.ccl.2019.01.00230926014
    [Google Scholar]
  51. UotaniY. SasakiN. NakashimaM. Clinical features of tachycardia-induced cardiomyopathy in patients with atrial fibrillation.Intern. Med.202463182509251710.2169/internalmedicine.2466‑2338369360
    [Google Scholar]
  52. KeefeJ.A. GarberR. McCauleyM.D. WehrensX.H.T. Tachycardia and atrial fibrillation-related cardiomyopathies: Potential mechanisms and current therapies.JACC Heart Fail.202338206235
    [Google Scholar]
  53. CaliskanK. BalkA.H.M.M. JordaensL. Szili-TorokT. Bradycardiomyopathy: The case for a causative relationship between severe sinus bradycardia and heart failure.J. Cardiovasc. Electrophysiol.201021782282410.1111/j.1540‑8167.2009.01704.x20132390
    [Google Scholar]
  54. ŞaylıkF. ÇınarT. AkbulutT. HayıroğluM.İ. Comparison of catheter ablation and medical therapy for atrial fibrillation in heart failure patients: A meta-analysis of randomized controlled trials.Heart Lung202357697410.1016/j.hrtlng.2022.08.01236084398
    [Google Scholar]
  55. ShimizuW. TanakaK. SuenagaK. WakamotgA. Bradycardia-dependent early afterdepolarizations in a patient with QTU prolongation and torsade de pointes in association with marked bradycardia and hypokalemia.Pacing Clin. Electrophysiol.19911471105111110.1111/j.1540‑8159.1991.tb02841.x1715547
    [Google Scholar]
  56. Brembilla-PerrotB. JacqueminL. HouplonP. Bradycardia-induced polymorphic ventricular tachycardia after radiofrequency catheter modification of atrioventricular junction.J. Interv. Card. Electrophysiol.19971215315510.1023/A:10097114170589869965
    [Google Scholar]
  57. BirchfieldR.I. MenefeeE.E. BryantG.D.N. Disease of the sinoatrial node associated with bradycardia, asystole, syncope, and paroxysmal atrial fibrillation.Circulation1957161202610.1161/01.CIR.16.1.2013447146
    [Google Scholar]
  58. AltunbasG. ErcanS. SucuM. DavutogluV. Atrial fibrillation triggered by drug-induced bradycardia.J. Atr. Fibrillation201693142810.4022/jafib.142828496924
    [Google Scholar]
  59. CabanelasN. MartinsV.P. Laminopathies: A Pandora’s box of heart failure, bradyarrhythmias and sudden death.Rev. Port. Cardiol.2015342139.e1139.e510.1016/j.repc.2014.08.00725656816
    [Google Scholar]
  60. MalhotraR. MasonP.K. Lamin A/C deficiency as a cause of familial dilated cardiomyopathy.Curr. Opin. Cardiol.200924320320810.1097/HCO.0b013e32832a11c619384091
    [Google Scholar]
  61. PerettoG. SalaS. BenedettiS. Updated clinical overview on cardiac laminopathies: An electrical and mechanical disease.Nucleus20189138039110.1080/19491034.2018.148919529929425
    [Google Scholar]
  62. SubahiA. AkintoyeE. YassinA.S. Impact of atrial fibrillation on patients hospitalized for acute myocarditis: Insights from a nationally‐representative United States cohort.Clin. Cardiol.2019421263110.1002/clc.2308830284301
    [Google Scholar]
  63. RuggieroR. DonniacuoM. MascoloA. COVID-19 vaccines and atrial fibrillation: Analysis of the post-marketing pharmacovigilance european database.Biomedicines2023116158410.3390/biomedicines1106158437371680
    [Google Scholar]
  64. GopinathannairR. MerchantF.M. LakkireddyD.R. COVID-19 and cardiac arrhythmias: A global perspective on arrhythmia characteristics and management strategies.J. Interv. Card. Electrophysiol.202059232933610.1007/s10840‑020‑00789‑932494896
    [Google Scholar]
  65. BhatlaA. MayerM.M. AdusumalliS. COVID-19 and cardiac arrhythmias.Heart Rhythm20201791439144410.1016/j.hrthm.2020.06.016
    [Google Scholar]
  66. ManolisA.S. ManolisT.A. ManolisA.A. MelitaH. Cardiovascular implications and complications of the coronavirus disease-2019 pandemic: A world upside down.Curr. Opin. Cardiol.202136224125110.1097/HCO.000000000000083833395080
    [Google Scholar]
  67. YoungL.J. Antwi-BoasiakoS. FerrallJ. WoldL.E. MohlerP.J. El RefaeyM. Genetic and non-genetic risk factors associated with atrial fibrillation.Life Sci.202229912052910.1016/j.lfs.2022.12052935385795
    [Google Scholar]
  68. Babapoor-FarrokhranS. BatnyamU. WienerP.C. Atrioventricular and sinus node dysfunction in stable COVID-19 patients.SN Compr. Clin. Med.20202111955195810.1007/s42399‑020‑00497‑532901230
    [Google Scholar]
