Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

There are many different applications of heterocyclic molecules in pharmaceutical and materials science, which make them an important family of compounds. Among these heterocyclic compounds, nitrogen-containing heterocyclic (-heterocyclic) compounds have attracted a lot of interest among researchers due to their various applications across a wide variety of fields. Many studies have been performed over the past few years to study the synthesis of -heterocycles under different reaction conditions, such as solvent-free, catalytic conditions, reactants immobilized on a solid support, one-pot synthesis, and microwave irradiation. Our research group has demonstrated that microwaves can be utilized for rapid and efficient synthesis of biologically active compounds. In this review, we provide an overview of the microwave-assisted non-catalytic and catalytic preparation of nitrogen-containing heterocycles, mostly polycyclic -heterocycles, five-membered -heterocycles, six-membered -heterocycles, and fused -heterocycles. In this review, we explore the microwave-assisted preparation of biologically important compounds, such as pyrimidines, thiazoles, imines, tetrazoles, steroidal derivatives, quinolines, indolizine, triazoles, beta-lactams, pyrroles, and quinoxalines.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266315936240807101931
2024-08-19
2025-04-21
Loading full text...

Full text loading...

References

  1. JampilekJ. Heterocycles in Medicinal Chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  2. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results in Chemistry2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  3. StępieńM. GońkaE. ŻyłaM. SpruttaN. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications.Chem. Rev.201711743479371610.1021/acs.chemrev.6b0007627258218
    [Google Scholar]
  4. HamamaW.S. El-BanaG.G. ShaabanS. ZoorobH.H. Synthetic Approach to Some New Annulated 1,2,4‐Triazine Skeletons with Antimicrobial and Cytotoxic Activities.J. Heterocycl. Chem.201855497198210.1002/jhet.3127
    [Google Scholar]
  5. NaumannS. Synthesis, properties & applications of N-heterocyclic olefins in catalysis.Chem. Commun. (Camb.)20195578116581167010.1039/C9CC06316A31517349
    [Google Scholar]
  6. LiY. LiuT. SunJ. Recent Advances in N-Heterocyclic Small Molecules for Synthesis and Application in Direct Fluorescence Cell Imaging.Molecules202328273377010.3390/molecules2802073336677792
    [Google Scholar]
  7. TranT.N. HenaryM. Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents.Molecules2022279270010.3390/molecules2709270035566055
    [Google Scholar]
  8. HamamaW.S. El-BanaG.G. ShaabanS. HabibO.M.O. ZoorobH.H. An Easy Access to Construct Some Fused 1,2,4‐Triazines with Ring Junction Nitrogen Systems and Their Biological Evaluation.J. Heterocycl. Chem.201754142242810.1002/jhet.2599
    [Google Scholar]
  9. PriyadarshanA. TripathiG. SinghA.K. RajkhowaS. KumarA. TiwariV.K. Solvent-free Approaches towards the Synthesis of Therapeutically Important Heterocycles.Curr. Green Chem.202411212714710.2174/2213346110666230915163034
    [Google Scholar]
  10. MomeniS. Ghorbani-VagheiR. An efficient, green and solvent-free protocol for one-pot synthesis of 1,4-dihydropyridine derivatives using a new recyclable heterogeneous catalyst.J. Mol. Struct.2023128813575810.1016/j.molstruc.2023.135758
    [Google Scholar]
  11. Pérez-MayoralE. Godino-OjerM. Pastrana-MartínezL.M. Morales-TorresS. Maldonado-HódarF.J. Eco‐sustainable Synthesis of N ‐containing Heterocyclic Systems Using Porous Carbon Catalysts.ChemCatChem20231523e20230096110.1002/cctc.202300961
    [Google Scholar]
  12. AronicaL.A. AlbanoG. Supported Metal Catalysts for the Synthesis of N-Heterocycles.Catalysts20221216810.3390/catal12010068
    [Google Scholar]
  13. KolvariE. KoukabiN. HosseiniM.M. Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction.J. Mol. Catal. Chem.2015397687510.1016/j.molcata.2014.10.026
    [Google Scholar]
  14. MeeraG. RohitK.R. SaranyaS. AnilkumarG. Microwave assisted synthesis of five membered nitrogen heterocycles.RSC Advances20201059360313604110.1039/D0RA05150K35517065
    [Google Scholar]
  15. MajhiS. [REMOVED HYPERLINK FIELD]Mondal, P. K. Microwave-assisted Synthesis of Heterocycles and their Anticancer Activities.Curr. Microw. Chem.20231013515410.2174/0122133356264446230925173123
    [Google Scholar]
  16. Mohassel YazdiN. Naimi-JamalM.R. One-pot synthesis of quinazolinone heterocyclic compounds using functionalized SBA-15 with natural material ellagic acid as a novel nanocatalyst.Sci. Rep.20241411118910.1038/s41598‑024‑61803‑y38755166
    [Google Scholar]
  17. RautC.N. BharambeS.M. PawarY.A. MahulikarP.P. Microwave‐mediated synthesis and antibacterial activity of some novel 2‐(substituted biphenyl) benzimidazoles via Suzuki‐Miyaura cross coupling reaction and their N ‐substituted derivatives.J. Heterocycl. Chem.201148241942510.1002/jhet.610
