Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Contrast-induced Acute Kidney Injury (CI-AKI) frequently occurs as a complication following percutaneous coronary intervention (PCI), making the identification of high-risk patients challenging. While the systemic immune inflammation index (SII) might aid in predicting CI-AKI, the current evidence remains insufficient.

Methods

We conducted a systematic literature search using PubMed, Web of Science, Embase, and the Cochrane Library, with a cut-off date of 3/20/2024. We included observational studies that examined the predictive value of SII for the risk of CI-AKI.

Results

This meta-analysis encompassed 8 studies with a combined total of 6301 participants. Results showed pooled sensitivity and specificity of 0.73 (95% CI 0.69-0.76) and 0.68 (95% CI 0.57-0.77), respectively. The sROC curve analysis indicated an AUC of 0.74 (95% CI 0.70-0.78). The risk of publication bias was low (p = 0.18).

Conclusion

The results of this study suggest that SII has a relatively high sensitivity and could function as a biomarker for the prediction of CI-AKI risk in people receiving PCI treatment.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611328810241028112700
2024-11-05
2025-04-13
The full text of this item is not currently available.

References

  1. SubramanianS. TumlinJ. BapatB. ZyczynskiT. Economic burden of contrast-induced nephropathy: Implications for prevention strategies.J. Med. Econ.200710211913410.3111/200710119134 19702434
    [Google Scholar]
  2. MehranR. NikolskyE. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk.Kidney Int.200669100S11S1510.1038/sj.ki.5000368 16612394
    [Google Scholar]
  3. PucelikovaT. DangasG. MehranR. Contrast‐induced nephropathy.Catheter. Cardiovasc. Interv.2008711627210.1002/ccd.21207 17975790
    [Google Scholar]
  4. JamesM.T. GhaliW.A. TonelliM. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function.Kidney Int.201078880380910.1038/ki.2010.258 20686453
    [Google Scholar]
  5. EbertN. SchneiderA. HuscherD. Incidence of hospital-acquired acute kidney injury and trajectories of glomerular filtration rate in older adults.BMC Nephrol.202324122610.1186/s12882‑023‑03272‑5 37528401
    [Google Scholar]
  6. SunG. ChenP. WangK. Contrast-induced nephropathy and long-term mortality after percutaneous coronary intervention in patients with acute myocardial infarction.Angiology201970762162610.1177/0003319718803677 30317864
    [Google Scholar]
  7. HayıroğluM.İ. BozbeyogluE. YıldırımtürkÖ. TekkeşinA.İ. PehlivanoğluS. Effect of acute kidney injury on long-term mortality in patients with ST-segment elevation myocardial infarction complicated by cardiogenic shock who underwent primary percutaneous coronary intervention in a high-volume tertiary center.Turk Kardiyol. Dern. Ars.202048119 31974325
    [Google Scholar]
  8. GoldenbergI. MatetzkyS. Nephropathy induced by contrast media: Pathogenesis, risk factors and preventive strategies.CMAJ2005172111461147110.1503/cmaj.1040847 15911862
    [Google Scholar]
  9. RudnickM.R. KesselheimA. GoldfarbS. Contrast-induced nephropathy: How it develops, how to prevent it.Cleve. Clin. J. Med.2006731758010.3949/ccjm.73.1.75
    [Google Scholar]
  10. HeymanS.N. RosenS. KhamaisiM. IdéeJ.M. RosenbergerC. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy.Invest. Radiol.201045418819510.1097/RLI.0b013e3181d2eed8 20195159
    [Google Scholar]
  11. VachharajaniT.J. HossainM.A. CostanzoE. Contrast-Induced nephropathy: Pathophysiology, risk factors, and prevention.Saudi J. Kidney Dis. Transpl.20182911910.4103/1319‑2442.225199 29456202
    [Google Scholar]
  12. McCulloughP.A. ChoiJ.P. FeghaliG.A. Contrast-induced acute kidney injury.J. Am. Coll. Cardiol.201668131465147310.1016/j.jacc.2016.05.099 27659469
    [Google Scholar]
