Skip to content
2000
image of Neutrophil Migration is a Crucial Factor in Wound Healing and the Pathogenesis of Diabetic Foot Ulcers: Insights into Pharmacological Interventions

Abstract

Diabetic foot ulcers (DFUs) pose a significant clinical challenge, characterized by impaired wound healing, chronic inflammation, and increased risk of infection. Neutrophils, as critical components of the innate immune response, play a pivotal role in the initial stages of wound healing, particularly during the inflammatory phase. This review explores the intricate relationship between neutrophil migration, inflammation, and the pathogenesis of DFU and drugs that can impact neutrophil production and migration. Neutrophils contribute to infection control through phagocytosis and release pro-inflammatory cytokines and reactive oxygen species, which, when dysregulated, can impede the wound healing process. Furthermore, the chronic hyperglycemic state characteristic of diabetes mellitus has been implicated in impairing neutrophil functions, including chemotaxis and oxidative burst. This compromised neutrophil response prolongs the inflammatory phase and disrupts the delicate balance required for efficient wound healing. Neutrophil extracellular traps (NETs), a unique form of neutrophil defence, have also been implicated in DFU pathogenesis, potentially exacerbating inflammation and tissue damage. Understanding the intricate interplay between neutrophil migration, dysregulated inflammatory responses, and hyperglycemia-driven impairments is essential for developing targeted therapeutic strategies for DFUs. This review sheds light on the critical role of neutrophils in DFU pathogenesis, and innovative and advanced treatment strategies for DFU, highlighting the potential for novel interventions to restore the balance between pro-inflammatory and wound healing processes, ultimately improving clinical outcomes for individuals with DFU.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611308960241014155413
2024-10-30
2025-01-18
Loading full text...

Full text loading...

References

  1. de Oliveira S. Rosowski E.E. Huttenlocher A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 2016 16 6 378 391 10.1038/nri.2016.49 27231052
    [Google Scholar]
  2. Ma XX. Liu QK. Kuai L. The role of neutrophils in diabetic ulcers and targeting therapeutic strategies. Int Immunopharmacol 2023 124 Pt A 110861 10.1016/j.intimp.2023.110861
    [Google Scholar]
  3. Gierlikowska B. Stachura A. Gierlikowski W. Demkow U. Phagocytosis, degranulation and extracellular traps release by neutrophils: The current knowledge, pharmacological modulation and future prospects. Front. Pharmacol. 2021 12 666732 10.3389/fphar.2021.666732 34017259
    [Google Scholar]
  4. Tetlow L.C. Adlam D.J. Woolley D.E. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: Associations with degenerative changes. Arthritis Rheum. 2001 44 3 585 594 11263773
    [Google Scholar]
  5. Yadav S.S. Singh M.K. Dwivedi P. Mandal R.K. Usman K. Khattri S. Pant K.K. Significance of impaired serum gelatinases activities in metabolic syndrome. Toxicol. Int. 2014 21 1 107 111 24748744
    [Google Scholar]
  6. Singh K. Agrawal N.K. Gupta S.K. Mohan G. Chaturvedi S. Singh K. Differential expression of matrix metalloproteinase-9 gene in wounds of type 2 Diabetes mellitus cases with susceptible -1562C>T genotypes and wound severity. Int. J. Low. Extrem. Wounds 2014 13 2 94 102 10.1177/1534734614534980 24861096
    [Google Scholar]
  7. Lobmann R. Ambrosch A. Schultz G. Waldmann K. Schiweck S. Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002 45 7 1011 1016 10.1007/s00125‑002‑0868‑8 12136400