  69. KreinbrookJ.A. FosterA. PaulinoL. LeonelliF. Ventricular fibrillation in an afebrile COVID-19 patient presenting with transient type-I brugada pattern.Cureus2023154e3822010.7759/cureus.3822037252507
    [Google Scholar]
  70. AiM.Y. ChangW.L. YangC.J. remdesivir-induced bradycardia and mortality in SARS-CoV-2 infection, potential risk factors assessment: A systematic review and meta-analysis.J. Clin. Med.20231224751810.3390/jcm1224751838137586
    [Google Scholar]
  71. SelvarajV. BavishiC. PatelS. Dapaah-AfriyieK. Complete heart block associated with Remdesivir in COVID-19: A case report.Eur. Heart J. Case Rep.202157ytab20010.1093/ehjcr/ytab20034222786
    [Google Scholar]
  72. PariB. BabbiliA. KattubadiA. COVID-19 vaccination and cardiac arrhythmias: A review.Curr. Cardiol. Rep.202325992594010.1007/s11886‑023‑01921‑737530946
    [Google Scholar]
  73. TeoY.H. HanR. LeongS. Prevalence, types and treatment of bradycardia in obstructive sleep apnea - A systematic review and meta-analysis.Sleep Med.20228910411310.1016/j.sleep.2021.12.00334971926
    [Google Scholar]
  74. GeovaniniG.R. Lorenzi-FilhoG. Cardiac rhythm disorders in obstructive sleep apnea.J. Thorac. Dis.201810Suppl. 34S4221S423010.21037/jtd.2018.12.6330687538
    [Google Scholar]
  75. PadelettiM. ZacàV. MondilloS. JelicS. Sleep-disordered breathing increases the risk of arrhythmias.J. Cardiovasc. Med. (Hagerstown)201415541141610.2459/JCM.000000000000001924743686
    [Google Scholar]
  76. MehraR. ChungM.K. OlshanskyB. Sleep-disordered breathing and cardiac arrhythmias in adults: Mechanistic insights and clinical implications: A scientific statement from the american heart association.Circulation20221469e119e13610.1161/CIR.000000000000108235912643
    [Google Scholar]
  77. MukhopadhyayM. RoyS. BeraM. BhattacharyaG. Severe OSA leading to long pauses in 24-h holter ECG reversed with CPAP.Curr. Cardiol. Rev.202116434134910.2174/1573403X1566619121011540431820702
    [Google Scholar]
  78. KusumotoF.M. SchoenfeldM.H. BarrettC. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart rhythm society.Circulation20191408e382e48210.1161/CIR.000000000000062830586772
    [Google Scholar]
  79. GamiA.S. PressmanG. CaplesS.M. Association of atrial fibrillation and obstructive sleep apnea.Circulation2004110436436710.1161/01.CIR.0000136587.68725.8E15249509
    [Google Scholar]
  80. ManolisA.A. ManolisT.A. MelitaH. ManolisA.S. Subclinical thyroid dysfunction and cardiovascular consequences: An alarming wake-up call?Trends Cardiovasc. Med.2020302576910.1016/j.tcm.2019.02.01130871865
    [Google Scholar]
  81. SchenckJ.B. RizviA.A. LinT. Severe primary hypothyroidism manifesting with torsades de pointes.Am. J. Med. Sci.2006331315415610.1097/00000441‑200603000‑0000816538077
    [Google Scholar]
  82. ShojaieM. EshraghianA. Primary hypothyroidism presenting with Torsades de pointes type tachycardia: A case report.Cases J.20081129810.1186/1757‑1626‑1‑29818990220
    [Google Scholar]
  83. PechterR.A. OsbornL.A. Polymorphic ventricular tachycardia secondary to hypothyroidism.Am. J. Cardiol.1986571088288410.1016/0002‑9149(86)90636‑33962878
    [Google Scholar]
  84. JonesB.N. KumarB. PfirmanK. Life-threatening cardiac arrhythmias in a case of undetected myxedema coma: Importance of early detection and medication adherence.Am. J. Case Rep.202324e94141410.12659/AJCR.94141437925597
    [Google Scholar]
  85. KousaO. MansourM. AwadD. Reversible bradycardia secondary to myxedema coma: Case-report.Rev. Cardiovasc. Med.202021229730110.31083/j.rcm.2020.02.2632706217
    [Google Scholar]
  86. DalgaardF. PallisgaardJ.L. LindhardtT.B. Torp-PedersenC. GislasonG.H. RuwaldM.H. Rate and rhythm therapy in patients with atrial fibrillation and the risk of pacing and bradyarrhythmia.Heart Rhythm20191691348135610.1016/j.hrthm.2019.05.01831125673
    [Google Scholar]
  87. GohJ.Y. SiawC. A case of sudden slow heart rate in a patient with atrial fibrillation – what could be the possible cause?Malays. Fam. Physician2023184110.51866/tyk.25637575359
    [Google Scholar]
  88. PilE. LevyM. ChizmarT. TroncosoR. GarfinkelE. MargolisA. Efficacy and safety of prehospital diltiazem.Prehosp. Emerg. Care202420241810.1080/10903127.2024.232659838436598
    [Google Scholar]