  13. LiuY. TanN. ZhouY.L. High-sensitivity C-reactive protein predicts contrast-induced nephropathy after primary percutaneous coronary intervention.J. Nephrol.201225333234010.5301/jn.5000007 21928234
    [Google Scholar]
  14. GaoF. ZhouY.J. ZhuX. WangZ.J. YangS.W. ShenH. C-reactive protein and the risk of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention.Am. J. Nephrol.201134320321010.1159/000329534 21791916
    [Google Scholar]
  15. KayaA. KayaY. TopçuS. Neutrophil-to-lymphocyte ratio predicts contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention.Angiology2014651515610.1177/0003319713484789 23620308
    [Google Scholar]
  16. DemircelikM.B. KurtulA. OcekH. CakmakM. UreyenC. EryonucuB. Association between platelet-to-lymphocyte ratio and contrast-induced nephropathy in patients undergoing percutaneous coronary intervention for acute coronary syndrome.Cardiorenal Med.2015529610410.1159/000371496 25999958
    [Google Scholar]
  17. HuB. YangX.R. XuY. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma.Clin. Cancer Res.201420236212622210.1158/1078‑0432.CCR‑14‑0442 25271081
    [Google Scholar]
  18. YangR. ChangQ. MengX. GaoN. WangW. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis.J. Cancer20189183295330210.7150/jca.25691 30271489
    [Google Scholar]
  19. ZhongJ.H. HuangD.H. ChenZ.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis.Oncotarget2017843753817538810.18632/oncotarget.18856 29088873
    [Google Scholar]
  20. ZhangC. LiM. LiuL. Systemic immune-inflammation index as a novel predictor of major adverse cardiovascular events in patients undergoing percutaneous coronary intervention: A meta-analysis of cohort studies.BMC Cardiovasc. Disord.202424118910.1186/s12872‑024‑03849‑4 38561664
    [Google Scholar]
  21. HayıroğluM.İ. ÇınarT. ÇinierG. Evaluating systemic immune‐inflammation index in patients with implantable cardioverter defibrillator for heart failure with reduced ejection fraction.Pacing Clin. Electrophysiol.202245218819510.1111/pace.14436 34978742
    [Google Scholar]
  22. BağcıA. AksoyF. BaşH.A. Systemic immune-inflammation index may predict the development of contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction.Angiology202273321822410.1177/00033197211030053 34247536
    [Google Scholar]
  23. YangY.L. WuC.H. HsuP.F. Systemic immune‐inflammation index (SII) predicted clinical outcome in patients with coronary artery disease.Eur. J. Clin. Invest.2020505e1323010.1111/eci.13230 32291748
    [Google Scholar]
  24. MoherD LiberatiA TetzlaffJ AltmanDG Preferred reporting items for systematic reviews and meta-analyses:The PRISMA statement. BMJ2009339(jul21 1)b253510.1136/bmj.b253519622551
    [Google Scholar]
  25. WhitingP.F. RutjesA.W. WestwoodM.E. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies.Ann. Intern. Med.2011155852953610.7326/0003‑4819‑155‑8‑201110180‑00009 22007046
    [Google Scholar]
  26. HigginsJ.P.T. ThompsonS.G. Quantifying heterogeneity in a meta‐analysis.Stat. Med.200221111539155810.1002/sim.1186 12111919
    [Google Scholar]
  27. CumpstonM. LiT. PageM.J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions.Cochrane Libr.20191010ED00014210.1002/14651858.ED000142 31643080
    [Google Scholar]
  28. SwetsJ.A. Measuring the accuracy of diagnostic systems.Science198824048571285129310.1126/science.3287615 3287615
    [Google Scholar]
  29. MaK. QiuH. ZhuY. LuY. LiW. Preprocedural SII combined with high-sensitivity C-reactive protein predicts the risk of contrast-induced acute kidney injury in stemi patients undergoing percutaneous coronary intervention.J. Inflamm. Res.2022153677368710.2147/JIR.S370085 35783247
    [Google Scholar]
  30. ZhuY. QiuH. WangZ. ShenG. LiW. Predictive value of systemic immune–inflammatory index combined with CHA2DS2-VASC score for contrast-induced acute kidney injury in patients with acute coronary syndrome undergoing percutaneous coronary intervention.Int. Urol. Nephrol.202355112897290310.1007/s11255‑023‑03571‑8 37000380