    [Google Scholar]
  8. Rizo-Téllez S.A. Sekheri M. Filep J.G. Myeloperoxidase: Regulation of neutrophil function and target for therapy. Antioxidants 2022 11 11 2302 10.3390/antiox11112302 36421487
    [Google Scholar]
  9. Zhang R. Brennan M.L. Shen Z. MacPherson J.C. Schmitt D. Molenda C.E. Hazen S.L. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem. 2002 277 48 46116 46122 10.1074/jbc.M209124200 12359714
    [Google Scholar]
  10. Su Y. Richmond A. Chemokine regulation of neutrophil infiltration of skin wounds. Adv. Wound Care (New Rochelle) 2015 4 11 631 640 10.1089/wound.2014.0559 26543677
    [Google Scholar]
  11. Bernhard S. Hug S. Stratmann A.E.P. Erber M. Vidoni L. Knapp C.L. Thomaß B.D. Fauler M. Nilsson B. Nilsson Ekdahl K. Föhr K. Braun C.K. Wohlgemuth L. Huber-Lang M. Messerer D.A.C. Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions. J. Innate Immun. 2021 13 4 225 241 10.1159/000514885 33857948
    [Google Scholar]
  12. Seree-aphinan C. Vichitkunakorn P. Navakanitworakul R. Khwannimit B. Distinguishing sepsis from infection by neutrophil dysfunction: A promising role of CXCR2 surface level. Front. Immunol. 2020 11 608696 10.3389/fimmu.2020.608696 33424860
    [Google Scholar]
  13. Teng T.S. Ji A. Ji X.Y. Li Y.Z. Neutrophils and immunity: From bactericidal action to being conquered. J. Immunol. Res. 2017 2017 1 14 10.1155/2017/9671604 28299345
    [Google Scholar]
  14. Rosales C. Neutrophil: A cell with many roles in inflammation or several cell types? Front. Physiol. 2018 9 113 10.3389/fphys.2018.00113 29515456
    [Google Scholar]
  15. Lu P. Takai K. Weaver V.M. Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011 3 12 a005058 10.1101/cshperspect.a005058 21917992
    [Google Scholar]
  16. Wilgus T.A. Roy S. McDaniel J.C. Neutrophils and wound repair: Positive actions and negative reactions. Adv. Wound Care (New Rochelle) 2013 2 7 379 388 10.1089/wound.2012.0383 24527354
    [Google Scholar]
  17. Adrover J.M. Nicolás-Ávila J.A. Hidalgo A. Aging: A temporal dimension for neutrophils. Trends Immunol. 2016 37 5 334 345 10.1016/j.it.2016.03.005 27083489
    [Google Scholar]
  18. Hirano Y. Aziz M. Wang P. Role of reverse transendothelial migration of neutrophils in inflammation. Biol. Chem. 2016 397 6 497 506 10.1515/hsz‑2015‑0309 26872312
    [Google Scholar]
  19. Jin H. Aziz M. Ode Y. Wang P. CIRP induces neutrophil reverse transendothelial migration in sepsis. Shock 2019 51 5 548 556 10.1097/SHK.0000000000001257 30148763
    [Google Scholar]
  20. Robertson A.L. Holmes G.R. Bojarczuk A.N. Burgon J. Loynes C.A. Chimen M. Sawtell A.K. Hamza B. Willson J. Walmsley S.R. Anderson S.R. Coles M.C. Farrow S.N. Solari R. Jones S. Prince L.R. Irimia D. Rainger G.E. Kadirkamanathan V. Whyte M.K.B. Renshaw S.A. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl. Med. 2014 6 225 225ra29 10.1126/scitranslmed.3007672 24574340
    [Google Scholar]
  21. Vorobjeva N.V. Chernyak B.V. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.) 2020 85 10 1178 1190 10.1134/S0006297920100065 33202203
    [Google Scholar]
  22. Sabbatini M. Magnelli V. Renò F. NETosis in wound healing: When enough is enough. Cells 2021 10 3 494 10.3390/cells10030494 33668924
    [Google Scholar]
  23. Wong S.L. Demers M. Martinod K. Gallant M. Wang Y. Goldfine A.B. Kahn C.R. Wagner D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015 21 7 815 819 10.1038/nm.3887 26076037
    [Google Scholar]