  89. CoromilasE.J. KochavS. GoldenthalI. Worldwide survey of COVID-19–associated arrhythmias.Circ. Arrhythm. Electrophysiol.2021143e00945810.1161/CIRCEP.120.00945833554620
    [Google Scholar]
  90. IshisakaY. AikawaT. MalikA. KampaktsisP.N. BriasoulisA. KunoT. Association of Remdesivir use with bradycardia: A systematic review and meta‐analysis.J. Med. Virol.2023958e2901810.1002/jmv.2901837539782
    [Google Scholar]
  91. ManolisA.S. ManolisA.A. ManolisT.A. ApostolopoulosE.J. PapatheouD. MelitaH. COVID-19 infection and cardiac arrhythmias.Trends Cardiovasc. Med.202030845146010.1016/j.tcm.2020.08.00232814095
    [Google Scholar]
  92. KłosiewiczT. CholerzyńskaH. ZasadaW. Impact of various atrial fibrillation treatment strategies on length of stay in the emergency department and early complications — 3 years of a single-center experience.J. Clin. Med.202313119010.3390/jcm1301019038202197
    [Google Scholar]
  93. HoteitA. MoumnehM.B. NahlawiA. Efficacy and safety of intravenous vernakalant in rapid cardioversion of recent onset atrial fibrillation: A retrospective single-centre study.Cureus2024164e5861610.7759/cureus.5861638770450
    [Google Scholar]
  94. ManolisA.S. BethanisS. MetaxaS. PolytarchouK. SakellarisN. PyrrosI. Use of intravenous vernakalant for atrial fibrillation conversion in the regular ward under only bedside monitoring.Hellenic J. Cardiol.2019601545610.1016/j.hjc.2018.02.00329454598
    [Google Scholar]
  95. AminN.B. BorzakS. HousholderS. TisdaleJ.E. Sinus bradycardia and multiple episodes of sinus arrest following administration of ibutilide.Heart199879662862910.1136/hrt.79.6.62810078099
    [Google Scholar]
  96. TaylorC.T. DonaldsonA.R. Safety and effectiveness of ibutilide in a community hospital.Pharmacotherapy200121448849210.1592/phco.21.5.488.3449611310522
    [Google Scholar]
  97. LiK. LiuP. LiuM. YeJ. ZhuL. Putative causal relations among gut flora, serums metabolites and arrhythmia: A Mendelian randomization study.BMC Cardiovasc. Disord.20242413810.1186/s12872‑023‑03703‑z38212687
    [Google Scholar]
  98. ChenL. ChenJ. HuangY. Changes of the gut microbiota composition and short chain fatty acid in patients with atrial fibrillation.PeerJ202311e1622810.7717/peerj.1622838084144
    [Google Scholar]
  99. SvingenG.F.T. ZuoH. UelandP.M. Increased plasma trimethylamine- N -oxide is associated with incident atrial fibrillation.Int. J. Cardiol.201826710010610.1016/j.ijcard.2018.04.12829957250
    [Google Scholar]
  100. YangW.T. YangR. ZhaoQ. LiX.D. WangY.T. A systematic review and meta-analysis of the gut microbiota-dependent metabolite trimethylamine N-oxide with the incidence of atrial fibrillation.Ann. Palliat. Med.20211011115121152310.21037/apm‑21‑276334872276
    [Google Scholar]
  101. ChengT. WangH. HuY. The causal effects of genetically determined human blood metabolites on the risk of atrial fibrillation.Front. Cardiovasc. Med.202310121145810.3389/fcvm.2023.121145837564907
    [Google Scholar]
  102. LiuG. LuJ. SunW. Tryptophan supplementation enhances intestinal health by improving gut barrier function, alleviating inflammation, and modulating intestinal microbiome in lipopolysaccharide-challenged piglets.Front. Microbiol.20221391943110.3389/fmicb.2022.91943135859741
    [Google Scholar]
  103. FangH. FangM. WangY. Indole-3-propionic acid as a potential therapeutic agent for sepsis-induced gut microbiota disturbance.Microbiol. Spectr.2022103e00125e2210.1128/spectrum.00125‑2235658593
    [Google Scholar]
  104. LaiK. SongC. GaoM. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage.Int. J. Mol. Sci.2023246509310.3390/ijms2406509336982166
    [Google Scholar]
  105. ZhangL. LiB. ZhangD. WangZ. ZhaoY. YuQ. Uridine alleviates LPS-induced ARDS and improves insulin sensitivity by decreasing oxidative stress and inflammatory processes.Physiol. Int.2022109221522910.1556/2060.2022.0016935895566
    [Google Scholar]
  106. FangC. ZuoK. LiuZ. Disordered gut microbiota promotes atrial fibrillation by aggravated conduction disturbance and unbalanced linoleic acid/SIRT1 signaling.Biochem. Pharmacol.202321311559910.1016/j.bcp.2023.11559937196685
    [Google Scholar]
  107. FlanneryM.D. KalmanJ.M. SandersP. La GercheA. State of the art review: Atrial fibrillation in athletes.Heart Lung Circ.201726998398910.1016/j.hlc.2017.05.13228606607
