Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2-aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347975241217112119
2025-01-21
2025-04-17
Loading full text...

Full text loading...

References

  1. NoëlS. CadetS. GrasE. HureauC. The benzazole scaffold: A SWAT to combat Alzheimer’s disease.Chem. Soc. Rev.201342197747776210.1039/c3cs60086f 23793644
    [Google Scholar]
  2. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.20158920725110.1016/j.ejmech.2014.10.059 25462241
    [Google Scholar]
  3. KashyapP. VermaS. GuptaP. NarangR. LalS. DevgunM. Recent insights into antibacterial potential of benzothiazole derivatives.Med. Chem. Res.20233281543157310.1007/s00044‑023‑03077‑z 37362317
    [Google Scholar]
  4. RumchevK. BrownH. SpickettJ. Volatile organic compounds: Do they present a risk to our health?Rev. Environ. Health2007221395510.1515/REVEH.2007.22.1.39 17508697
    [Google Scholar]
  5. BizzigottiG.O. CastellyH. HafezA.M. SmithW.H.B. WhitmireM.T. Parameters for evaluation of the fate, transport, and environmental impacts of chemical agents in marine environments.Chem. Rev.2009109123625610.1021/cr0780098 19035772
    [Google Scholar]
  6. HuangB. LeiC. WeiC. ZengG. Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies.Environ. Int.20147111813810.1016/j.envint.2014.06.013 25016450
    [Google Scholar]
  7. MalajE. von der OheP.C. GroteM. KühneR. MondyC.P. PolateraU.P. BrackW. SchäferR.B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.Proc. Natl. Acad. Sci. 2014111269549955410.1073/pnas.1321082111 24979762
    [Google Scholar]
  8. RoviraJ. DomingoJ.L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review.Environ. Res.2019168626910.1016/j.envres.2018.09.027 30278363
    [Google Scholar]
  9. TundoP. AnastasP. BlackD.S. BreenJ. CollinsT.J. MemoliS. MiyamotoJ. PolyakoffM. TumasW. Synthetic pathways and processes in green chemistry. Introductory overview.Pure Appl. Chem.20007271207122810.1351/pac200072071207
    [Google Scholar]
  10. TuckerJ.L. Green chemistry, a pharmaceutical perspective.Org. Process Res. Dev.200610231531910.1021/op050227k
    [Google Scholar]
  11. AlfonsiK. ColbergJ. DunnP.J. FevigT. JenningsS. JohnsonT.A. KleineH.P. KnightC. NagyM.A. PerryD.A. StefaniakM. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation.Green Chem.2008101313610.1039/B711717E
    [Google Scholar]
  12. ClarkJ.H. Chemistry goes green.Nat. Chem.200911121310.1038/nchem.146 21378784
    [Google Scholar]
  13. CueB.W. ZhangJ. Green process chemistry in the pharmaceutical industry.Green Chem. Lett. Rev.20092419321110.1080/17518250903258150
    [Google Scholar]
  14. LinthorstJ.A. An overview: Origins and development of green chemistry.Found. Chem.2010121556810.1007/s10698‑009‑9079‑4
    [Google Scholar]
  15. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B 20023854
    [Google Scholar]
  16. MulvihillM.J. BeachE.S. ZimmermanJ.B. AnastasP.T. Green chemistry and green engineering: A framework for sustainable technology development.Annu. Rev. Environ. Resour.201136127129310.1146/annurev‑environ‑032009‑095500
    [Google Scholar]
  17. RoughleyS.D. JordanA.M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates.J. Med. Chem.201154103451347910.1021/jm200187y 21504168
    [Google Scholar]
  18. DunnP.J. The importance of green chemistry in process research and development.Chem. Soc. Rev.20124141452146110.1039/C1CS15041C 21562677
    [Google Scholar]
  19. BryanM.C. DillonB. HamannL.G. HughesG.J. KopachM.E. PetersonE.A. PourashrafM. RaheemI. RichardsonP. RichterD. SneddonH.F. Sustainable practices in medicinal chemistry: Current state and future directions.J. Med. Chem.201356156007602110.1021/jm400250p 23586692
    [Google Scholar]
  20. RoschangarF. SheldonR.A. SenanayakeC.H. Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration Level™ concept.Green Chem.201517275276810.1039/C4GC01563K
    [Google Scholar]
  21. AliagasI. BergerR. GoldbergK. NishimuraR.T. ReillyJ. RichardsonP. RichterD. ShererE.C. SparlingB.A. BryanM.C. Sustainable practices in medicinal chemistry part 2: Green by design.J. Med. Chem.201760145955596810.1021/acs.jmedchem.6b01837 28375009
    [Google Scholar]
  22. BellerM. CentiG. SunL. Chemistry future: Priorities and opportunities from the sustainability perspective.ChemSusChem201710161310.1002/cssc.201601739 27976531
    [Google Scholar]
  23. GaneshK.N. ZhangD. MillerS.J. RossenK. ChirikP.J. KozlowskiM.C. ZimmermanJ.B. BrooksB.W. SavageP.E. AllenD.T. KostalV.A.M. Green chemistry: A framework for a sustainable future.J. Org. Chem.202186138551855510.1021/acs.joc.1c01355 34129776
    [Google Scholar]
  24. ColbergJ. HiiK.K. KoenigS.G. Importance of green and sustainable chemistry in the chemical industry.Org. Process Res. Dev.2022262176217810.1021/acs.oprd.2c00171
    [Google Scholar]
  25. GibbB.C. Sustaining chemistry.Nat. Chem.202214547747910.1038/s41557‑022‑00938‑9 35513566
    [Google Scholar]
  26. YueK. ZhouQ. BirdR. ZhuL. ZhangD. LiD. ZouL. YangJ. FuX. GeorgesG.P. Trends and opportunities in organic synthesis: Global state of research metrics and advances in precision, efficiency, and green chemistry.J. Org. Chem.20238874031403510.1021/acs.joc.2c03057 37026384
    [Google Scholar]
  27. SheldonR.A. Fundamentals of green chemistry: Efficiency in reaction design.Chem. Soc. Rev.20124141437145110.1039/C1CS15219J 22033698
    [Google Scholar]
  28. HorváthI.T. Introduction: Sustainable chemistry.Chem. Rev.2018118236937110.1021/acs.chemrev.7b00721 29361827
    [Google Scholar]
  29. O’NeilN.J. ScottS. RelphR. PonnusamyE. Approaches to incorporating green chemistry and safety into laboratory culture.J. Chem. Educ.2021981849110.1021/acs.jchemed.0c00134
    [Google Scholar]
  30. AllenD.T. LicenceP. SubramaniamB. Global recognition for green and sustainable chemistry and engineering.ACS Sustain. Chem.& Eng.2021944146531465310.1021/acssuschemeng.1c07079
    [Google Scholar]
  31. KarS. SandersonH. RoyK. BenfenatiE. LeszczynskiJ. Green chemistry in the synthesis of pharmaceuticals.Chem. Rev.202212233637371010.1021/acs.chemrev.1c00631 34910451
    [Google Scholar]
  32. CastielloC. JunghannsP. MergelA. JacobC. DuchoC. ValenteS. RotiliD. FioravantiR. ZwergelC. MaiA. GreenMedChem: The challenge in the next decade toward eco-friendly compounds and processes in drug design.Green Chem.20232562109216910.1039/D2GC03772F
    [Google Scholar]
  33. ConstableD.J.C. DunnP.J. HaylerJ.D. HumphreyG.R. LeazerJ.L.Jr LindermanR.J. LorenzK. ManleyJ. PearlmanB.A. WellsA. ZaksA. ZhangT.Y. Key green chemistry research areas—A perspective from pharmaceutical manufacturers.Green Chem.20079541142010.1039/B703488C
    [Google Scholar]
  34. BryanM.C. DunnP.J. EntwistleD. GallouF. KoenigS.G. HaylerJ.D. HickeyM.R. HughesS. KopachM.E. MoineG. RichardsonP. RoschangarF. StevenA. WeiberthF.J. Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited.Green Chem.201820225082510310.1039/C8GC01276H
    [Google Scholar]
  35. KreuderD.A. KnightH.T. WhitfordJ. PonnusamyE. MillerP. JesseN. RodenbornR. SayagS. GebelM. ApedI. SharfsteinI. ManasterE. ErgazI. HarrisA. GriceN.L. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry.ACS Sustain. Chem.& Eng.2017542927293510.1021/acssuschemeng.6b02399
    [Google Scholar]
  36. SheldonR.A. Metrics of green chemistry and sustainability: Past, present, and future.ACS Sustain. Chem.& Eng.201861324810.1021/acssuschemeng.7b03505
    [Google Scholar]
  37. DiorazioL.J. RichardsonP. SneddonH.F. MooresA. BriddellC. MartinezI. Making sustainability assessment accessible: Tools developed by the ACS green chemistry institute pharmaceutical roundtable.ACS Sustain. Chem.& Eng.2021950168621686410.1021/acssuschemeng.1c07651
    [Google Scholar]
  38. ConstableD.J.C. Green and sustainable chemistry – The case for a systems-based, interdisciplinary approach.iScience2021241210348910.1016/j.isci.2021.103489 34934914
    [Google Scholar]
  39. ConstableD.J.C. GonzalezJ.C. HendersonR.K. Perspective on solvent use in the pharmaceutical industry.Org. Process Res. Dev.200711113313710.1021/op060170h
    [Google Scholar]
  40. CapelloC. FischerU. HungerbühlerK. What is a green solvent? A comprehensive framework for the environmental assessment of solvents.Green Chem.20079992793410.1039/b617536h
    [Google Scholar]