  24. Dowey R. Iqbal A. Heller S.R. Sabroe I. Prince L.R. A bittersweet response to infection in diabetes; targeting neutrophils to modify inflammation and improve host immunity. Front. Immunol. 2021 12 678771 10.3389/fimmu.2021.678771 34149714
    [Google Scholar]
  25. Collier A. Jackson M. Bell D. Patrick A.W. Matthews D.M. Young R.J. Clarke B.F. Dawes J. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1989 10 3 135 138 2805587
    [Google Scholar]
  26. Jackson M.H. Collier A. Nicoll J.J. Muir A.L. Dawes J. Clarke B.F. Bell D. Neutrophil count and activation in vascular disease. Scott. Med. J. 1992 37 2 41 43 10.1177/003693309203700205 1609264
    [Google Scholar]
  27. Harsunen M. Puff R. D’Orlando O. Giannopoulou E. Lachmann L. Beyerlein A. von Meyer A. Ziegler A.G. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm. Metab. Res. 2013 45 6 467 470 10.1055/s‑0032‑1331226 23322517
    [Google Scholar]
  28. Wang Y. Xiao Y. Zhong L. Ye D. Zhang J. Tu Y. Bornstein S.R. Zhou Z. Lam K.S.L. Xu A. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes 2014 63 12 4239 4248 10.2337/db14‑0480 25092677
    [Google Scholar]
  29. Sproston N.R. Ashworth J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018 9 754 10.3389/fimmu.2018.00754 29706967
    [Google Scholar]
  30. Dubey M. Singh A.K. Awasthi D. Nagarkoti S. Kumar S. Ali W. Chandra T. Kumar V. Barthwal M.K. Jagavelu K. Sánchez-Gómez F.J. Lamas S. Dikshit M. L-Plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions. Free Radic. Biol. Med. 2015 86 1 15 10.1016/j.freeradbiomed.2015.04.008 25881549
    [Google Scholar]
  31. Menegazzo L. Ciciliot S. Poncina N. Mazzucato M. Persano M. Bonora B. Albiero M. Vigili de Kreutzenberg S. Avogaro A. Fadini G.P. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015 52 3 497 503 10.1007/s00592‑014‑0676‑x 25387570
    [Google Scholar]
  32. Carestia A. Frechtel G. Cerrone G. Linari M.A. Gonzalez C.D. Casais P. Schattner M. NETosis before and after hyperglycemic control in type 2 Diabetes mellitus patients. PLoS One 2016 11 12 e0168647 10.1371/journal.pone.0168647 28005949
    [Google Scholar]
  33. Rodríguez-Espinosa O. Rojas-Espinosa O. Moreno-Altamirano M.M.B. López-Villegas E.O. Sánchez-García F.J. Metabolic requirements for neutrophil extracellular traps formation. Immunology 2015 145 2 213 224 10.1111/imm.12437 25545227
    [Google Scholar]
  34. Joshi M.B. Lad A. Bharath Prasad A.S. Balakrishnan A. Ramachandra L. Satyamoorthy K. High glucose modulates IL‐6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013 587 14 2241 2246 10.1016/j.febslet.2013.05.053 23735697
    [Google Scholar]
  35. Huang J. Xiao Y. Zheng P. Zhou W. Wang Y. Huang G. Xu A. Zhou Z. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab. Res. Rev. 2019 35 1 e3064 10.1002/dmrr.3064 30123986
    [Google Scholar]
  36. Trevelin S.C. Carlos D. Beretta M. da Silva J.S. Cunha F.Q. Diabetes Mellitus and Sepsis. Shock 2017 47 3 276 287 10.1097/SHK.0000000000000778 27787406
    [Google Scholar]
  37. Özsoy N. Bostancı H. Ayvalı C. The investigation of the ultrastructural neutrophil changes in alloxan‐induced diabetes in rats: Response to a chemotactic challenge. Cell Biochem. Funct. 2004 22 2 81 87 10.1002/cbf.1059 15027096
    [Google Scholar]
  38. Insuela D. Coutinho D. Martins M. Ferrero M. Carvalho V. Neutrophil function impairment is a host susceptibility factor to bacterial infection in Diabetes. Cells of the Immune System InTech Open 2019 10.5772/intechopen.86600
    [Google Scholar]
  39. Veenstra M. Ransohoff R.M. Chemokine receptor CXCR2: Physiology regulator and neuroinflammation controller? J. Neuroimmunol. 2012 246 1-2 1 9 10.1016/j.jneuroim.2012.02.016 22445294