    [Google Scholar]
  108. PathakR.K. ElliottA. MiddeldorpM.E. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation.J. Am. Coll. Cardiol.201566998599610.1016/j.jacc.2015.06.48826113406
    [Google Scholar]
  109. MozaffarianD. FurbergC.D. PsatyB.M. SiscovickD. Physical activity and incidence of atrial fibrillation in older adults: The cardiovascular health study.Circulation2008118880080710.1161/CIRCULATIONAHA.108.78562618678768
    [Google Scholar]
  110. KarjalainenJ. KujalaU.M. KaprioJ. SarnaS. ViitasaloM. Lone atrial fibrillation in vigorously exercising middle aged men: Case-control study.BMJ199831671471784178510.1136/bmj.316.7147.17849624065
    [Google Scholar]
  111. MargolisG. CohenO. RoguinA. Vigorous physical activity and atrial fibrillation in healthy individuals: What is the correct approach?Clin. Cardiol.2024473e2423710.1002/clc.2423738440948
    [Google Scholar]
  112. AizerA. GazianoJ.M. CookN.R. MansonJ.E. BuringJ.E. AlbertC.M. Relation of vigorous exercise to risk of atrial fibrillation.Am. J. Cardiol.2009103111572157710.1016/j.amjcard.2009.01.37419463518
    [Google Scholar]
  113. AbdullaJ. NielsenJ.R. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis.Europace20091191156115910.1093/europace/eup19719633305
    [Google Scholar]
  114. PoulidakisE. ManolisA.S. Transvenous temporary cardiac pacing.Rhythmos201492027
    [Google Scholar]
  115. DongH. ChenH. HidruT.H. XiaY. YangX. Sinus node dysfunction and stroke risk: A systematic review and meta-analysis.BMJ Open20231311e07649910.1136/bmjopen‑2023‑07649937977871
    [Google Scholar]
  116. DongH. ZhangY. SunD. Refining prediction of stroke in sinus node dysfunction patients without atrial fibrillation using a P-combined score: A multi-centre study.Eur. J. Prev. Cardiol.202431550751810.1093/eurjpc/zwad26737651722
    [Google Scholar]
  117. AndersenH.R. NielsenJ.C. ThomsenP.E.B. Arterial thromboembolism in patients with sick sinus syndrome: Prediction from pacing mode, atrial fibrillation, and echocardiographic findings.Heart199981441241810.1136/hrt.81.4.41210092569
    [Google Scholar]
  118. MiyasakaY. BarnesM.E. PetersenR.C. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: Data from a community-based cohort.Eur. Heart J.200728161962196710.1093/eurheartj/ehm01217459900
    [Google Scholar]
  119. ManolisT.A. ManolisA.A. ApostolopoulosE.J. MelitaH. ManolisA.S. Atrial fibrillation and cognitive impairment: An associated burden or burden by association?Angiology202071649851910.1177/000331972091066932233780
    [Google Scholar]
  120. ManolisA.S. Atrial fibrillation and cognitive impairment.Hosp. Chron.20151012913610.2015/hc.v10i3.727
    [Google Scholar]
  121. AlonsoA. KnopmanD.S. GottesmanR.F. Correlates of dementia and mild cognitive impairment in patients with atrial fibrillation: The atherosclerosis risk in communities neurocognitive study (ARIC‐NCS).J. Am. Heart Assoc.201767e00601410.1161/JAHA.117.00601428739861
    [Google Scholar]
  122. AlonsoA. Arenas de LarrivaA.P. Atrial fibrillation, cognitive decline and dementia.Eur. Cardiol.2016111495310.15420/ecr.2016:13:227547248
    [Google Scholar]
  123. KilanderL. AndrénB. NymanH. LindL. BobergM. LithellH. Atrial fibrillation is an independent determinant of low cognitive function: A cross-sectional study in elderly men.Stroke19982991816182010.1161/01.STR.29.9.18169731601
    [Google Scholar]
  124. SagliettoA. ScarsoglioS. CanovaD. Increased beat-to-beat variability of cerebral microcirculatory perfusion during atrial fibrillation: A near-infrared spectroscopy study.Europace20212381219122610.1093/europace/euab07033846732
    [Google Scholar]
  125. VarriasD. SaralidzeT. BorkowskiP. Atrial fibrillation and dementia: Pathophysiological mechanisms and clinical implications.Biomolecules202414445510.3390/biom1404045538672471
    [Google Scholar]
  126. GardarsdottirM. SigurdssonS. AspelundT. Atrial fibrillation is associated with decreased total cerebral blood flow and brain perfusion.Europace20182081252125810.1093/europace/eux22029016776
    [Google Scholar]
  127. FontenlaA. TamargoJ. SalgadoR. Ivabradine for controlling heart rate in permanent atrial fibrillation: A translational clinical trial.Heart Rhythm202320682283010.1016/j.hrthm.2023.02.01237245897