  41. PratD. PardigonO. FlemmingH.W. LetestuS. DucandasV. IsnardP. GuntrumE. SenacT. RuisseauS. CrucianiP. HosekP. Sanofi’s solvent selection guide: A step toward more sustainable processes.Org. Process Res. Dev.201317121517152510.1021/op4002565
    [Google Scholar]
  42. PratD. WellsA. HaylerJ. SneddonH. McElroyC.R. ShehadaA.S. DunnP.J. CHEM21 selection guide of classical- and less classical-solvents.Green Chem.201618128829610.1039/C5GC01008J
    [Google Scholar]
  43. ClarkeC.J. TuW.C. LeversO. BröhlA. HallettJ.P. Green and sustainable solvents in chemical processes.Chem. Rev.2018118274780010.1021/acs.chemrev.7b00571 29300087
    [Google Scholar]
  44. HesselV. TranN.N. AsramiM.R. TranQ.D. LongV.D.N. GelonchE.M. TejadaJ.O. LinkeS. SundmacherK. Sustainability of green solvents – review and perspective.Green Chem.202224241043710.1039/D1GC03662A
    [Google Scholar]
  45. FriendC.M. XuB. Heterogeneous catalysis: A central science for a sustainable future.Acc. Chem. Res.201750351752110.1021/acs.accounts.6b00510 28945397
    [Google Scholar]
  46. PolshettiwarV. VarmaR.S. Green chemistry by nano-catalysis.Green Chem.201012574375410.1039/b921171c
    [Google Scholar]
  47. KalidindiS.B. JagirdarB.R. Nanocatalysis and prospects of green chemistry.ChemSusChem201251657510.1002/cssc.201100377 22190344
    [Google Scholar]
  48. GlaserJ.A. Green chemistry with nanocatalysts.Clean Technol. Environ. Policy201214451352010.1007/s10098‑012‑0507‑0
    [Google Scholar]
  49. NarayanN. MeiyazhaganA. VajtaiR. Metal nanoparticles as green catalysts.Materials 20191221360210.3390/ma12213602 31684023
    [Google Scholar]
  50. LópezG.P. SantiagoP.A. BeltránC.A. NascimentoS.L.A. BaluA.M. LuqueR. BeltránA.C.G. Nanomaterials and catalysis for green chemistry.Curr. Opin. Green Sustain. Chem.202024485510.1016/j.cogsc.2020.03.001
    [Google Scholar]
  51. AgarwalN. SolankiV.S. PareB. SinghN. JonnalagaddaS.B. Current trends in nanocatalysis for green chemistry and its applications- A mini-review.Curr. Opin. Green Sustain. Chem.20234110078810.1016/j.cogsc.2023.100788
    [Google Scholar]
  52. ShodaS. UyamaH. KadokawaJ. KimuraS. KobayashiS. Enzymes as green catalysts for precision macromolecular synthesis.Chem. Rev.201611642307241310.1021/acs.chemrev.5b00472 26791937
    [Google Scholar]
  53. SheldonR.A. WoodleyJ.M. Role of biocatalysis in sustainable chemistry.Chem. Rev.2018118280183810.1021/acs.chemrev.7b00203 28876904
    [Google Scholar]
  54. MasciD. CastagnoloD. Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs in Sustainable Organic Synthesis: Tools and Strategies; Protti, S. PalmieriA. RSC202168118
    [Google Scholar]
  55. RobertsB.A. StraussC.R. Toward rapid, “green”, predictable microwave-assisted synthesis.Acc. Chem. Res.200538865366110.1021/ar040278m 16104688
    [Google Scholar]
  56. ColomboM. PerettoI. Chemistry strategies in early drug discovery: An overview of recent trends.Drug Discov. Today20081315-1667768410.1016/j.drudis.2008.03.007 18675762
    [Google Scholar]
  57. CaddickS. FitzmauriceR. Microwave enhanced synthesis.Tetrahedron200965173325335510.1016/j.tet.2009.01.105
    [Google Scholar]
  58. ChatelG. VarmaR.S. Ultrasound and microwave irradiation: Contributions of alternative physicochemical activation methods to green chemistry.Green Chem.201921226043605010.1039/C9GC02534K
    [Google Scholar]
  59. TörökB. MooneyT. IlamanovaM. Microwave-assisted flow chemistry for green synthesis and other applications.Curr. Microw. Chem.202292656910.2174/2213335610666221208163107
    [Google Scholar]
  60. ColacinoE. DeloguF. HanusaT. Advances in mechanochemistry.ACS Sustain. Chem. Eng.2021932106621066310.1021/acssuschemeng.1c04390
    [Google Scholar]
  61. BelG.F. Mechanochemists want to shake up industrial chemistry.ACS Cent. Sci.20228111474147610.1021/acscentsci.2c01273 36439310
    [Google Scholar]
  62. CuccuF. De LucaL. DeloguF. ColacinoE. SolinN. MocciR. PorchedduA. Mechanochemistry: New tools to navigate the uncharted territory of “Impossible” reactions.ChemSusChem20221517e20220036210.1002/cssc.202200362 35867602
    [Google Scholar]
  63. MargetićD. Recent applications of mechanochemistry in synthetic organic chemistry.Pure Appl. Chem.202395331532810.1515/pac‑2022‑1202
    [Google Scholar]
  64. GhogareA.A. GreerA. Using singlet oxygen to synthesize natural products and drugs.Chem. Rev.20161161799941003410.1021/acs.chemrev.5b00726 27128098
    [Google Scholar]
  65. GaddeK. De VosD. MaesB.U.W. Basic concepts and activation modes in visible-light-photocatalyzed organic synthesis.Synthesis202355216419210.1055/a‑1932‑6937
    [Google Scholar]
  66. De VosD. GaddeK. MaesB.U.W. Emerging activation modes and techniques in visible-light-photocatalyzed organic synthesis.Synthesis202355219323110.1055/a‑1946‑0512
    [Google Scholar]
  67. ZhuC. AngN.W.J. MeyerT.H. QiuY. AckermannL. Organic electrochemistry: Molecular syntheses with potential.ACS Cent. Sci.20217341543110.1021/acscentsci.0c01532 33791425
    [Google Scholar]
  68. AdamsJ.P. AlderC.M. AndrewsI. BullionA.M. CrawfordC.M. DarcyM.G. HaylerJ.D. HendersonR.K. OareC.A. PendrakI. RedmanA.M. ShusterL.E. SneddonH.F. WalkerM.D. Development of GSK’s reagent guides – embedding sustainability into reagent selection.Green Chem.20131561542154910.1039/c3gc40225h
    [Google Scholar]
  69. TrostB.M. The atom economy--A search for synthetic efficiency.Science199125450371471147710.1126/science.1962206 1962206
    [Google Scholar]
  70. TrostB.M. Atom economy—A challenge for organic synthesis: Homogeneous catalysis leads the way.Angew. Chem. Int. Ed. Engl.199534325928110.1002/anie.199502591
    [Google Scholar]
  71. SheldonR.A. Atom efficiency and catalysis in organic synthesis.Pure Appl. Chem.20007271233124610.1351/pac200072071233
    [Google Scholar]
  72. IsambertN. DuqueM.M.S. PlaqueventJ.C. GénissonY. RodriguezJ. ConstantieuxT. Multicomponent reactions and ionic liquids: A perfect synergy for eco-compatible heterocyclic synthesis.Chem. Soc. Rev.20114031347135710.1039/C0CS00013B 20963207
    [Google Scholar]
  73. GuY. Multicomponent reactions in unconventional solvents: State of the art.Green Chem.20121482091212810.1039/c2gc35635j
    [Google Scholar]
  74. RuijterE. OrruR.V.A. Multicomponent reactions – opportunities for the pharmaceutical industry.Drug Discov. Today. Technol.2013101e15e2010.1016/j.ddtec.2012.10.012 24050225
    [Google Scholar]
  75. CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  76. JohnS.E. GulatiS. ShankaraiahN. Recent advances in multi-component reactions and their mechanistic insights: A triennium review.Org. Chem. Front.20218154237428710.1039/D0QO01480J
    [Google Scholar]
  77. DaltonT. FaberT. GloriusF. C–H activation: Toward sustainability and applications.ACS Cent. Sci.20217224526110.1021/acscentsci.0c01413 33655064
    [Google Scholar]
  78. DhawaU. KaplanerisN. AckermannL. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses.Org. Chem. Front.20218174886491310.1039/D1QO00727K
    [Google Scholar]
  79. LassoJ.D. PazosC.D.J. LiC.J. Green chemistry meets medicinal chemistry: A perspective on modern metal-free late-stage functionalization reactions.Chem. Soc. Rev.20215019109551098210.1039/D1CS00380A 34382989
    [Google Scholar]
  80. LaskarR. PalT. BhattacharyaT. MaitiS. AkitaM. MaitiD. Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media.Green Chem.20222462296232010.1039/D1GC04530J
    [Google Scholar]
  81. FerlinF. BrufaniG. RossiniG. VaccaroL. Classic vs. C–H functionalization strategies in the synthesis of APIs: A sustainability comparison.Green Chem.202325207916793310.1039/D3GC02516K
    [Google Scholar]
  82. SeddonK.R. Ionic liquids for clean technology.J. Chem. Technol. Biotechnol.199768435135610.1002/(SICI)1097‑4660(199704)68:4<351:AID‑JCTB613>3.0.CO;2‑4
    [Google Scholar]
  83. WeltonT. Room-temperature ionic liquids. Solvents for synthesis and catalysis.Chem. Rev.19999982071208410.1021/cr980032t 11849019
    [Google Scholar]
  84. EarleM.J. SeddonK.R. Ionic liquids. Green solvents for the future.Pure Appl. Chem.20007271391139810.1351/pac200072071391
    [Google Scholar]
  85. WilkesJ.S. A short history of ionic liquids—from molten salts to neoteric solvents.Green Chem.200242738010.1039/b110838g
    [Google Scholar]
  86. RogersR.D. SeddonK.R. Chemistry. Ionic liquids--solvents of the future?Science2003302564679279310.1126/science.1090313 14593156