    [Google Scholar]
  40. Everett E. Mathioudakis N. Update on management of diabetic foot ulcers. Ann. N. Y. Acad. Sci. 2018 1411 1 153 165 10.1111/nyas.13569 29377202
    [Google Scholar]
  41. Tuttolomondo A. Maida C. Pinto A. Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World J. Orthop. 2015 6 1 62 76 10.5312/wjo.v6.i1.62 25621212
    [Google Scholar]
  42. Burgess J.L. Wyant W.A. Abdo Abujamra B. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina (Kaunas) 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  43. Xu F. Zhang C. Graves D.T. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/754802 23484152
    [Google Scholar]
  44. Sathvik M. Vuppuluri K. Dulipala P. The association of the neutrophil-lymphocyte ratio with the outcome of diabetic foot ulcer. Cureus 2023 15 1 e33891 10.7759/cureus.33891 36819314
    [Google Scholar]
  45. Li X.H. Guan L.Y. Lin H.Y. Wang S.H. Cao Y.Q. Jiang X.Y. Wang Y.B. Fibrinogen: A marker in predicting diabetic foot ulcer severity. J. Diabetes Res. 2016 2016 1 5 10.1155/2016/2358321 28044140
    [Google Scholar]
  46. Stegenga M.E. van der Crabben S.N. Blümer R.M.E. Levi M. Meijers J.C.M. Serlie M.J. Tanck M.W.T. Sauerwein H.P. van der Poll T. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008 112 1 82 89 10.1182/blood‑2007‑11‑121723 18316629
    [Google Scholar]
  47. Roy R. Zayas J. Singh S.K. Delgado K. Wood S.J. Mohamed M.F. Frausto D.M. Albalawi Y.A. Price T.P. Estupinian R. Giurini E.F. Kuzel T.M. Zloza A. Reiser J. Shafikhani S.H. Overriding impaired FPR chemotaxis signaling in diabetic neutrophil stimulates infection control in murine diabetic wound. eLife 2022 11 e72071 10.7554/eLife.72071 35112667
    [Google Scholar]
  48. Javid A. Zlotnikov N. Pětrošová H. Tang T.T. Zhang Y. Bansal A.K. Ebady R. Parikh M. Ahmed M. Sun C. Newbigging S. Kim Y.R. Santana Sosa M. Glogauer M. Moriarty T.J. Hyperglycemia impairs neutrophil-mediated bacterial clearance in mice infected with the lyme disease pathogen. PLoS One 2016 11 6 e0158019 10.1371/journal.pone.0158019 27340827
    [Google Scholar]
  49. Asmat U. Abad K. Ismail K. Diabetes mellitus and oxidative stress: A concise review. Saudi Pharm. J. 2016 24 5 547 553 10.1016/j.jsps.2015.03.013 27752226
    [Google Scholar]
  50. Njeim R. Azar W.S. Fares A.H. Azar S.T. Kfoury Kassouf H. Eid A.A. NETosis contributes to the pathogenesis of diabetes and its complications. J. Mol. Endocrinol. 2020 65 4 R65 R76 10.1530/JME‑20‑0128 33048064
    [Google Scholar]
  51. Fadini G.P. Menegazzo L. Rigato M. Scattolini V. Poncina N. Bruttocao A. Ciciliot S. Mammano F. Ciubotaru C.D. Brocco E. Marescotti M.C. Cappellari R. Arrigoni G. Millioni R. Vigili de Kreutzenberg S. Albiero M. Avogaro A. NETosis delays diabetic wound healing in mice and humans. Diabetes 2016 65 4 1061 1071 10.2337/db15‑0863 26740598
    [Google Scholar]
  52. Berbudi A. Rahmadika N. Tjahjadi A.I. Ruslami R. Type 2 Diabetes and its impact on the immune system. Curr. Diabetes Rev. 2020 16 5 442 449 10.2174/18756417MTAxgODQqy 31657690
    [Google Scholar]
  53. Mortaz E. Alipoor S.D. Adcock I.M. Mumby S. Koenderman L. Update on neutrophil function in severe inflammation. Front. Immunol. 2018 9 2171 10.3389/fimmu.2018.02171 30356867
    [Google Scholar]
  54. Fiorentino T. Prioletta A. Zuo P. Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013 19 32 5695 5703 10.2174/1381612811319320005 23448484
    [Google Scholar]
  55. Geng K. Ma X. Jiang Z. Huang W. Gao C. Pu Y. Luo L. Xu Y. Xu Y. Innate immunity in diabetic wound healing: Focus on the mastermind hidden in chronic inflammatory. Front. Pharmacol. 2021 12 653940 10.3389/fphar.2021.653940 33967796