    [Google Scholar]
  128. PerrettM. GohilN. TicaO. BuntingK.V. KotechaD. Efficacy and safety of intravenous beta-blockers in acute atrial fibrillation and flutter is dependent on beta-1 selectivity: A systematic review and meta-analysis of randomised trials.Clin. Res. Cardiol.2024113683184110.1007/s00392‑023‑02295‑037658166
    [Google Scholar]
  129. CompagnerC.T. WysockiC.R. ReichE.K. ZimmermanL.H. HolzhausenJ.M. Intravenous metoprolol versus diltiazem for atrial fibrillation with concomitant heart failure.Am. J. Emerg. Med.202262495410.1016/j.ajem.2022.10.00136252310
    [Google Scholar]
  130. ManolisA.S. TordjmanT. MackK.D. EstesN.A. Atypical pulmonary and neurologic complications of amiodarone in the same patient. Report of a case and review of the literature.Arch. Intern. Med.1987147101805180910.1001/archinte.1987.003701001190193310943
    [Google Scholar]
  131. ManolisA.S. UricchioF. EstesN.A.M. Prognostic value of early electrophysiologic studies for ventricular tachycardia recurrence in patients with coronary artery disease treated with amiodarone.Am. J. Cardiol.198963151052105710.1016/0002‑9149(89)90077‑52705375
    [Google Scholar]
  132. TanC. KumarP. Too little, too late: A case of a swift fatal culmination of amiodarone induced pulmonary toxicity in an adult male.Int. Med. Case Rep. J.20231667968710.2147/IMCRJ.S43374037849496
    [Google Scholar]
  133. BaronE. MokW.K. JayawardenaM. Amiodarone lung: Under recognised but not forgotten.J. R. Coll. Phys. Edinb.2021511616410.4997/jrcpe.2021.11533877138
    [Google Scholar]
  134. KengL.T. LiaoM.T. Amiodarone-induced hepatic and pulmonary toxicity.Postgrad. Med. J.201894111660310.1136/postgradmedj‑2018‑13577929743186
    [Google Scholar]
  135. ManolisA.S. ManolisT.A. ManolisA.A. MelitaH. Atrial fibrillation-induced tachycardiomyopathy and heart failure: An underappreciated and elusive condition.Heart Fail. Rev.20222762119213510.1007/s10741‑022‑10221‑135318562
    [Google Scholar]
  136. HesseK. Target heart rate in heart failure with reduced ejection fraction and atrial fibrillation: Goldilocks zone.Am. Heart J. Plus20222310021810.1016/j.ahjo.2022.10021838560658
    [Google Scholar]
  137. deSouzaI.S. ShresthaP. AllenR. KoosJ. ThodeH. Safety and effectiveness of antidysrhythmic drugs for pharmacologic cardioversion of recent-onset atrial fibrillation: A systematic review and bayesian network meta-analysis.Cardiovasc. Drugs Ther.202410.1007/s10557‑024‑07552‑638324103
    [Google Scholar]
  138. WybraniecM.T. MaciągA. MiśkowiecD. Antiarrhythmic drugs for pharmacological cardioversion of atrial fibrillation and sex differences: Insights from the CANT II Study.Kardiol. Pol.202381111089109510.33963/v.kp.9739237997824
    [Google Scholar]
  139. LiuQ. LiJ. YangL. The short‐long‐short‐short sequence and polymorphic ventricular tachycardias storm.Ann. Noninvasive Electrocardiol.2023283e1303410.1111/anec.1303436514830
    [Google Scholar]
  140. RaoS.J. KanwalA. KanwalA. DanilovA. FrishmanW.H. Landiolol: An ultra-short-acting β-blocker.Cardiol. Rev.202337185629
    [Google Scholar]
  141. BeliaevaM.M. DzaurovaK.M. YurichevaY.A. Intravenous cavutilide for pharmacological conversion of paroxysmal and persistent atrial fibrillation in patients with heart failure.J. Cardiovasc. Dev. Dis.2023101248710.3390/jcdd1012048738132655
    [Google Scholar]
  142. ParkJ. SeolS.H. KimD.K. Safety concern with electrical cardioversion of persistent atrial fibrillation with slow ventricular response.Pacing Clin. Electrophysiol.202245896396710.1111/pace.1448335276015
    [Google Scholar]
  143. PoçiD. AbrahamssonB.M. EdvardssonN. BergfeldtL. Sinus bradycardia and sinus pauses immediately after electrical cardioversion of persistent atrial fibrillation - what do they mean?Ann. Noninvasive Electrocardiol.201318328128710.1111/anec.1203323714087
    [Google Scholar]
  144. GallagherM.M. YapY.G. PadulaM. WardD.E. RowlandE. CammA.J. Arrhythmic complications of electrical cardioversion: Relationship to shock energy.Int. J. Cardiol.2008123330731210.1016/j.ijcard.2006.12.01417395302
    [Google Scholar]