    [Google Scholar]
  87. PlechkovaN.V. SeddonK.R. Applications of ionic liquids in the chemical industry.Chem. Soc. Rev.200837112315010.1039/B006677J 18197338
    [Google Scholar]
  88. WeltonT. Ionic liquids in green chemistry.Green Chem.201113222522510.1039/c0gc90047h
    [Google Scholar]
  89. FlorindoC. BrancoL.C. MarruchoI.M. Quest for green‐solvent design: From hydrophilic to hydrophobic (deep) eutectic solvents.ChemSusChem20191281549155910.1002/cssc.201900147 30811105
    [Google Scholar]
  90. LombaL. ZuriagaE. GinerB. Solvents derived from biomass and their potential as green solvents.Curr. Opin. Green Sustain. Chem.201918515610.1016/j.cogsc.2018.12.008
    [Google Scholar]
  91. LiC.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update.Chem. Rev.200510583095316610.1021/cr030009u 16092827
    [Google Scholar]
  92. LiC.J. ChenL. Organic chemistry in water.Chem. Soc. Rev.2006351688210.1039/B507207G 16365643
    [Google Scholar]
  93. HailesH.C. Reaction solvent selection: The potential of water as a solvent for organic transformations.Org. Process Res. Dev.200711111412010.1021/op060157x
    [Google Scholar]
  94. KitanosonoT. MasudaK. XuP. KobayashiS. Catalytic organic reactions in water toward sustainable society.Chem. Rev.2018118267974610.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  95. KitanosonoT. KobayashiS. Synthetic organic “Aquachemistry” that relies on neither cosolvents nor surfactants.ACS Cent. Sci.20217573974710.1021/acscentsci.1c00045 34079894
    [Google Scholar]
  96. ClergetC.M. YuJ. KincaidJ.R.A. WaldeP. GallouF. LipshutzB.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend.Chem. Sci. 202112124237426610.1039/D0SC06000C 34163692
    [Google Scholar]
  97. NarayanS. MuldoonJ. FinnM.G. FokinV.V. KolbH.C. SharplessK.B. “On water”: Unique reactivity of organic compounds in aqueous suspension.Angew. Chem. Int. Ed.200544213275327910.1002/anie.200462883 15844112
    [Google Scholar]
  98. HayashiY. In water or in the presence of water?Angew. Chem. Int. Ed.200645488103810410.1002/anie.200603378 17103474
    [Google Scholar]
  99. ShapiroN. VigalokA. Highly efficient organic reactions “on water”, “in water”, and both.Angew. Chem. Int. Ed.200847152849285210.1002/anie.200705347 18318031
    [Google Scholar]
  100. ChandaA. FokinV.V. Organic synthesis “on water”.Chem. Rev.2009109272574810.1021/cr800448q 19209944
    [Google Scholar]
  101. ButlerR.N. CoyneA.G. Water: Nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”.Chem. Rev.2010110106302633710.1021/cr100162c 20815348
    [Google Scholar]
  102. GawandeM.B. BonifácioV.D.B. LuqueR. BrancoP.S. VarmaR.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis.Chem. Soc. Rev.201342125522555110.1039/c3cs60025d 23529409
    [Google Scholar]
  103. BreslowR. Hydrophobic effects on simple organic reactions in water.Acc. Chem. Res.199124615916410.1021/ar00006a001
    [Google Scholar]
  104. BreslowR. GrovesK. MayerM.U. The hydrophobic effect as a mechanistic tool.Pure Appl. Chem.199870101933193810.1351/pac199870101933
    [Google Scholar]
  105. LiuL. RozenmanM. BreslowR. Hydrophobic effects on rates and substrate selectivities in polymeric transaminase mimics.J. Am. Chem. Soc.200212443126601266110.1021/ja028151k 12392403
    [Google Scholar]
  106. JungY. MarcusR.A. On the nature of organic catalysis “on water”.J. Am. Chem. Soc.2007129175492550210.1021/ja068120f 17388592
    [Google Scholar]
  107. MannaA. KumarA. Why does water accelerate organic reactions under heterogeneous condition?J. Phys. Chem. A2013117122446245410.1021/jp4002934 23458633
    [Google Scholar]
  108. GuoD. ZhuD. ZhouX. ZhengB. Accelerating the “On Water” reaction: By organic–water interface or by hydrodynamic effects?Langmuir20153151137591376310.1021/acs.langmuir.5b04031 26624935
    [Google Scholar]
  109. KhatikG.L. KumarR. ChakrabortiA.K. Catalyst-free conjugated addition of thiols to α,β-unsaturated carbonyl compounds in water.Org. Lett.20068112433243610.1021/ol060846t 16706544
    [Google Scholar]
  110. ChankeshwaraS.V. ChakrabortiA.K. Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water.Org. Lett.20068153259326210.1021/ol0611191 16836380
    [Google Scholar]
  111. ChakrabortiA.K. RudrawarS. JadhavK.B. KaurG. ChankeshwaraS.V. “On water” organic synthesis: A highly efficient and clean synthesis of 2-aryl/heteroaryl/styryl benzothiazoles and 2-alkyl/aryl alkyl benzothiazolines.Green Chem.20079121335134010.1039/b710414f
    [Google Scholar]
  112. MartinezV.E. HansmannB. HernandezH. FranciscoJ.S. TroeJ. AbelB. Water catalysis of a radical-molecule gas-phase reaction.Science2007315581149750110.1126/science.1134494 17255507
    [Google Scholar]
  113. VilotijevicI. JamisonT.F. Epoxide-opening cascades promoted by water.Science200731758421189119210.1126/science.1146421 17761875
    [Google Scholar]
  114. KommiD.N. KumarD. ChakrabortiA.K. “All water chemistry” for a concise total synthesis of the novel class anti-anginal drug (RS), (R), and (S)-ranolazine.Green Chem.201315375676710.1039/c3gc36997h
    [Google Scholar]
  115. KommiD.N. KumarD. SethK. ChakrabortiA.K. Protecting group-free concise synthesis of (RS)/(S)-lubeluzole.Org. Lett.20131561158116110.1021/ol302601b 23432765
    [Google Scholar]
  116. KommiD.N. KumarD. BansalR. CheboluR. ChakrabortiA.K. “All-water” chemistry of tandem N-alkylation–reduction–condensation for synthesis of N-arylmethyl-2-substituted benzimidazoles.Green Chem.201214123329333510.1039/c2gc36377a
    [Google Scholar]
  117. KommiD.N. JadhavarP.S. KumarD. ChakrabortiA.K. “All-water” one-pot diverse synthesis of 1,2-disubstituted benzimidazoles: Hydrogen bond driven ‘synergistic electrophile–nucleophile dual activation’ by water.Green Chem.201315379881010.1039/c3gc37004f
    [Google Scholar]
  118. DhameliyaT.M. PatelK.I. TiwariR. VagoluS.K. PandaD. SriramD. ChakrabortiA.K. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents.Bioorg. Chem.202110710453810.1016/j.bioorg.2020.104538 33349456
    [Google Scholar]
  119. DhameliyaT.M. TiwariR. PatelK.I. VagoluS.K. PandaD. SriramD. ChakrabortiA.K. Bacterial FtsZ inhibition by benzo[d]imidazole-2-carboxamide derivative with anti-TB activity.Future Med. Chem.202214191361137310.4155/fmc‑2022‑0120 36103222
    [Google Scholar]
  120. SethK. RoyS.R. PipaliyaB.V. ChakrabortiA.K. Synergistic dual activation catalysis by palladium nanoparticles for epoxide ring opening with phenols.Chem. Commun. 201349525886588810.1039/c3cc42507j 23703672
    [Google Scholar]
  121. ChakrabortiA.K. BanerjeeB. Eds.; Aqueous Mediated Synthesis: Bioactive Heterocycles.Berlin/Boston, GermanyWalter de Gruyter GmbH2024143610.1515/9783110985627
    [Google Scholar]
  122. SahaN. KumarA. BiswasS. SarkarA. ChakrabortiA.K. Construction of benzazoles in aqueous medium: A sustainable approach.Aqueous Mediated Synthesis: Bioactive Heterocycles; Chakraborti, A.K.; Banerjee, B., Eds.; Walter de Gruyter GmbH: Berlin/Boston, Germany,2024215710.1515/9783110985627‑001
    [Google Scholar]
  123. LorenzettoT. BertonG. FabrisF. ScarsoA. Recent designer surfactants for catalysis in water.Catal. Sci. Technol.202010144492450210.1039/D0CY01062F
    [Google Scholar]
  124. ShenT. ZhouS. RuanJ. ChenX. LiuX. GeX. QianC. Recent advances on micellar catalysis in water.Adv. Colloid Interface Sci.202128710229910.1016/j.cis.2020.102299 33321331
    [Google Scholar]
  125. SharmaG. KumarR. ChakrabortiA.K. ‘On water’ synthesis of 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines catalysed by sodium dodecyl sulfate (SDS).Tetrahedron Lett.200849274269427110.1016/j.tetlet.2008.04.146
    [Google Scholar]
  126. KumarD. SethK. KommiD.N. BhagatS. ChakrabortiA.K. Surfactant micelles as microreactors for the synthesis of quinoxalines in water: Scope and limitations of surfactant catalysis.RSC Advances2013335151571516810.1039/c3ra41038b
    [Google Scholar]
  127. TanwarB. KumarA. YogeeswariP. SriramD. ChakrabortiA.K. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads.Bioorg. Med. Chem. Lett.201626245960596610.1016/j.bmcl.2016.10.082 27839684
    [Google Scholar]
  128. ParikhN. KumarD. RoyS.R. ChakrabortiA.K. Surfactant mediated oxygen reuptake in water for green aerobic oxidation: Mass-spectrometric determination of discrete intermediates to correlate oxygen uptake with oxidation efficiency.Chem. Commun.20114761797179910.1039/C0CC03166F 21127798