    [Google Scholar]
  56. Tracy L.E. Minasian R.A. Caterson E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle) 2016 5 3 119 136 10.1089/wound.2014.0561 26989578
    [Google Scholar]
  57. Brubaker A.L. Rendon J.L. Ramirez L. Choudhry M.A. Kovacs E.J. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J. Immunol. 2013 190 4 1746 1757 10.4049/jimmunol.1201213 23319733
    [Google Scholar]
  58. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  59. Shaikh-Kader A. Houreld N.N. Rajendran N.K. Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem. Funct. 2019 37 6 432 442 10.1002/cbf.3424 31318458
    [Google Scholar]
  60. Ochoa O. Torres F.M. Shireman P.K. Chemokines and diabetic wound healing. Vascular 2007 15 6 350 355 10.2310/6670.2007.00056 18053419
    [Google Scholar]
  61. Ridiandries A. Tan J.T.M. Bursill C.A. The role of chemokines in wound healing. Int. J. Mol. Sci. 2018 19 10 3217 10.3390/ijms19103217 30340330
    [Google Scholar]
  62. Landén N.X. Li D. Ståhle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016 73 20 3861 3885 10.1007/s00018‑016‑2268‑0 27180275
    [Google Scholar]
  63. Spiller F. Carlos D. Souto F.O. de Freitas A. Soares F.S. Vieira S.M. Paula F.J.A. Alves-Filho J.C. Cunha F.Q. α1-Acid glycoprotein decreases neutrophil migration and increases susceptibility to sepsis in diabetic mice. Diabetes 2012 61 6 1584 1591 10.2337/db11‑0825 22415874
    [Google Scholar]
  64. Zhao B. Li M. Su Y. Shan S. Qian W. Zhu D. Liu X. Zhang Z. Role of transcription factor FOXM1 in diabetes and its complications (Review). Int. J. Mol. Med. 2023 52 5 101 10.3892/ijmm.2023.5304 37681487
    [Google Scholar]
  65. Sawaya A.P. Stone R.C. Mehdizadeh S. Pastar I. Worrell S. Balukoff N.C. Kaplan M.J. Tomic-Canic M. Morasso M.I. FOXM1 network in association with TREM1 suppression regulates NET formation in diabetic foot ulcers. EMBO Rep. 2022 23 8 e54558 10.15252/embr.202154558 35856334
    [Google Scholar]
  66. Morris R. Kershaw N.J. Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018 27 12 1984 2009 10.1002/pro.3519 30267440
    [Google Scholar]
  67. Lee E.G. Luckett-Chastain L.R. Calhoun K.N. Frempah B. Bastian A. Gallucci R.M. Interleukin 6 Function in the skin and isolated keratinocytes is modulated by hyperglycemia. J. Immunol. Res. 2019 2019 1 9 10.1155/2019/5087847 31073533
    [Google Scholar]
  68. Hillmer E.J. Zhang H. Li H.S. Watowich S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016 31 1 15 10.1016/j.cytogfr.2016.05.001 27185365
    [Google Scholar]
  69. Zhu B.M. Ishida Y. Robinson G.W. Pacher-Zavisin M. Yoshimura A. Murphy P.M. Hennighausen L. SOCS3 negatively regulates the gp130-STAT3 pathway in mouse skin wound healing. J. Invest. Dermatol. 2008 128 7 1821 1829 10.1038/sj.jid.5701224 18185532
    [Google Scholar]
  70. Hosseini Mansoub N. The role of keratinocyte function on the defected diabetic wound healing. Int. J. Burns Trauma 2021 11 6 430 441 35111377
    [Google Scholar]
  71. Linke A. Goren I. Bösl M.R. Pfeilschifter J. Frank S. Epithelial overexpression of SOCS-3 in transgenic mice exacerbates wound inflammation in the presence of elevated TGF-beta1. J. Invest. Dermatol. 2010 130 3 866 875 10.1038/jid.2009.345 19924141
    [Google Scholar]
  72. Sawaya A.P. Stone R.C. Brooks S.R. Pastar I. Jozic I. Hasneen K. O’Neill K. Mehdizadeh S. Head C.R. Strbo N. Morasso M.I. Tomic-Canic M. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat. Commun. 2020 11 1 4678 10.1038/s41467‑020‑18276‑0 32938916
    [Google Scholar]