  145. ErF. AslanO. CaglayanE. Flecainide for cardioversion in patients at elevated cardiovascular risk and persistent atrial fibrillation: A prospective observational study.Clin. Res. Cardiol.201099636937310.1007/s00392‑010‑0129‑720180126
    [Google Scholar]
  146. BagerJ.E. MartínA. Carbajosa DalmauJ. Vernakalant for cardioversion of recent-onset atrial fibrillation in the emergency department: The SPECTRUM study.Cardiology20221475-656657710.1159/00052683136282074
    [Google Scholar]
  147. LévyS. HartikainenJ. RitzB. JuhlinT. Carbajosa-DalmauJ. DomanovitsH. Vernakalant for rapid cardioversion of recent-onset atrial fibrillation: Results from the SPECTRUM study.Cardiovasc. Drugs Ther.202135228329210.1007/s10557‑020‑07103‑933206300
    [Google Scholar]
  148. HouZ.Y. ChangM.S. ChenC.Y. Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone.Eur. Heart J.199516452152810.1093/oxfordjournals.eurheartj.a0609457671898
    [Google Scholar]
  149. GrönbergT. NuotioI. NikkinenM. Arrhythmic complications after electrical cardioversion of acute atrial fibrillation: The FinCV study.Europace201315101432143510.1093/europace/eut10623687124
    [Google Scholar]
  150. MaW. GuoX. WangQ. SunG. WangJ. Systematic review and meta-analysis appraising efficacy and safety of vernakalant for cardioversion of recent-onset atrial fibrillation.J. Cardiovasc. Pharmacol.2020761324110.1097/FJC.000000000000083232251022
    [Google Scholar]
  151. DixitS. OranefoJ.U. RaadM. Atrial fibrillation management with antiarrhythmic drug therapy.J. Am. Coll. Cardiol.202483111039104110.1016/j.jacc.2024.01.01538479952
    [Google Scholar]
  152. ChoM.S. LeeJ.H. NamG.B. Comparison between catheter ablation versus permanent pacemaker implantation as an initial treatment for tachycardia–bradycardia syndrome patients: A prospective, randomized trial.BMC Cardiovasc. Disord.202424124610.1186/s12872‑024‑03920‑038730404
    [Google Scholar]
  153. RiadO. RussellC. GarfieldB. BeharJ.M. Atrial pacing to suppress ventricular arrhythmias in the critically ill patients: A case report.Eur. Heart J. Case Rep.202265ytac16310.1093/ehjcr/ytac16335528119
    [Google Scholar]
  154. NielsenJ.C. Mortality and incidence of atrial fibrillation in paced patients.J. Cardiovasc. Electrophysiol.200213Suppl. 1S17S2210.1111/j.1540‑8167.2002.tb01948.x11852889
    [Google Scholar]
  155. MutagaywaR.K. TumainiB. ChinA. A comparison of AAIR versus DDDR pacing for patients with sinus node dysfunction: A long-term follow-up study.Cardiovasc. J. Afr.2021321192210.5830/CVJA‑2020‑04032946543
    [Google Scholar]
  156. SenaratneJ.M. JayasuriyaA. IrwinM. GulamhuseinS. SenaratneM.P.J. A 19-year study on pacemaker-related infections: A claim for using postoperative antibiotics.Pacing Clin. Electrophysiol.201437894795410.1111/pace.1240324766534
    [Google Scholar]
  157. NielsenJ.C. ThomsenP.E.B. HøjbergS. Atrial fibrillation in patients with sick sinus syndrome: The association with PQ-interval and percentage of ventricular pacing.Europace201214568268910.1093/europace/eur36522106360
    [Google Scholar]
  158. NielsenJ.C. ThomsenP.E.B. HøjbergS. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome.Eur. Heart J.201132668669610.1093/eurheartj/ehr02221300730
    [Google Scholar]
  159. ManolisA.S. The deleterious consequences of right ventricular apical pacing: time to seek alternate site pacing.Pacing Clin. Electrophysiol.200629329831510.1111/j.1540‑8159.2006.00338.x16606399
    [Google Scholar]
  160. NielsenJ.C. KristensenL. AndersenH.R. MortensenP.T. PedersenO.L. PedersenA.K. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome.J. Am. Coll. Cardiol.200342461462310.1016/S0735‑1097(03)00757‑512932590
    [Google Scholar]
  161. AmirT. IlanM. FishmanE. “Preventive” pacing in patients with tachy‐brady syndrome (TBS): Confirming a common practice.Int. J. Clin. Pract.20207410e1358310.1111/ijcp.1358332533880
    [Google Scholar]
  162. AndersenH.R. NielsenJ.C. ThomsenP.E.B. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome.Lancet199735090861210121610.1016/S0140‑6736(97)03425‑99652562
    [Google Scholar]
  163. Shah SyedA.R. AkramA. AzamM.S. Dual-chamber versus single chamber pacemakers, a systemic review and meta-analysis on sick sinus syndrome and atrioventricular block patients.Heliyon2024101e2387710.1016/j.heliyon.2023.e2387738234924
    [Google Scholar]