    [Google Scholar]
  129. DengH. LiZ. KeF. ZhouX. Cu-catalyzed three-component synthesis of substituted benzothiazoles in water.Chemistry201218164840484310.1002/chem.201103525 22431176
    [Google Scholar]
  130. ShahP. DhameliyaT.M. BansalR. NautiyalM. KommiD.N. JadhavarP.S. SrideviJ.P. YogeeswariP. SriramD. ChakrabortiA.K. N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: Design, new methods of synthesis and biological evaluation.MedChemComm20145101489149510.1039/C4MD00224E
    [Google Scholar]
  131. PancholiaS. DhameliyaT.M. ShahP. JadhavarP.S. SrideviJ.P. YogeshwariP. SriramD. ChakrabortiA.K. Benzo[ d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies.Eur. J. Med. Chem.201611618719910.1016/j.ejmech.2016.03.060 27061982
    [Google Scholar]
  132. DhameliyaT.M. TiwariR. BanerjeeA. PancholiaS. SriramD. PandaD. ChakrabortiA.K. Benzo[d]thiazole-2-carbanilides as new anti-TB chemotypes: Design, synthesis, biological evaluation, and structure-activity relationship.Eur. J. Med. Chem.201815536438010.1016/j.ejmech.2018.05.049 29902722
    [Google Scholar]
  133. DhameliyaT.M. TiwariR. BanerjeeA. PancholiaS. SriramD. PandaD. ChakrabortiA.K. Benzo[d]thiazole-2-carboxamides as new antituberculosis chemotypes inhibiting mycobacterial ATP phosphoribosyl transferase.Future Med. Chem.202214241847186410.4155/fmc‑2022‑0226 36444737
    [Google Scholar]
  134. MohammadiM. BardajeeG.R. PesyanN.N. A novel method for the synthesis of benzothiazole heterocycles catalyzed by a copper–DiAmSar complex loaded on SBA-15 in aqueous media.RSC Advances20144108628886289410.1039/C4RA11877D
    [Google Scholar]
  135. KatlaR. ChowrasiaR. ManjariP.S. DominguesN.L.C. An efficient aqueous phase synthesis of benzimidazoles/benzothiazoles in the presence of β-cyclodextrin.RSC Advances2015552417164172010.1039/C4RA16222F
    [Google Scholar]
  136. KhandareD.G. BanerjeeM. GuptaR. KumarN. GangulyA. SinghD. ChatterjeeA. Green synthesis of a benzothiazole based ‘turn-on’ type fluorimetric probe and its use for the selective detection of thiophenols in environmental samples and living cells.RSC Advances2016658527905279710.1039/C6RA07046A
    [Google Scholar]
  137. MoghadamF.K. JarrahN. SalehiM.A. GhanbaripourR.A. Synthesis of benzothiazoles and indoles by direct C (sp2)–I activation catalyzed by copper (II) on silica-coated magnetite nanoparticles.Synlett201616651668
    [Google Scholar]
  138. LiuX. LiuM. XuW. ZengM.T. ZhuH. ChangC.Z. DongZ.B. An environmentally benign and efficient synthesis of substituted benzothiazole-2-thiols, benzoxazole-2-thiols, and benzimidazoline-2-thiones in water.Green Chem.201719235591559810.1039/C7GC02311A
    [Google Scholar]
  139. DhameliyaT.M. ChourasiyaS.S. MishraE. JadhavarP.S. BharatamP.V. ChakrabortiA.K. Rationalization of benzazole-2-carboxylate versus benzazine-3-one/benzazine-2, 3-dione selectivity switch during cyclocondensation of 2-aminothiophenols/phenols/anilines with 1, 2-biselectrophiles in aqueous medium.J. Org. Chem.20178219100771009110.1021/acs.joc.7b01548 28846411
    [Google Scholar]
  140. SinghP.K. BhardiyaS.R. AsatiA. RaiV.K. SinghM. RaiA. Cu/Cu 2 O@g‐C 3 N 4: Recyclable photocatalyst under visible light to access 2‐aryl‐/benzimidazoles/benzothiazoles in water.ChemistrySelect2020545142701427510.1002/slct.202003812
    [Google Scholar]
  141. HuangJ. ChenW. LiangJ. YangQ. FanY. ChenM.W. PengY. α-Keto acids as triggers and partners for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles in water.J. Org. Chem.20218621148661488210.1021/acs.joc.1c01497 34624963
    [Google Scholar]
  142. IngleV. GorepatilP. ManeY. Samarium (III) triflate as an efficient and reusable catalyst for facile synthesis of benzoxazoles and benzothiazoles in aqueous medium.Synlett201324172241224410.1055/s‑0033‑1339758
    [Google Scholar]
  143. SunY. JiangH. WuW. ZengW. WuX. Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles.Org. Lett.20131571598160110.1021/ol400379z 23496117
    [Google Scholar]
  144. GaneshM. SahooS.K. KhatunN. PatelB.K. Copper‐catalysed cascade synthesis of imidazolidine–benzothiazole and imidazolidine–tetrazole hybrid heterocycles from bis‐thioureas by a desulfurisation strategy.Eur. J. Org. Chem.20152015347534754310.1002/ejoc.201501096
    [Google Scholar]
  145. LandgeS. MullickA.B. NagalapurK. NeresJ. SubbulakshmiV. MuruganK. GhoshA. SadlerC. FellowsM.D. HumnabadkarV. MahadevaswamyJ. VachaspatiP. SharmaS. KaurP. MallyaM. RudrapatnaS. AwasthyD. SambandamurthyV.K. PojerF. ColeS.T. BalganeshT.S. UgarkarB.G. BalasubramanianV. BandodkarB.S. PandaM. RamachandranV. Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure–activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose 2′-oxidase.Bioorg. Med. Chem.201523247694771010.1016/j.bmc.2015.11.017 26643218
    [Google Scholar]
  146. WagnerK. OehlmannL. Benzothiazol‐ N ‐oxide, IV 1) synthese und reaktivität von 2‐cyanbenzothiazol‐ N ‐oxiden und 2‐benzothiazolcarbonitrilen.Chem. Ber.1976109261161810.1002/cber.19761090224
    [Google Scholar]
  147. DigwalC.S. YadavU. SaklaA.P. RamyaS.P.V. AaghazS. KamalA. VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines.Tetrahedron Lett.201657364012401610.1016/j.tetlet.2016.06.074
    [Google Scholar]
  148. MengX. BiX. YuC. ChenG. ChenB. JingZ. ZhaoP. Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: An active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines.Green Chem.201820204638464410.1039/C8GC01816B
    [Google Scholar]
  149. HudwekarA.D. VermaP.K. KourJ. BalgotraS. SawantS.D. Transition metal‐free oxidative coupling of primary amines in polyethylene glycol at room temperature: Synthesis of imines, azobenzenes, benzothiazoles, and disulfides.Eur. J. Org. Chem.2019201961242125010.1002/ejoc.201801610
    [Google Scholar]
  150. RacanéL. PtičekL. FajdetićG. KulenovićT.V. KlobučarM. PavelićK.S. PerićM. PaljetakH.Č. VerbanacD. StarčevićK. Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl)benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents.Bioorg. Chem.20209510353710.1016/j.bioorg.2019.103537 31884142
    [Google Scholar]
  151. DjuidjeE.N. SciabicaS. BuzziR. DissetteV. BalzariniJ. LiekensS. SerraE. AndreottiE. ManfrediniS. VertuaniS. BaldisserottoA. Design, synthesis and evaluation of benzothiazole derivatives as multifunctional agents.Bioorg. Chem.202010110396010.1016/j.bioorg.2020.103960 32559579
    [Google Scholar]
  152. LiuJ.J. GuoF.H. CuiF-J. ZhuJ-H. LiuX-Y. UllahA. WangX-C. QuanZ-J. A biomass-derived N-doped porous carbon catalyst for the aerobic dehydrogenation of nitrogen heterocycles.New J. Chem.20224641791179910.1039/D1NJ05411B
    [Google Scholar]
  153. GaneshK. SambasivamG. GavaraG.S.R. RajendraG. KarthikeyanS. An efficient metal free synthesis of 2-aminobenzothiozoles – A greener approach.Org. Biomol. Chem.202321356456810.1039/D2OB01981G 36538019
    [Google Scholar]
  154. CheboluR. KommiD.N. KumarD. BollineniN. ChakrabortiA.K. Hydrogen-bond-driven electrophilic activation for selectivity control: Scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity.J. Org. Chem.20127722101581016710.1021/jo301793z 23067292
    [Google Scholar]
  155. GujjarappaR. VodnalaN. ReddyV.G. MalakarC.C. A facile C‐H insertion strategy using combination of HFIP and isocyanides: Metal‐free access to azole derivatives.Asian J. Org. Chem.20209111793179710.1002/ajoc.202000481
    [Google Scholar]
  156. MartinsM.A.P. FrizzoC.P. MoreiraD.N. ZanattaN. BonacorsoH.G. Ionic liquids in heterocyclic synthesis.Chem. Rev.200810862015205010.1021/cr078399y 18543878
    [Google Scholar]
  157. ChakrabortiA.K. RoyS.R. KumarD. ChopraP. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis.Green Chem.200810101111111810.1039/b807572g
    [Google Scholar]
  158. ChakrabortiA.K. RoyS.R. On catalysis by ionic liquids.J. Am. Chem. Soc.2009131206902690310.1021/ja900076a 19413313
    [Google Scholar]
  159. RoyS.R. ChakrabortiA.K. Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction.Org. Lett.201012173866386910.1021/ol101557t 20690631
    [Google Scholar]
  160. SarkarA. RoyS.R. ChakrabortiA.K. Ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds—remarkable influence of the C-2 hydrogen and the anion.Chem. Commun. 201147154538454010.1039/c1cc10151j 21387055