  73. Johnson B.Z. Stevenson A.W. Prêle C.M. Fear M.W. Wood F.M. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020 8 5 101 10.3390/biomedicines8050101 32365896
    [Google Scholar]
  74. Buonacera A. Stancanelli B. Colaci M. Malatino L. Neutrophil to lymphocyte ratio: An emerging marker of the relationships between the immune system and diseases. Int. J. Mol. Sci. 2022 23 7 3636 10.3390/ijms23073636 35408994
    [Google Scholar]
  75. Kahraman C. Yumun G. Kahraman NK. Neutrophil-to-lymphocyte ratio in diabetes mellitus patients with and without diabetic foot ulcer. EJMS 2014 1 1 8 13 10.12973/ejms.2014.102p
    [Google Scholar]
  76. Vatankhah N. Jahangiri Y. Landry G.J. McLafferty R.B. Alkayed N.J. Moneta G.L. Azarbal A.F. Predictive value of neutrophil-to-lymphocyte ratio in diabetic wound healing. J. Vasc. Surg. 2017 65 2 478 483 10.1016/j.jvs.2016.08.108 27887858
    [Google Scholar]
  77. Zhang K. Ding S. Lyu X. Tan Q. Wang Z. Correlation between the platelet‐to‐lymphocyte ratio and diabetic foot ulcer in patients with type 2 diabetes mellitus. J. Clin. Lab. Anal. 2021 35 4 e23719 10.1002/jcla.23719 33507619
    [Google Scholar]
  78. Serban D. Papanas N. Dascalu AM. Significance of neutrophil to lymphocyte ratio (NLR) and platelet lymphocyte ratio (PLR) in Diabetic foot ulcer and potential new therapeutic targets. Int J Low Extrem Wounds 2024 23 2 205 216 10.1177/15347346211057742. 34791913
    [Google Scholar]
  79. Atak B. Aktas G. Duman TT. Erkus E. Kocak MZ. Savli H. Diabetes control could through platelet-to-lymphocyte ratio in hemograms. Rev Assoc Med Bras (1992) 2019 65 1 38 42 10.1590/1806‑9282.65.1.38
    [Google Scholar]
  80. Mineoka Y. Ishii M. Hashimoto Y. Yamashita A. Nakamura N. Fukui M. Platelet to lymphocyte ratio correlates with diabetic foot risk and foot ulcer in patients with type 2 diabetes. Endocr. J. 2019 66 10 905 913 10.1507/endocrj.EJ18‑0477 31217392
    [Google Scholar]
  81. Chen W. Chen K. Xu Z. Hu Y. Liu Y. Liu W. Hu X. Ye T. Hong J. Zhu H. Shen F. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predict mortality in patients with diabetic foot ulcers undergoing amputations. Diabetes Metab. Syndr. Obes. 2021 14 821 829 10.2147/DMSO.S284583 33658817
    [Google Scholar]
  82. Panopoulos A.D. Watowich S.S. Granulocyte colony-stimulating factor: Molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine 2008 42 3 277 288 10.1016/j.cyto.2008.03.002 18400509
    [Google Scholar]
  83. Link H. Current state and future opportunities in granulocyte colony-stimulating factor (G-CSF). Support. Care Cancer 2022 30 9 7067 7077 10.1007/s00520‑022‑07103‑5 35739328
    [Google Scholar]
  84. Anderlini P. Przepiorka D. Seong D. Miller P. Sundberg J. Lichtiger B. Norfleet F. Chan K.W. Champlin R. Körbling M. Clinical toxicity and laboratory effects of granulocyte‐colony‐ stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion 1996 36 7 590 595 10.1046/j.1537‑2995.1996.36796323057.x 8701453
    [Google Scholar]
  85. Edmonds M. Gough A. Solovera J. Standaert B. Filgrastim in the treatment of infected diabetic foot ulcers. Clin. Drug Investig. 1999 17 4 275 286 10.2165/00044011‑199917040‑00003
    [Google Scholar]
  86. Rastogi S. Kalaiselvan V. Ali S. Ahmad A. Guru S.A. Sarwat M. Efficacy and safety of filgrastim and its biosimilars to prevent febrile neutropenia in cancer patients: A prospective study and meta-analysis. Biology (Basel) 2021 10 10 1069 10.3390/biology10101069 34681169
    [Google Scholar]
  87. Baldo B.A. Side effects of cytokines approved for therapy. Drug Saf. 2014 37 11 921 943 10.1007/s40264‑014‑0226‑z 25270293
    [Google Scholar]