    [Google Scholar]
  31. ShenG. HeH. ZhangX. Predictive value of systemic immune-inflammation index combined with N-terminal pro-brain natriuretic peptide for contrast-induced acute kidney injury in patients with STEMI after primary PCI.Int. Urol. Nephrol.20235631147115610.1007/s11255‑023‑03762‑3 37658947
    [Google Scholar]
  32. MaX. MoC. LiY. GuiC. Systemic immune-inflammation index associated with contrast-induced nephropathy after elective percutaneous coronary intervention in a case-control study.Coron. Artery Dis.202334643244010.1097/MCA.0000000000001253 37222216
    [Google Scholar]
  33. KarauzumI. KarauzumK. HanciK. GokcekD. KalasB. UralE. The utility of systemic immune-inflammation index for predicting contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.Cardiorenal Med.2022122718010.1159/000524945 35580559
    [Google Scholar]
  34. ÖztürkR. İnanD. GüngörB. Systemic immune-inflammation index is a predictor of contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction.Angiology202273212513110.1177/00033197211029094 34231412
    [Google Scholar]
  35. KelesogluS. YilmazY. ElcıkD. Systemic immune inflammation index: A novel predictor of contrast-induced nephropathy in patients with non-ST segment elevation myocardial infarction.Angiology202172988989510.1177/00033197211007738 33827291
    [Google Scholar]
  36. DenicA. LieskeJ.C. ChakkeraH.A. The substantial loss of nephrons in healthy human kidneys with aging.J. Am. Soc. Nephrol.201728131332010.1681/ASN.2016020154 27401688
    [Google Scholar]
  37. GansevoortR.T. MatsushitaK. van der VeldeM. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.Kidney Int.20118019310410.1038/ki.2010.531 21289597
    [Google Scholar]
  38. WongP.C.Y. LiZ. GuoJ. ZhangA. Pathophysiology of contrast-induced nephropathy.Int. J. Cardiol.2012158218619210.1016/j.ijcard.2011.06.115 21784541
    [Google Scholar]
  39. EngJ. WilsonR.F. SubramaniamR.M. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy.Ann. Intern. Med.2016164641742410.7326/M15‑1402 26830055
    [Google Scholar]
  40. ÇöteliC. AruğaslanE. ErdölM.A. Which comes first in contrast-induced nephropathy? Inflammation or thrombus formation?Angiology202071219510.1177/0003319719871794 31450950
    [Google Scholar]
  41. AkcayA. NguyenQ. EdelsteinC.L. Mediators of inflammation in acute kidney injury.Mediators Inflamm.2009200911210.1155/2009/137072 20182538
    [Google Scholar]
  42. ZhangF. LuZ. WangF. Advances in the pathogenesis and prevention of contrast-induced nephropathy.Life Sci.202025911837910.1016/j.lfs.2020.118379 32890604
    [Google Scholar]
  43. KinseyG.R. LiL. OkusaM.D. Inflammation in acute kidney injury.Nephron, Exp. Nephrol.20081094e102e10710.1159/000142934 18802372
    [Google Scholar]
  44. KellyK.J. WilliamsW.W.Jr ColvinR.B. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury.J. Clin. Invest.19969741056106310.1172/JCI118498 8613529
    [Google Scholar]
  45. MalisC.D. LeafA. VaradarajanG. NewellJ.B. WeberP.C. ForceT. Effects of dietary omega 3 fatty acids on vascular contractility in preanoxic and postanoxic aortic rings.Circulation19918431393140110.1161/01.CIR.84.3.1393
    [Google Scholar]
  46. FathabadS.G. KurzhagenJ.T. SadasivamM. NoelS. BushE. HamadA.R. Eds. T lymphocytes in acute kidney injury and repair.Semin. Nephrol.2020402114125
    [Google Scholar]
  47. ShvartzV. SokolskayaM. IspiryanA. The role of «Novel» biomarkers of systemic inflammation in the development of early hospital events after aortic valve replacement in patients with aortic stenosis.Life (Basel)2023136139510.3390/life13061395 37374176
    [Google Scholar]
  48. JiangH. LiD. XuT. Systemic immune-inflammation index predicts contrast-induced acute kidney injury in patients undergoing coronary angiography: A cross-sectional study.Front. Med. (Lausanne)2022984160110.3389/fmed.2022.841601 35372392