    [Google Scholar]
  161. RoyR.S. JadhavarP.S. SethK. SharmaK.K. ChakrabortiA.K. Organocatalytic application of ionic liquids:[bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and-thiones.Synthesis201122612267
    [Google Scholar]
  162. SarkarA. RoyS.R. ParikhN. ChakrabortiA.K. Nonsolvent application of ionic liquids: Organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency.J. Org. Chem.201176177132714010.1021/jo201102q 21774556
    [Google Scholar]
  163. SinhaA.K. SinghR. KumarR. Towards an understanding of the “ Ambiphilic ” character of ionic liquids for green synthesis of chemically diverse architectures.Asian J. Org. Chem.20209570672010.1002/ajoc.202000065
    [Google Scholar]
  164. NadafR. SiddiquiS.A. DanielT. LahotiR.J. SrinivasanK.V. Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions.J. Mol. Catal. Chem.2004214115516010.1016/j.molcata.2003.10.064
    [Google Scholar]
  165. FanX. HeY. WangY. XueZ. ZhangX. WangJ. A novel and practical synthesis of 2-benzoylbenzothiazoles and 2-benzylbenzothiazoles.Tetrahedron Lett.201152889990210.1016/j.tetlet.2010.12.057
    [Google Scholar]
  166. KalkhambkarR.G. LaaliK.K. Pd(OAc)2 catalyzed synthesis of 2-aryl- and 2-heteroaryl-benzoxazoles and benzothiazoles in imidazolium ionic liquids (ILs) without additives and with recycling/reuse of the IL.Tetrahedron Lett.201253324212421510.1016/j.tetlet.2012.05.155
    [Google Scholar]
  167. SethK. RoyS.R. KommiD.N. PipaliyaB.V. ChakrabortiA.K. Silver nanoparticle-catalysed phenolysis of epoxides under neutral conditions: Scope and limitations of metal nanoparticles and applications towards drug synthesis.J. Mol. Catal. Chem.201439216417210.1016/j.molcata.2014.05.011
    [Google Scholar]
  168. SethK. PurohitP. ChakrabortiA.K. Cooperative catalysis by palladium-nickel binary nanocluster for Suzuki-Miyaura reaction of ortho-heterocycle-tethered sterically hindered aryl bromides.Org. Lett.20141692334233710.1021/ol500587m 24720556
    [Google Scholar]
  169. PurohitP. SethK. KumarA. ChakrabortiA.K. C–O Bond activation by nickel–palladium hetero-bimetallic nanoparticles for suzuki–miyaura reaction of bioactive heterocycle-tethered sterically hindered aryl carbonates.ACS Catal.2017742452245710.1021/acscatal.6b02912
    [Google Scholar]
  170. SethK. Raha RoyS. ChakrabortiA.K. Synchronous double C–N bond formation via C–H activation for a novel synthetic route to phenazine.Chem. Commun. 201652592292510.1039/C5CC08640J 26581451
    [Google Scholar]
  171. SethK. RoyS.R. KumarA. ChakrabortiA.K. The palladium and copper contrast: A twist to products of different chemotypes and altered mechanistic pathways.Catal. Sci. Technol.2016692892289610.1039/C6CY00415F
    [Google Scholar]
  172. SahaD. MukhopadhyayC. Metal nanoparticles: An efficient tool for heterocycles synthesis and their functionalization via C-H activation.Curr. Organocatal.201962799110.2174/2213337206666181226152743
    [Google Scholar]
  173. DhameliyaT.M. DongaH.A. VaghelaP.V. PanchalB.G. SurejaD.K. BodiwalaK.B. ChhabriaM.T. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds.RSC Advances20201054327403282010.1039/D0RA02272A 35516511
    [Google Scholar]
  174. JinfengF. YanmeiL. YanH. MoghadasiZ. Synthesis of heterocycles catalyzed by metallic nanoparticles (NPs).Synth. Commun.202151223345336510.1080/00397911.2021.1980888
    [Google Scholar]
  175. JangirN. BagariaS.K. JangidD.K. Nanocatalysts: Applications for the synthesis of N-containing five-membered heterocycles.RSC Advances20221230196401966610.1039/D2RA03122A 35865567
    [Google Scholar]
  176. SonawaneH.R. DeoreJ.V. ChavanP.N. Reusable nano catalysed synthesis of heterocycles: An overview.ChemistrySelect202278e20210390010.1002/slct.202103900
    [Google Scholar]
  177. RiadiY. MamouniR. AzzalouR. HaddadM.E. RoutierS. GuillaumetG. LazarS. An efficient and reusable heterogeneous catalyst Animal Bone Meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles.Tetrahedron Lett.201152273492349510.1016/j.tetlet.2011.04.121
    [Google Scholar]
  178. DandiaA. ParewaV. RathoreK.S. Synthesis and characterization of CdS and Mn doped CdS nanoparticles and their catalytic application for chemoselective synthesis of benzimidazoles and benzothiazoles in aqueous medium.Catal. Commun.201228909410.1016/j.catcom.2012.08.020
    [Google Scholar]
  179. TeimouriA. ChermahiniA.N. SalavatiH. GhorbanianL. An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts.J. Mol. Catal. Chem.2013373384510.1016/j.molcata.2013.02.030
    [Google Scholar]
  180. EsfahaniN.M. BaltorkM.I. KhosropourA.R. MoghadamM. MirkhaniV. TangestaninejadS. Synthesis and characterization of Cu(II) containing nanosilica triazine dendrimer: A recyclable nanocomposite material for the synthesis of benzimidazoles, benzothiazoles, bis-benzimidazoles and bis-benzothiazoles.J. Mol. Catal. Chem.201337924325410.1016/j.molcata.2013.08.009
    [Google Scholar]
  181. InamdarS.M. MoreV.K. MandalS.K. CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles.Tetrahedron Lett.201354657958310.1016/j.tetlet.2012.11.091
    [Google Scholar]
  182. DasS. SamantaS. MajiS.K. SamantaP.K. DuttaA.K. SrivastavaD.N. AdhikaryB. BiswasP. Visible-light-driven synthesis of 2-substituted benzothiazoles using CdS nanosphere as heterogenous recyclable catalyst.Tetrahedron Lett.20135491090109610.1016/j.tetlet.2012.12.044
    [Google Scholar]
  183. ShelkarR. SarodeS. NagarkarJ. Nano ceria catalyzed synthesis of substituted benzimidazole, benzothiazole, and benzoxazole in aqueous media.Tetrahedron Lett.201354516986699010.1016/j.tetlet.2013.09.092
    [Google Scholar]
  184. YangD. LiuP. ZhangN. WeiW. YueM. YouJ. WangH. Mesoporous poly (melamine–formaldehyde): A green and recyclable heterogeneous organocatalyst for the synthesis of benzoxazoles and benzothiazoles using dioxygen as oxidant.ChemCatChem20146123434343910.1002/cctc.201402628
    [Google Scholar]
  185. YangD. ZhuX. WeiW. SunN. YuanL. JiangM. YouJ. WangH. Magnetically recoverable and reusable CuFe 2 O 4 nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant.RSC Advances2014434178321783910.1039/C4RA00559G
    [Google Scholar]
  186. BanerjeeS. PayraS. SahaA. SeredaG. ZnO nanoparticles: A green efficient catalyst for the room temperature synthesis of biologically active 2-aryl-1,3-benzothiazole and 1,3-benzoxazole derivatives.Tetrahedron Lett.201455405515552010.1016/j.tetlet.2014.07.123
    [Google Scholar]
  187. FarrokhiA. GhodratiK. YavariI. Fe3O4/SiO2/(CH2)3N+Me3Br3− core–shell nanoparticles: A novel catalyst for the solvent-free synthesis of five- and six-membered heterocycles.Catal. Commun.201563414610.1016/j.catcom.2014.09.046
    [Google Scholar]
  188. WadeA.R. PawarH.R. BiwareM.V. ChikateR.C. Synergism in semiconducting nanocomposites: Visible light photocatalysis towards the formation of C–S and C–N bonds.Green Chem.20151773879388810.1039/C5GC00748H
    [Google Scholar]
  189. BardajeeG.R. MohammadiM. KakavandN. Copper(II)–diaminosarcophagine‐functionalized SBA‐15: A heterogeneous nanocatalyst for the synthesis of benzimidazole, benzoxazole and benzothiazole derivatives under solvent‐free conditions.Appl. Organomet. Chem.2016301515810.1002/aoc.3400
    [Google Scholar]
  190. DighoreN.R. AnandgaonkerP. GaikwadS.T. RajbhojA.S. Green synthesis of 2-aryl benzothiazole heterogenous catalyzed by MoO3 nanorods.Green Proc. Synth.20165213914310.1515/gps‑2015‑0065
    [Google Scholar]
  191. DhopteK.B. ZambareR.S. PatwardhanA.V. NemadeP.R. Role of graphene oxide as a heterogeneous acid catalyst and benign oxidant for synthesis of benzimidazoles and benzothiazoles.RSC Advances20166108164817210.1039/C5RA19066E
    [Google Scholar]
  192. KardanpourR. TangestaninejadS. MirkhaniV. MoghadamM. BaltorkM.I. ZadehahmadiF. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles.J. Solid State Chem.201623514515310.1016/j.jssc.2015.11.019
    [Google Scholar]
  193. GhafuriH. EsmailiE. TalebiM. Fe3O4@SiO2/collagen: An efficient magnetic nanocatalyst for the synthesis of benzimidazole and benzothiazole derivatives.C. R. Chim.201619894295010.1016/j.crci.2016.05.003
    [Google Scholar]
  194. NiknamE. PanahiF. DaneshgarF. BahramiF. NezhadK.A. Metal–organic framework MIL-101 (Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles.ACS Omega2018312171351714410.1021/acsomega.8b02309 31458334