  88. Westphalen D. Neulasta (pegfilgrastim). Available from: https://www.medicalnewstoday.com/articles/neulasta#about.
  89. Aapro M. Boccia R. Leonard R. Camps C. Campone M. Choquet S. Danova M. Glaspy J. Hus I. Link H. Sliwa T. Tesch H. Valero V. Refining the role of pegfilgrastim (a long-acting G-CSF) for prevention of chemotherapy-induced febrile neutropenia: Consensus guidance recommendations. Support. Care Cancer 2017 25 11 3295 3304 10.1007/s00520‑017‑3842‑1 28842778
    [Google Scholar]
  90. Innocenti R. Rigacci L. Restelli U. Scappini B. Gianfaldoni G. Fanci R. Mannelli F. Scolari F. Croce D. Bonizzoni E. Perrone T. Bosi A. Lenograstim and filgrastim in the febrile neutropenia prophylaxis of hospitalized patients: Efficacy and cost of the prophylaxis in a retrospective survey. J. Blood Med. 2018 10 21 27 10.2147/JBM.S186786 30643475
    [Google Scholar]
  91. Martino M. Console G. Dattola A. Callea I. Messina G. Moscato T. Massara E. Irrera G. Fedele R. Gervasi A. Bresolin G. Iacopino P. Short and long-term safety of lenograstim administration in healthy peripheral haematopoietic progenitor cell donors: A single centre experience. Bone Marrow Transplant. 2009 44 3 163 168 10.1038/bmt.2008.440 19182833
    [Google Scholar]
  92. de Lalla F. Pellizzer G. Strazzabosco M. Martini Z. Du Jardin G. Lora L. Fabris P. Benedetti P. Erle G. Randomized prospective controlled trial of recombinant granulocyte colony-stimulating factor as adjunctive therapy for limb-threatening diabetic foot infection. Antimicrob. Agents Chemother. 2001 45 4 1094 1098 10.1128/AAC.45.4.1094‑1098.2001 11257020
    [Google Scholar]
  93. Hoggatt J. Tate T.A. Pelus L.M. Role of lipegfilgrastim in the management of chemotherapy-induced neutropenia. Int. J. Nanomedicine 2015 10 2647 2652 25878498
    [Google Scholar]
  94. Guariglia R. Martorelli M.C. Lerose R. Telesca D. Milella M.R. Musto P. Lipegfilgrastim in the management of chemotherapy-induced neutropenia of cancer patients. Biologics 2016 10 1 8 26858523
    [Google Scholar]
  95. Ettl T. Schulz D. Bauer R. The renaissance of cyclin dependent kinase inhibitors. Cancers (Basel) 2022 14 2 293 10.3390/cancers14020293 35053461
    [Google Scholar]
  96. Chen R. Chen Y. Xiong P. Zheleva D. Blake D. Keating M.J. Wierda W.G. Plunkett W. Cyclin-dependent kinase inhibitor fadraciclib (CYC065) depletes anti-apoptotic protein and synergizes with venetoclax in primary chronic lymphocytic leukemia cells. Leukemia 2022 36 6 1596 1608 10.1038/s41375‑022‑01553‑w 35383271
    [Google Scholar]
  97. Raedler L.A. Zarxio (Filgrastim-sndz): First biosimilar approved in the United States. Am Health Drug Benefits 2016 9 150 4 27668063
    [Google Scholar]
  98. Opfermann P. Derhaschnig U. Felli A. Wenisch J. Santer D. Zuckermann A. Dworschak M. Jilma B. Steinlechner B. A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia–reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin. Exp. Immunol. 2015 180 1 131 142 10.1111/cei.12488 25402332
    [Google Scholar]
  99. Jo A. Kim D.W. Neutrophil extracellular traps in airway diseases: Pathological roles and therapeutic implications. Int. J. Mol. Sci. 2023 24 5 5034 10.3390/ijms24055034 36902466
    [Google Scholar]
  100. Sitaru S. Budke A. Bertini R. Sperandio M. Therapeutic inhibition of CXCR1/2: Where do we stand? Intern. Emerg. Med. 2023 18 6 1647 1664 10.1007/s11739‑023‑03309‑5 37249756
    [Google Scholar]
  101. Goldstein L.J. Perez R.P. Yardley D. Han L.K. Reuben J.M. Gao H. McCanna S. Butler B. Ruffini P.A. Liu Y. Rosato R.R. Chang J.C. A window-of-opportunity trial of the CXCR1/2 inhibitor reparixin in operable HER-2-negative breast cancer. Breast Cancer Res. 2020 22 1 4 10.1186/s13058‑019‑1243‑8 31924241
    [Google Scholar]
  102. Yang S. Feng Y. Chen L. Wang Z. Chen J. Ni Q. Guo X. Zhang L. Xue G. Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway. Transl. Res. 2023 254 115 127 10.1016/j.trsl.2022.10.008 36336332
    [Google Scholar]