  164. IkedaS. SakamotoK. SugawaraM. Paced QRS morphology mimicking complete left bundle branch block induced by right ventricular pacing is associated with pacing‐induced cardiomyopathy.J. Cardiovasc. Electrophysiol.202435590691510.1111/jce.1622938433355
    [Google Scholar]
  165. ManolisA.S. ManolisA.A. ManolisT.A. Right heart in cardiac pacing. DumitrescuS.I. ŢintoiuI. UnderwoodM. Right Heart Pathology.ChamSpringer201833134510.1007/978‑3‑319‑73764‑5_17
    [Google Scholar]
  166. OidaM. MizutaniT. HasumiE. Prediction of pacemaker-induced cardiomyopathy using a convolutional neural network based on clinical findings prior to pacemaker implantation.Sci. Rep.2024141691610.1038/s41598‑024‑57418‑y38519537
    [Google Scholar]
  167. MüllerJ. NentwichK. BerkovitzA. Recurrent atrial fibrillation ablation after initial successful pulmonary vein isolation.J. Clin. Med.20231222717710.3390/jcm1222717738002789
    [Google Scholar]
  168. DaimeeU.A. AkhtarT. BoyleT.A. Repeat catheter ablation for recurrent atrial fibrillation: Electrophysiologic findings and clinical outcomes.J. Cardiovasc. Electrophysiol.202132362863810.1111/jce.1486733410561
    [Google Scholar]
  169. Al-HijjiM.A. DeshmukhA.J. YaoX. Trends and predictors of repeat catheter ablation for atrial fibrillation.Am. Heart J.20161711485510.1016/j.ahj.2015.10.01526699600
    [Google Scholar]
  170. KhaykinY. MarroucheN.F. MartinD.O. Pulmonary vein isolation for atrial fibrillation in patients with symptomatic sinus bradycardia or pauses.J. Cardiovasc. Electrophysiol.200415778478910.1046/j.1540‑8167.2004.03279.x15250863
    [Google Scholar]
  171. LiuJ. SunF. SunJ. Changes in heart rate after pulmonary vein isolation in patients with paroxysmal atrial fibrillation and sinus bradycardia.Int. Heart J.202364460661310.1536/ihj.22‑71437518342
    [Google Scholar]
  172. OkumusN.K. ZeitlerE.P. MoustafaA. Three-year incidence of pacemaker implantation in patients with atrial fibrillation and sinus node dysfunction receiving ablation versus antiarrhythmic drugs.J. Interv. Card. Electrophysiol.202410.1007/s10840‑024‑01790‑238632136
    [Google Scholar]
  173. FrommeyerG. ReinkeF. BrachmannJ. Mortality and rehospitalization in patients with pre-existing implantable pacemakers undergoing catheter ablation are related to increased comorbidity burden — Data from the German Ablation Registry.Clin. Res. Cardiol.202410.1007/s00392‑024‑02449‑838619577
    [Google Scholar]
  174. OguriN. SairakuA. MorishimaN. Progression from paroxysmal to persistent atrial fibrillation in pacemaker patients with tachycardia–bradycardia syndrome: A multicenter study.Heart Vessels20233891149115510.1007/s00380‑023‑02266‑537029247
    [Google Scholar]
  175. HerwegB PatelRS NoujaimS SpanoJ MencerN VijayaramanP Cryoballoon cardioneuroablation: New electrophysiological insights.Heart Rhythm O22024542091610.1016/j.hroo.2024.03.00438690146
    [Google Scholar]
  176. ZhangR. WangY. YangM. Risk stratification for atrial fibrillation and outcomes in tachycardia-bradycardia syndrome: Ablation vs. pacing.Front. Cardiovasc. Med.2021867447110.3389/fcvm.2021.67447134169100
    [Google Scholar]
  177. ChenY.W. BaiR. LinT. Pacing or ablation: Which is better for paroxysmal atrial fibrillation-related tachycardia-bradycardia syndrome?Pacing Clin. Electrophysiol.201437440341110.1111/pace.1234024456243
    [Google Scholar]
  178. ManolisA.S. Cardiac resynchronization therapy in congestive heart failure: Ready for prime time?Heart Rhythm20041335536310.1016/j.hrthm.2004.03.06515851184
    [Google Scholar]
  179. HwangJ.K. GwagH.B. ParkK. OnY.K. KimJ.S. ParkS.J. Outcomes of cardiac resynchronization therapy in patients with atrial fibrillation accompanied by slow ventricular response.PLoS One2019141e021060310.1371/journal.pone.021060330633768
    [Google Scholar]
  180. CiesielskiA. BoczarK. SiekieraM. GajekJ. SławutaA. The clinical utility of direct His-bundle pacing in patients with heart failure and permanent atrial fibrillation.Acta Cardiol.202277211412110.1080/00015385.2021.190102134006173
    [Google Scholar]
  181. SaksenaS. FilipeckiA. Alternate-site pacing as monotherapy for prevention of atrial fibrillation: Is it here to stay?J. Cardiovasc. Electrophysiol.200112891892010.1046/j.1540‑8167.2001.00918.x11513443