    [Google Scholar]
  195. ZakeriM. MoghadamM. MirkhaniV. TangestaninejadS. BaltorkM.I. PahlevanneshanZ. Copper containing nanosilica thioalated dendritic material: A recyclable catalyst for synthesis of benzimidazoles and benzothiazoles.Appl. Organomet. Chem.2018321e393710.1002/aoc.3937
    [Google Scholar]
  196. BahramiK. BakhtiarianM. Mesoporous titania‐alumina mixed oxide: A heterogeneous nanocatalyst for the synthesis of 2‐substituted benzimidazoles, benzothiazoles and benzoxazoles.ChemistrySelect2018339108751088010.1002/slct.201801782
    [Google Scholar]
  197. PesyanN.N. BatmaniH. HavasiF. Copper supported on functionalized MCM-41 as a novel and a powerful heterogeneous nanocatalyst for the synthesis of benzothiazoles.Polyhedron201915824825410.1016/j.poly.2018.11.005
    [Google Scholar]
  198. KumarV. SinghD. PaulA.K. ShrivastavaR. SinghV. ZnO-NP assisted synthesis of fluorescent β-carboline C-1 tethered benzimidazole/benzothiazole/benzoxazole derivatives and assessment of their photophysical properties.New J. Chem.20194346183041831510.1039/C9NJ04256C
    [Google Scholar]
  199. SankarV. KarthikP. NeppolianB. SivakumarB. Metal–organic framework mediated expeditious synthesis of benzimidazole and benzothiazole derivatives through an oxidative cyclization pathway.New J. Chem.20204431021102710.1039/C9NJ04431K
    [Google Scholar]
  200. SharghiH. MashhadiE. AberiM. AboonajmiJ. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes, o ‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO 2 as a nanocatalyst.Appl. Organomet. Chem.2021359e633010.1002/aoc.6330
    [Google Scholar]
  201. CaiY. YuanH. GaoQ. WuL. XueL. FengN. SunY. Palladium (II) complex supported on magnetic nanoparticles modified with phenanthroline: A highly active reusable nanocatalyst for the synthesis of benzoxazoles, benzothiazoles and cyanation of aryl halides.Catal. Lett.2023153246047610.1007/s10562‑022‑03990‑9
    [Google Scholar]
  202. RayS. DasP. BanerjeeB. BhaumikA. MukhopadhyayC. Piperazinylpyrimidine modified MCM-41 for the ecofriendly synthesis of benzothiazoles by the simple cleavage of disulfide in the presence of molecular O 2.RSC Advances2015589727457275410.1039/C5RA14894D
    [Google Scholar]
  203. WangD. AlberoJ. GarcíaH. LiZ. Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy.J. Catal.201734915616210.1016/j.jcat.2017.01.014
    [Google Scholar]
  204. NoriZ.Z. IsfahaniL.A. BahadoriM. MoghadamM. MirkhaniV. TangestaninejadS. BaltorkM.I. Ultrafine Pt nanoparticles supported on a dendrimer containing thiol groups: An efficient catalyst for the synthesis of benzimidazoles and benzothiazoles from benzyl alcohol derivatives in water.RSC Advances20201055331373314710.1039/D0RA06471H 35515057
    [Google Scholar]
  205. ChenR. JaliliZ. TayebeeR. UV-visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W–ZnO@NH 2 nanoparticles.RSC Advances20211127163591637510.1039/D0RA10843J 35479136
    [Google Scholar]
  206. KaramiN. ZarnegaryanA. Fabrication of immobilized molybdenum complex on functionalized graphene oxide as a novel catalyst for the synthesis of benzothiazoles.J. Organomet. Chem.202399212269610.1016/j.jorganchem.2023.122696
    [Google Scholar]
  207. MazloumiM. ShiriniF. JolodarG.O. SeddighiM. Nanoporous TiO 2 containing an ionic liquid bridge as an efficient and reusable catalyst for the synthesis of N, N ′-diarylformamidines, benzoxazoles, benzothiazoles and benzimidazoles.New J. Chem.20184285742575210.1039/C8NJ00171E
    [Google Scholar]
  208. BadbedastM. KhaliliD. AbdolmalekiA. NorouziF. Magnetite dopamine‐decorated copper (Fe 3 O 4 @PDA/CuCl 2): A robust and reusable catalyst for promoting green synthesis of benzimidazoles and benzothiazoles.Appl. Organomet. Chem.2023379e719710.1002/aoc.7197
    [Google Scholar]
  209. AbinayaR. ElavarasanS. BinishB. RahulanM.K. BalasubramanianK.K. ManokaranK. VarathanE. BaskarB. Visible‐light‐driven one‐pot synthesis of benzimidazoles, benzothiazoles, and quinazolinones catalyzed by scalable and reusable Ba‐Doped CoMoO 4 nanoparticles under air atmosphere.Eur. J. Org. Chem.2023264e20220109810.1002/ejoc.202201098
    [Google Scholar]
  210. ZadehF.G. AsadiB. BaltorkM.I. TangestaninejadS. MirkhaniV. MoghadamM. OmidvarA. Triazine diphosphonium tetrachloroferrate ionic liquid immobilized on functionalized halloysite nanotubes as an efficient and reusable catalyst for the synthesis of mono-, bis- and tris-benzothiazoles.RSC Advances20231344312133122310.1039/D3RA05491H 37886018
    [Google Scholar]
  211. SunM. LiuW. WuW. LiQ. ShenL. Fe 3 O 4 @ABA-aniline-CuI nanocomposite as a highly efficient and reusable nanocatalyst for the synthesis of benzothiazole-sulfide aryls and heteroaryls.RSC Advances20231329203512036410.1039/D3RA03069E 37448779
    [Google Scholar]
  212. RoutS.K. GuinS. NathJ. PatelB.K. An “on-water” exploration of CuO nanoparticle catalysed synthesis of 2-aminobenzothiazoles.Green Chem.20121492491249810.1039/c2gc35575b
    [Google Scholar]
  213. HajipourA.R. KhorsandiZ. MortazaviM. FarrokhpourH. Green, efficient and large-scale synthesis of benzimidazoles, benzoxazoles and benzothiazoles derivatives using ligand-free cobalt-nanoparticles: As potential anti-estrogen breast cancer agents, and study of their interactions with estrogen receptor by molecular docking.RSC Advances2015513010782210782810.1039/C5RA22207A
    [Google Scholar]
  214. NayakM.K. ChakrabortiA.K. Chemoselective aryl alkyl ether cleavage by thiophenolate anion through its in situ generation in catalytic amount.Tetrahedron Lett.199738508749875210.1016/S0040‑4039(97)10342‑2
    [Google Scholar]
  215. NayakM.K. ChakrabortiA.K.PhS.H. -(Catalytic) KF as an efficient protocol for chemoselective ester O-alkyl cleavage under non-hydrolytic neutral condition.Chem. Lett.199827429729810.1246/cl.1998.297
    [Google Scholar]
  216. SharmaL. NayakM.K. ChakrabortiA.K. A mild and chemoselective method for ester O-alkyl cleavage using in situ generated potassium thiophenoxide from catalytic quantities of base.Tetrahedron199955319595960010.1016/S0040‑4020(99)00505‑0
    [Google Scholar]
  217. ChakrabortiA.K. NayakM.K. SharmaL. Selective deprotection of aryl acetates, benzoates, pivalates, and tosylates under nonhydrolytic and virtually neutral conditions.J. Org. Chem.199964218027803010.1021/jo990780y
    [Google Scholar]
  218. ChakrabortiA.K. SharmaL. NayakM.K. The influence of hydrogen bonding in activation of nucleophile: PhSH – (Catalytic) KF in NMP as an efficient protocol for selective cleavage of Alkyl/Aryl Esters and Aryl Alkyl Ethers under nonhydrolytic and neutral conditions.J. Org. Chem.2002672541254710.1021/jo0163039 11950299
    [Google Scholar]
  219. ChakrabortiA.K. SharmaL. NayakM.K. Demand-based thiolate anion generation under virtually neutral conditions: Influence of steric and electronic factors on chemo- and regioselective cleavage of aryl alkyl ethers.J. Org. Chem.200267186406641410.1021/jo0256540 12201761
    [Google Scholar]
  220. ChakrabortiA.K. RudrawarS. KaurG. SharmaL. An efficient conversion of phenolic esters to benzothiazoles under mild and virtually neutral conditions.Synlett200491533153610.1055/s‑2004‑829089
    [Google Scholar]
  221. ChakrabortiA.K. NayakM.K. SharmaL. Diphenyl disulfide and sodium in NMP as an efficient protocol for in situ generation of thiophenolate anion: Selective deprotection of aryl alkyl ethers and alkyl/aryl esters under nonhydrolytic conditions.J. Org. Chem.20026761776178010.1021/jo010611p 11895392
    [Google Scholar]
  222. KumarD. JadhavarP.S. NautiyalM. SharmaH. MeenaP.K. AdaneL. PancholiaS. ChakrabortiA.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: Applications towards the synthesis of drugs.RSC Advances2015539308193082510.1039/C5RA03888J
    [Google Scholar]
  223. SofiF.A. SharmaR. RawatR. ChakrabortiA.K. BharatamP.V. Visible light promoted tandem dehydrogenation-deaminative cyclocondensation under aerobic conditions for the synthesis of 2-aryl benzimidazoles/quinoxalines from ortho -phenylenediamines and arylmethyl/ethyl amines.New J. Chem.202145104569457310.1039/D0NJ03002C
    [Google Scholar]
  224. RudrawarS. KondaskarA. ChakrabortiA.K. An efficient acid- and metal-free one-pot synthesis of benzothiazoles from carboxylic acids.Synthesis200525212526