  103. Terpos E. Kleber M. Engelhardt M. Zweegman S. Gay F. Kastritis E. van de Donk N.W.C.J. Bruno B. Sezer O. Broijl A. Bringhen S. Beksac M. Larocca A. Hajek R. Musto P. Johnsen H.E. Morabito F. Ludwig H. Cavo M. Einsele H. Sonneveld P. Dimopoulos M.A. Palumbo A. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica 2015 100 10 1254 1266 10.3324/haematol.2014.117176 26432383
    [Google Scholar]
  104. Okouchi M. Okayama N. Omi H. Imaeda K. Fukutomi T. Nakamura A. Itoh M. The antidiabetic agent, gliclazide, reduces high insulin–enhanced neutrophil‐transendothelial migration through direct effects on the endothelium. Diabetes Metab. Res. Rev. 2004 20 3 232 238 10.1002/dmrr.444 15133755
    [Google Scholar]
  105. Ezhilarasu, H., et al., Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. Int J Mol Sci 2019 20 20 10.3390/ijms20205174 31635374
    [Google Scholar]
  106. Mauricio, M.D., et al., Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev 2018 2018 6231482 10.1155/2018/6231482 30356429
    [Google Scholar]
  107. He, J., et al., Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chemical Engineering Journal 2020 385 10.1016/j.cej.2019.123464
    [Google Scholar]
  108. Zhang, H.M., et al., Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023 14 11 1585 1602 10.4239/wjd.v14.i11.1585 38077806
    [Google Scholar]
  109. Chen, S., et al., Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 2015 5 18104 10.1038/srep18104 26643550
    [Google Scholar]
  110. Dong, Y., et al., Acceleration of Diabetic Wound Regeneration using an In Situ-Formed Stem-Cell-Based Skin Substitute. Adv Healthc Mater 2018 7 17 e1800432 10.1002/adhm.201800432 30004192
    [Google Scholar]
  111. Lei, Z., et al., Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. Mater Sci Eng C Mater Biol Appl 2018 90 159 167 10.1016/j.msec.2018.04.045 29853078
    [Google Scholar]
  112. Dai, C., S. Shih, and A. Khachemoune, Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat 2020 31 6 639 648 10.1080/09546634.2018.1530443 30265595
    [Google Scholar]
  113. Tausche, A.K., et al., An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 2003 11 4 248 252 10.1046/j.1524‑475x.2003.11403.x 12846911
    [Google Scholar]
  114. Chandler, L.A., et al., Wound Conforming Matrix Containing Purified Homogenate of Dermal Collagen Promotes Healing of Diabetic Neuropathic Foot Ulcers: Comparative Analysis Versus Standard of Care. Adv Wound Care (New Rochelle) 2020 9 2 61 67 10.1089/wound.2019.1024 31903299
    [Google Scholar]
  115. Hart, C.E., A. Loewen-Rodriguez, and J. Lessem, Dermagraft: Use in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2012 1 3 138 141 10.1089/wound.2011.0282 24527294
    [Google Scholar]
  116. Majumder, S., T. Mondal, and M.J. Deen, Wearable Sensors for Remote Health Monitoring. Sensors (Basel) 2017 17 1 10.3390/s17010130 28085085
    [Google Scholar]
  117. Beach, C., et al., Monitoring of Dynamic Plantar Foot Temperatures in Diabetes with Personalised 3D-Printed Wearables. Sensors (Basel) 2021 21 5 10.3390/s21051717 33801346
    [Google Scholar]
  118. Chhikara, K., et al., Progress of additive manufacturing in fabrication of foot orthoses for diabetic patients: A review. Annals of 3D Printed Medicine 2022 8 10.1016/j.stlm.2022.100085
    [Google Scholar]
  119. Mancuso, M., et al., 3D-Printed Insoles for People with Type 2 Diabetes: An Italian, Ambulatory Case Report on the Innovative Care Model. Diabetology 2023 4 3 339 355 10.3390/diabetology4030029
    [Google Scholar]
  120. Anggoro, P.W., et al., Computer-aided reverse engineering system in the design and production of orthotic insole shoes for patients with diabetes. Cogent Engineering 2018 5 1 10.1080/23311916.2018.1470916
    [Google Scholar]
  121. Telfer, S., et al., Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study. Journal of Biomechanics 2017 60 157 161 10.1016/j.jbiomech.2017.06.028 28687150
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611308960241014155413
Loading
/content/journals/cvp/10.2174/0115701611308960241014155413
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Diabetes mellitus ; Inflammation ; Oxidative stress ; DFU ; Neutrophil
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test