    [Google Scholar]
  182. BailinS.J. Is Bachmann’s Bundle the only right site for single-site pacing to prevent atrial fibrillation? Results of a multicenter randomized trial.Card. Electrophysiol. Rev.20037432532810.1023/B:CEPR.0000023131.13609.ab15071246
    [Google Scholar]
  183. BailinS.J. AdlerS. GiudiciM. Prevention of chronic atrial fibrillation by pacing in the region of Bachmann’s bundle: Results of a multicenter randomized trial.J. Cardiovasc. Electrophysiol.200112891291710.1046/j.1540‑8167.2001.00912.x11513442
    [Google Scholar]
  184. AbouzidM.R. VyasA. EldahtouryS. Which should you choose for post operative atrial fibrillation, carvedilol or metoprolol? A systemic review and meta-analysis.Curr. Probl. Cardiol.202449210222010.1016/j.cpcardiol.2023.10222037989396
    [Google Scholar]
  185. PatelA.A. WhiteC.M. GillespieE.L. KlugerJ. ColemanC.I. Safety of amiodarone in the prevention of postoperative atrial fibrillation: A meta-analysis.Am. J. Health Syst. Pharm.200663982983710.2146/ajhp05045416638947
    [Google Scholar]
  186. Beaufort-KrolG.C. Bink-BoelkensM.T. Sotalol for atrial tachycardias after surgery for congenital heart disease.Pacing Clin. Electrophysiol.19972082125212910.1111/j.1540‑8159.1997.tb03642.x9272523
    [Google Scholar]
  187. BakerW.L. WhiteC.M. Post-cardiothoracic surgery atrial fibrillation: A review of preventive strategies.Ann. Pharmacother.200741458759810.1345/aph.1H59417374620
    [Google Scholar]
  188. HayıroğluM.İ. AltayS. The role of artificial intelligence in coronary artery disease and atrial fibrillation.Balkan Med. J.202340315115210.4274/balkanmedj.galenos.2023.0604202337025078
    [Google Scholar]
  189. Casado-ArroyoR. BernardiM. SabouretP. Investigative agents for atrial fibrillation: Agonists and stimulants, progress and expectations.Expert Opin. Investig. Drugs202433996797810.1080/13543784.2024.238858339096248
    [Google Scholar]
  190. ZhongC. BaiJ. QuX. Metformin reduces new-onset atrial fibrillation risk rather than atrial fibrillation burden in type 2 diabetes patients: A case-control study.Heliyon20241010e3099210.1016/j.heliyon.2024.e3099238818187
    [Google Scholar]
  191. LvQ. YangY. LvY. Effect of different hypoglycemic drugs and insulin on the risk of new-onset atrial fibrillation in people with diabetes: A network meta-analysis.Eur. J. Med. Res.202429139910.1186/s40001‑024‑01954‑w39085898
    [Google Scholar]
  192. SagliettoA. FalasconiG. PenelaD. Glucagon‐like peptide‐1 receptor agonist semaglutide reduces atrial fibrillation incidence: A systematic review and meta‐analysis.Eur. J. Clin. Invest.20242024e1429210.1111/eci.1429239058274
    [Google Scholar]
  193. ErogluT.E. CoronelR. SouvereinP.C. Sodium-glucose cotransporter-2 inhibitors and the risk of atrial fibrillation in patients with type 2 diabetes: A population-based cohort study.Eur. Heart J. Cardiovasc. Pharmacother.202410428929510.1093/ehjcvp/pvae02238520149
    [Google Scholar]
  194. KimM. HaK.H. LeeJ. Lower atrial fibrillation risk with sodium-glucose cotransporter 2 inhibitors than with dipeptidyl peptidase-4 inhibitors in individuals with type 2 diabetes: A nationwide cohort study.Korean Circ. J.202454525626710.4070/kcj.2023.023438654455
    [Google Scholar]
  195. KukendrarajahK. FarmakiA.E. LambiaseP.D. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies.EBioMedicine202410510519410.1016/j.ebiom.2024.10519438941956
    [Google Scholar]
  196. MaurielloA. AscrizziA. RomaA.S. Effects of heart failure therapies on atrial fibrillation: Biological and clinical perspectives.Antioxidants202413780610.3390/antiox1307080639061875
    [Google Scholar]
  197. HolstA.G. TomcsányiJ. VestbjergB. Inhibition of the KCa2 potassium channel in atrial fibrillation: A randomized phase 2 trial.Nat. Med.202430110611110.1038/s41591‑023‑02679‑938092897
    [Google Scholar]
  198. KrittanawongC. JohnsonK.W. RosensonR.S. Deep learning for cardiovascular medicine: A practical primer.Eur. Heart J.201940252058207310.1093/eurheartj/ehz05630815669
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611336002241030072954
Loading
/content/journals/cvp/10.2174/0115701611336002241030072954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test