    [Google Scholar]
  225. ChoiS.J. ParkH.J. LeeS.K. KimS.W. HanG. ChooH.Y.P. Solid phase combinatorial synthesis of benzothiazoles and evaluation of topoisomerase II inhibitory activity.Bioorg. Med. Chem.20061441229123510.1016/j.bmc.2005.09.051 16242334
    [Google Scholar]
  226. ChakrabortiA.K. SelvamC. KaurG. BhagatS. An efficient synthesis of benzothiazoles by direct condensation of carboxylic acids with 2-aminothiophenol under microwave irradiation.Synlett200450851085510.1055/s‑2004‑820012
    [Google Scholar]
  227. WenX. BakaliJ.E. PoulainD.R. DeprezB. Efficient propylphosphonic anhydride (®T3P) mediated synthesis of benzothiazoles, benzoxazoles and benzimidazoles.Tetrahedron Lett.201253192440244310.1016/j.tetlet.2012.03.007
    [Google Scholar]
  228. PraveenC. NandakumarA. DheenkumarP. MuralidharanD. PerumalP.T. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents.J. Chem. Sci.2012124360962410.1007/s12039‑012‑0251‑3
    [Google Scholar]
  229. KumarD. MishraA. MishraB.B. BhattacharyaS. TiwariV.K. Synthesis of glycoconjugate benzothiazoles via cleavage of benzotriazole ring.J. Org. Chem.201378389990910.1021/jo3021049 23270539
    [Google Scholar]
  230. AraujoP.D. MoraisS.V.S. de FátimaÂ. ModoloL.V. Efficient sodium bisulfite-catalyzed synthesis of benzothiazoles and their potential as ureases inhibitors.RSC Advances2015536288142882110.1039/C5RA01081K
    [Google Scholar]
  231. LiuL. ZhangF. WangH. ZhuN. LiuB. HongH. HanL. Efficient synthesis of benzothiazole derivatives by reaction of bis(2-aminophenyl) disulfides with aldehydes mediated by NaSH under microwave irradiation.Phosphorus Sulfur Silicon Relat. Elem.2017192446446810.1080/10426507.2016.1259227
    [Google Scholar]
  232. LuoB. LiD. ZhangA.L. GaoJ.M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives.Molecules20182310245710.3390/molecules23102457 30257495
    [Google Scholar]
  233. DevD. ChandraJ. PalakurthyN.B. ThalluriK. KalitaT. MandalB. Benzoxazole and benzothiazole synthesis from carboxylic acids in solution and on resin by using ethyl 2‐cyano‐2‐(2‐nitrobenzenesulfonyloxyimino)acetate and para ‐toluenesulfonic acid.Asian J. Org. Chem.20165566367510.1002/ajoc.201500527
    [Google Scholar]
  234. ChakrabortiA.K. ChankeshwaraS.V. Counterattack mode differential acetylative deprotection of phenylmethyl ethers: Applications to solid phase organic reactions.J. Org. Chem.20097431367137010.1021/jo801659g 19117380
    [Google Scholar]
  235. RapoluT. KVP, P.K.; Babu, K.R.; Dende, S.K.; Nimmareddy, R.R.; Reddy, L.K. Microwave assisted one pot synthesis of 2-ethylamino benzimidazole, benzoxazole and benzothiazole derivatives.Synth. Commun.2019491308131510.1080/00397911.2019.1599952
    [Google Scholar]
  236. SuhasariaA. MurmuM. SatpatiS. BanerjeeP. SukulD. Bis-benzothiazoles as efficient corrosion inhibitors for mild steel in aqueous HCl: Molecular structure-reactivity correlation study.J. Mol. Liq.202031311353710.1016/j.molliq.2020.113537
    [Google Scholar]
  237. PatelG. PatelA.R. LambatT.L. BanerjeeS. Direct one-pot synthesis of imines/benzothiazoles/benzoxazoles from nitroarenes via sequential hydrogenation-condensation using Nano-NiFe2O4 as catalyst under microwave irradiation.Curr. Res. Green Sust. Chem.2021410014910.1016/j.crgsc.2021.100149
    [Google Scholar]
  238. GeesiM.H. OuerghiO. DehbiO. RiadiY. Metal-doped TiO2 nanocatalysts in an MX2/urea mixture for the synthesis of benzothiazoles bearing substituted pyrrolidin-2-ones: Enhanced catalytic performance and antibacterial activity.J. Environ. Chem. Eng.20219410534410.1016/j.jece.2021.105344
    [Google Scholar]
  239. SamantaS. DasS. BiswasP. Photocatalysis by 3,6-disubstituted-s-tetrazine: Visible-light driven metal-free green synthesis of 2-substituted benzimidazole and benzothiazole.J. Org. Chem.20137822111841119310.1021/jo401445j 24134516
    [Google Scholar]
  240. YuC. LeeK. YouY. ChoE.J. Synthesis of 2‐substituted benzothiazoles by visible light‐driven photoredox catalysis.Adv. Synth. Catal.201335581471147610.1002/adsc.201300376
    [Google Scholar]
  241. HwangH.S. LeeS. HanS.S. MoonY.K. YouY. ChoE.J. Benzothiazole synthesis: Mechanistic investigation of an in situ-generated photosensitizing disulfide.J. Org. Chem.20208518118351184310.1021/acs.joc.0c01598 32822174
    [Google Scholar]
  242. SunW. ChenH. WangK. WangX. LeiM. LiuC. ZhongQ. Synthesis of benzothiazoles using fluorescein as an efficient photocatalyst under visible light.Mol. Catal.202151011169310.1016/j.mcat.2021.111693
    [Google Scholar]
  243. ZhouZ. YangW. Syntheses of 2-aryl benzothiazoles via photocatalyzed oxidative condensation of amines with 2-aminothiophenol in the presence of BODIPY derivatives.Synth. Commun.201444213189319810.1080/00397911.2014.932811
    [Google Scholar]
  244. YeL. ChenJ. MaoP. MaoZ. ZhangX. YanM. Visible-light-promoted synthesis of benzothiazoles from 2-aminothiophenols and aldehydes.Tetrahedron Lett.201758987487610.1016/j.tetlet.2017.01.053
    [Google Scholar]
  245. JakhadeA.P. BiwareM.V. ChikateR.C. Two-dimensional Bi 2 WO 6 nanosheets as a robust catalyst toward photocyclization.ACS Omega20172107219722910.1021/acsomega.7b01086 30023542
    [Google Scholar]
  246. NatarajanP. ManjeetM. MuskanM. BrarN.K. KaurJ.J. Visible light photoredox catalysis: Conversion of a mixture of thiophenols and nitriles into 2-substituted benzothiazoles via consecutive C–S and C–N bond formation reactions.Org. Chem. Front.2018591527153110.1039/C8QO00219C
    [Google Scholar]
  247. DinhA.N. NguyenA.D. AcevesE.M. AlbrightS.T. CedanoM.R. SmithD.K. GustafsonJ.L. Photocatalytic oxidative C–H thiolation: Synthesis of benzothiazoles and sulfenylated indoles.Synlett201930141648165510.1055/s‑0039‑1690107
    [Google Scholar]
  248. YuanY. DongW. GaoX. XieX. ZhangZ. Sodium sulfite-involved photocatalytic radical cascade cyclization of 2-isocyanoaryl thioethers: Access to 2-CF 2/CF 3 -containing benzothiazoles.Org. Lett.201921246947210.1021/acs.orglett.8b03710 30588818
    [Google Scholar]
  249. LiuY. ChenX.L. SunK. LiX.Y. ZengF.L. LiuX.C. QuL.B. ZhaoY.F. YuB. Visible-light induced radical perfluoroalkylation/cyclization strategy to access 2-perfluoroalkylbenzothiazoles/benzoselenazoles by EDA complex.Org. Lett.201921114019402410.1021/acs.orglett.9b01175 31099576
    [Google Scholar]
  250. LeH.A.N. NguyenL.H. NguyenQ.N.B. NguyenH.T. NguyenK.Q. TranP.H. Straightforward synthesis of benzoxazoles and benzothiazoles via photocatalytic radical cyclization of 2-substituted anilines with aldehydes.Catal. Commun.202014510612010.1016/j.catcom.2020.106120
    [Google Scholar]
  251. MongaA. BagchiS. SoniR.K. SharmaA. Synthesis of benzothiazoles via photooxidative decarboxylation of α‐Keto acids.Adv. Synth. Catal.2020362112232223710.1002/adsc.201901617
    [Google Scholar]
  252. ReddyM.B. AnandhanR. Visible light initiated amino group ortho -directed copper(I)-catalysed aerobic oxidative C(sp)–S coupling reaction: Synthesis of substituted 2-phenylbenzothiazoles via thia-Wolff rearrangement.Chem. Commun. 202056263781378410.1039/D0CC00815J 32129436
    [Google Scholar]
  253. JiangH. ZangC. ChengH. SunB. GaoX. Photocatalytic green synthesis of benzazoles from alcohol oxidation/toluene sp 3 C–H activation over metal-free BCN: Effect of crystallinity and N–B pair exposure.Catal. Sci. Technol.202111247955796210.1039/D1CY01623G
    [Google Scholar]
  254. RajputK. SinghV. KamalA. SinghH.K. SinghS. SrivastavaV. A novel approach towards synthesis of benzothiazoles and benzimidazoles: Eosin Y-catalyzed photo-triggered C–S and C–N bond formation.New J. Chem.20234748222762228010.1039/D3NJ04374F
    [Google Scholar]
  255. WangH. WuQ. ZhangJ.D. LiH.Y. LiH.X. Photocatalyst- and transition-metal-free visible-light-promoted intramolecular C(sp 2)–S formation.Org. Lett.20212362078208310.1021/acs.orglett.1c00235 33635082
    [Google Scholar]
  256. FangX. WangY. HeP. LiaoH. ZhangG. LiY. LiY. Visible light-promoted divergent benzoheterocyclization from aldehydes for dna-encoded chemical libraries.Org. Lett.202224173291329610.1021/acs.orglett.2c01187 35467894
    [Google Scholar]
  257. PalaniP. ChithiraivelV. SenadiC.G. Visible-light photocatalyzed oxidative coupling of benzylamines with nucleophiles: Synthesis of 2-aryl benzothiazoles and α,β-unsaturated esters.Mater. Today Proc.20225025325810.1016/j.matpr.2021.06.312