    [Google Scholar]
  49. LuL. FengY. LiuY. The systemic immune-inflammation index may be a novel and strong marker for the accurate early prediction of acute kidney injury in severe acute pancreatitis patients.J. Invest. Surg.202235596296610.1080/08941939.2021.1970864 34468253
    [Google Scholar]
  50. XuJ. HuS. LiS. Systemic immune-inflammation index predicts postoperative acute kidney injury in hepatocellular carcinoma patients after hepatectomy.Medicine (Baltimore)202110014e2533510.1097/MD.0000000000025335 33832108
    [Google Scholar]
  51. SilverS.A. ShahP.M. ChertowG.M. HarelS. WaldR. HarelZ. Risk prediction models for contrast induced nephropathy: Systematic review.BMJ2015351h439510.1136/bmj.h4395 26316642
    [Google Scholar]
  52. AllenD.W. MaB. LeungK.C. Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: Systematic review and meta-analysis.Can. J. Cardiol.201733672473610.1016/j.cjca.2017.01.018 28545621
    [Google Scholar]
  53. EfeS.C. KeskinM. ToprakE. A novel risk assessment model using urinary system contrast blush grading to predict contrast-induced acute kidney injury in low-risk profile patients.Angiology202172652453210.1177/00033197211005206 33769078
    [Google Scholar]
  54. MehranR. AymongE.D. NikolskyE. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention.J. Am. Coll. Cardiol.20044471393139910.1016/j.jacc.2004.06.068 15464318
    [Google Scholar]
  55. MehranR. OwenR. ChiaritoM. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: Derivation and validation from an observational registry.Lancet2021398103151974198310.1016/S0140‑6736(21)02326‑6 34793743
    [Google Scholar]
  56. YuanY. QiuH. HuX. Predictive value of inflammatory factors on contrast‐induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention.Clin. Cardiol.201740971972510.1002/clc.22722 28543803
    [Google Scholar]
  57. WuX. MaC. SunD. ZhangG. WangJ. ZhangE. Inflammatory indicators and hematological indices in contrast-induced nephropathy among patients receiving coronary intervention: A systematic review and meta-analysis.Angiology202172986787710.1177/00033197211000492 33719591
    [Google Scholar]
  58. VelibeyY. OzA. TanikO. Platelet-to-lymphocyte ratio predicts contrast-induced acute kidney injury in patients with st-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.Angiology201768541942710.1177/0003319716660244 27473864
    [Google Scholar]
  59. KurtulA. YarliogluesM. DuranM. MuratS.N. Association of neutrophil-to-lymphocyte ratio with contrast-induced nephropathy in patients with non-ST-elevation acute coronary syndrome treated with percutaneous coronary intervention.Heart Lung Circ.201625768369010.1016/j.hlc.2016.01.007 26935164
    [Google Scholar]
  60. ErdoğanM. ErdölM.A. ÖztürkS. DurmazT. Systemic immune-inflammation index is a novel marker to predict functionally significant coronary artery stenosis.Biomarkers Med.202014161553156110.2217/bmm‑2020‑0274 33179524
    [Google Scholar]
  61. LeeS.W. JangJ. SeoW.Y. LeeD. KimS.H. Internal and external validation of machine learning models for predicting acute kidney injury following non-cardiac surgery using open datasets.J. Pers. Med.202414658710.3390/jpm14060587 38929808
    [Google Scholar]
  62. JiangJ. LiuX. ChengZ. LiuQ. XingW. Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery.BMC Nephrol.202324132610.1186/s12882‑023‑03324‑w 37936067
    [Google Scholar]
  63. HayıroğluM.İ. AltayS. The role of artificial intelligence in coronary artery disease and atrial fibrillation.Balkan Med. J.202340315115210.4274/balkanmedj.galenos.2023.06042023 37025078
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611328810241028112700
Loading
/content/journals/cvp/10.2174/0115701611328810241028112700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test