    [Google Scholar]
  258. ZhangJ. ZhuL. ZhaoZ. WangJ. Visible-light-induced construction of 2-aryl or 2-alkyl benzothiazoles via radical addition cascade cyclization of 2-isocyanoaryl thioethers.Tetrahedron Lett.202312915475710.1016/j.tetlet.2023.154757
    [Google Scholar]
  259. YuanY.Q. GuoS.R. TMSCl/Fe (NO3) 3-Catalyzed synthesis of 2-arylbenzothiazoles and 2-arylbenzimidazoles under ultrasonic irradiation.Synth. Commun.201141142169217710.1080/00397911.2010.501470
    [Google Scholar]
  260. RambabuD. MurthiP.R.K. DullaB. RaoB.M.V. PalM. Amberlyst-15–catalyzed synthesis of 2-substituted 1, 3-benzazoles in water under ultrasound.Synth. Commun.201343223083309210.1080/00397911.2013.769605
    [Google Scholar]
  261. ChenG.F. JiaH.M. ZhangL.Y. ChenB.H. LiJ.T. An efficient synthesis of 2-substituted benzothiazoles in the presence of FeCl3/Montmorillonite K-10 under ultrasound irradiation.Ultrason. Sonochem.201320262763210.1016/j.ultsonch.2012.09.010 23122553
    [Google Scholar]
  262. BanerjeeM. ChatterjeeA. KumarV. BhutiaZ.T. KhandareD.G. MajikM.S. RoyB.G. A simple and efficient mechanochemical route for the synthesis of 2-aryl benzothiazoles and substituted benzimidazoles.RSC Advances2014474396063961110.1039/C4RA07058E
    [Google Scholar]
  263. SharmaH. SinghN. JangD.O. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions.Green Chem.201416124922493010.1039/C4GC01142B
    [Google Scholar]
  264. MorofujiT. ShimizuA. YoshidaJ. Electrochemical intramolecular C-H amination: Synthesis of benzoxazoles and benzothiazoles.Chemistry20152183211321410.1002/chem.201406398 25641711
    [Google Scholar]
  265. LaiY.L. YeJ.S. HuangJ.M. Electrochemical synthesis of benzazoles from alcohols and o‐substituted anilines with a catalytic amount of CoII salt.Chemistry201622155425542910.1002/chem.201505074 26918770
    [Google Scholar]
  266. QianX.Y. LiS.Q. SongJ. XuH.C. TEMPO-catalyzed electrochemical C–H thiolation: Synthesis of benzothiazoles and thiazolopyridines from thioamides.ACS Catal.2017742730273410.1021/acscatal.7b00426
    [Google Scholar]
  267. WangP. TangS. LeiA. Electrochemical intramolecular dehydrogenative C–S bond formation for the synthesis of benzothiazoles.Green Chem.20171992092209510.1039/C7GC00468K
    [Google Scholar]
  268. AmadorF.A.A. QianX.Y. XuH.C. WirthT. Catalyst‐and supporting‐electrolyte‐free electrosynthesis of benzothiazoles and thiazolopyridines in continuous flow.Chemistry201824248749110.1002/chem.201705016 29125202
    [Google Scholar]
  269. JiangB. RajaleT. WeverW. TuS.J. LiG. Multicomponent reactions for the synthesis of heterocycles.Chem. Asian J.20105112318233510.1002/asia.201000310 20922748
    [Google Scholar]
  270. KumarD. KommiD.N. BollineniN. PatelA.R. ChakrabortiA.K. Catalytic procedures for multicomponent synthesis of imidazoles: Selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles.Green Chem.20121472038204910.1039/c2gc35277j
    [Google Scholar]
  271. KumarD. SonawaneM. PujalaB. JainV.K. BhagatS. ChakrabortiA.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports.Green Chem.201315102872288410.1039/c3gc41218k
    [Google Scholar]
  272. KumarD. KumarA. QadriM.M. AnsariM.I. GautamA. ChakrabortiA.K. In(OTf) 3 -catalyzed synthesis of 2-styryl quinolines: Scope and limitations of metal Lewis acids for tandem friedländer annulation–knoevenagel condensation.RSC Advances2015542920292710.1039/C4RA10613J
    [Google Scholar]
  273. ParikhN. RoyR.S. SethK. KumarA. ChakrabortiA.K. “On-water” multicomponent reaction for the diastereoselective synthesis of functionalized tetrahydropyridines and mechanistic insight.Synthesis201648547556
    [Google Scholar]
  274. SahaN. BiswasS. VajaM.D. SarkarA. ChakrabortiA.K. BasudebBasu BubunBanerjee Synthesis of aza-heterocycles via one-pot domino multicomponent reaction approach. Multicomponent Synthesis Bioactive Heterocycles2024De Gruyter: Berlin, Boston15410.1515/9783110985313‑001
    [Google Scholar]
  275. BhagatS. ChakrabortiA.K. An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik-Fields reaction) for the synthesis of α-aminophosphonates catalyzed by magnesium perchlorate.J. Org. Chem.20077241263127010.1021/jo062140i 17253748
    [Google Scholar]
  276. BhagatS. ChakrabortiA.K. Zirconium(IV) compounds as efficient catalysts for synthesis of α-aminophosphonates.J. Org. Chem.200873156029603210.1021/jo8009006 18576690
    [Google Scholar]
  277. BhagatS. ShahP. GargS.K. MishraS. KaurK.P. SinghS. ChakrabortiA.K. α-Aminophosphonates as novel anti-leishmanial chemotypes: Synthesis, biological evaluation, and CoMFA studies.MedChemComm20145566567010.1039/C3MD00388D
    [Google Scholar]
  278. LiG. XieH. ChenJ. GuoY. DengG.J. Three-component synthesis of 2-heteroaryl-benzothiazoles under metal-free conditions.Green Chem.201719174043404710.1039/C7GC01932G
    [Google Scholar]
  279. JiangJ. LiG. ZhangF. XieH. DengG.J. Aniline ortho C−H sulfuration/cyclization with elemental sulfur for efficient synthesis of 2‐substituted benzothiazoles under metal‐free conditions.Adv. Synth. Catal.201836081622162710.1002/adsc.201701560
    [Google Scholar]
  280. KimJ. OhK. Copper‐catalyzed aerobic oxidation of amines to benzothiazoles via cross coupling of amines and arene thiolation sequence.Adv. Synth. Catal.2020362173576358210.1002/adsc.202000598
    [Google Scholar]
  281. BaccaliniA. FaitaG. ZanoniG. MaitiD. Transition metal promoted cascade heterocycle synthesis through C−H functionalization.Chemistry202026449749978310.1002/chem.202001832 32557863
    [Google Scholar]
  282. PipaliyaB.V. ChakrabortiA.K. Ligand‐assisted heteroaryl C(sp 2)−H bond activation by a cationic ruthenium(II) complex for alkenylation of heteroarenes with alkynes directed by biorelevant heterocycles.ChemCatChem20179224191419810.1002/cctc.201701016
    [Google Scholar]
  283. PipaliyaB.V. ChakrabortiA.K. Cross-dehydrogenative coupling of heterocyclic scaffolds with unfunctionalized aroyl surrogates by palladium (II) catalyzed C (sp2)-H aroylation through organocatalytic dioxygen activation.J. Org. Chem.20178273767378010.1021/acs.joc.7b00226 28299930
    [Google Scholar]
  284. PipaliyaB.V. SethK. ChakrabortiA.K. Ruthenium (II) catalyzed C(sp 2)−H bond alkenylation of 2‐arylbenzo[ d]oxazole and 2‐Arylbenzo[ d]thiazole with unactivated olefins.Chem. Asian J.2021161879610.1002/asia.202001304 33230945
    [Google Scholar]
  285. SethK. NautiyalM. PurohitP. ParikhN. ChakrabortiA.K. Palladium catalyzed C sp2 –H activation for direct aryl hydroxylation: The unprecedented role of 1,4-dioxane as a source of hydroxyl radicals.Chem. Commun. 201551119119410.1039/C4CC06864E 25388158
    [Google Scholar]
  286. ZengM.T. XuW. LiuM. LiuX. ChangC.Z. ZhuH. DongZ.B. Iodobenzene-promoted Pd-catalysed ortho-directed C– H activation: The synthesis of benzothiazoles via intramolecular coupling. SynOpen,20171010001000
    [Google Scholar]
  287. GaoM.Y. LiJ.H. ZhangS.B. ChenL.J. LiY.S. DongZ.B. A mild synthesis of 2-substituted benzothiazoles via nickel-catalyzed intramolecular oxidative C–H functionalization.J. Org. Chem.202085249350010.1021/acs.joc.9b02543 31845809
    [Google Scholar]
  288. HenryM.C. AbbinanteV.M. SutherlandA. Iron‐catalyzed regioselective synthesis of 2‐arylbenzoxazoles and 2‐arylbenzothiazoles via alternative reaction pathways.Eur. J. Org. Chem.20202020192819282610.1002/ejoc.202000014
    [Google Scholar]
  289. SunP. YangD. WeiW. JiangM. WangZ. ZhangL. ZhangH. ZhangZ. WangY. WangH. Visible light-induced C–H sulfenylation using sulfinic acids.Green Chem.201719204785479110.1039/C7GC01891F
    [Google Scholar]
  290. BaiJ. YanS. ZhangZ. GuoZ. ZhouC.Y. Visible-light carbon nitride-catalyzed aerobic cyclization of thiobenzanilides under ambient air conditions.Org. Lett.202123124843484810.1021/acs.orglett.1c01571 34076439
    [Google Scholar]
  291. BroudicN. BenichouP.A. FruitC. BessonT. Synthesis of 2-cyanobenzothiazoles via Pd-catalyzed/cu-assisted C-H functionalization/intramolecular C-S bond formation from N-arylcyanothioformamides.Molecules20222723842610.3390/molecules27238426 36500519
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347975241217112119
Loading
/content/journals/ctmc/10.2174/0115680266347975241217112119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test