    [Google Scholar]
  18. DasA. BanikB.K. Foundational Principles of Microwave Chemistry. In: Microwaves in Chemistry Applications.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  19. DasA. BanikB.K. Chapter 2 - Microwave Equipment for Chemistry. In: Microwaves in Chemistry ApplicationsAdvances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  20. DasA. BanikB.K. Chapter 3 - Modeling and Interpreting Microwave Effects. Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  21. DasA. BanikB.K. Chapter 4 - Microwave-Assisted Synthesis of Oxygen- and Sulfur-Containing Organic Compounds.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  22. DasA. BanikB.K. Chapter 5 - Microwave-Assisted Synthesis of N-Heterocycles.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  23. DasA. BanikB.K. Chapter 6 - Microwave-Assisted Oxidation and Reduction Reactions.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  24. DasA. BanikB.K. Chapter 7 - Microwave-Assisted Enzymatic Reactions.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  25. DasA. BanikB.K. Chapter 8 - Microwave-Assisted Sterilization.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  26. DasA. BanikB.K. Microwaves in Chemistry Applications: Fundamentals, Methods and Future TrendsAdvances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  27. DasA. BanikB.K. Chapter 9 - Microwave-Assisted CVD Processes for Diamond Synthesis.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  28. DasA. BanikB.K. Chapter 10 - Future Trends in Microwave Chemistry and Biology. In: Microwaves in Chemistry Applications.Advances in Green and Sustainable ChemistryElsevier2021
    [Google Scholar]
  29. CorrochanoD.R. de la HozA. Sánchez-MigallónA.M. CaballeroR. RamírezJ.R. Synthesis of imine-derived triazines with donor–acceptor properties.J. Clean. Prod.201611822322810.1016/j.jclepro.2016.01.053
    [Google Scholar]
  30. MedvedevaA.S. DeminaM.M. Kon’kovaT.V. NguyenT.L.H. AfoninA.V. UshakovI.A. Microwave assisted solvent- and catalyst-free three-component synthesis of NH-1,2,3-triazoloimines.Tetrahedron20177327-283979398510.1016/j.tet.2017.05.077
    [Google Scholar]
  31. SravanthiK. S.; P, S.; Subhashini, N. Microwave Assisted Green Synthesis of Pyrazole, 1, 2, 3- Triazole Based Novel Benzohydrazones and Their Antibacterial Activities: Synthesis of Novel Benzohydrazones and Their Antibacterial Activities.J. Heterocycl. Chem.201755
    [Google Scholar]
  32. SahooB.M. NagamounikaK. BanikK. Microwave-Assisted Synthesis of Schiff’s Bases of 1,2,4-Triazole Derivatives and Their Anthelmintic Activity.J. Indian Chem. Soc.20189512891294
    [Google Scholar]
  33. GopiC. SastryV.G. DhanarajuM.D. Microwave-assisted synthesis, structural activity relationship and biological activity of some new quinoxaline Schiff base derivatives as highly potent spirochete bactericidal agents.Beni. Suef Univ. J. Basic Appl. Sci.201761394710.1016/j.bjbas.2016.12.007
    [Google Scholar]
  34. DasA. YadavR.N. BanikB.K. Microwave-induced Conversion of Electromagnetic Energy into Heat Energy in Different Solvents: Synthesis of β-lactams.Chemistry Journal of Moldova2022171626610.19261/cjm.2021.864
    [Google Scholar]
  35. DasA. BanikB.K. Microwave-induced stereoselectivity of β-lactam formation: effects of solvents.Heteroletters20231special issue6567
    [Google Scholar]
  36. DasA. YadavR. BanikB.K. Microwave-Induced Ferrier Rearrangement of Hyroxy Beta-Lactams With Glycals.Applied Chemical EngineeringElsevier2023
    [Google Scholar]
  37. DasA. YadavR.N. BanikB.K. Conceptual Design and Cost-Efficient Environmentally Benign Synthesis of Beta-Lactams.De Gruyter2022
    [Google Scholar]
  38. DasA. YadavR. BanikB.K. 10 Conceptual Design and Cost-Efficient Environmentally Benign Synthesis of Betalactams. In: 10 Conceptual design and cost-efficient environmentally Benign synthesis of betalactams.De Gruyter202235738810.1515/9783110797428‑010
    [Google Scholar]
  39. DasA. BoseA.K. BanikB.K. Stereoselective Synthesis of β-Lactams under Diverse Conditions: Unprecedented Observations.J. Indian Chem. Soc.20209710
    [Google Scholar]
  40. YadavR.N. ShaikhA.L. DasA. RayD. BanikB.K. Asymmetric Synthesis of 3-Pyrrole Substituted β-Lactams Through p-Toluene Sulphonic Acid-Catalyzed Reaction of Azetidine-2,3-Diones with Hydroxyprolines.Curr. Organocatal.•••9337345
    [Google Scholar]
  41. DasA. YadavR.N. BanikB.K. A Novel Baker’s Yeast-Mediated Microwave-Induced Reduction of Racemic 3-Keto-2-Azetidinones: Facile Entry to Optically Active Hydroxy β-Lactam Derivatives.Curr. Organocatal.20229195198
    [Google Scholar]
  42. ShaikhA.L. DasA. BanikB.K. Indium-Mediated Reduction of Aromatic Nitro Groups in β-Lactams to Oxazines.Asian Journals of Metals and Salts2023
    [Google Scholar]
  43. DasA. BanikB.K. Dipole Moment in Medicinal Research: Green and Sustainable Approach.Green Approaches in Medicinal Chemistry for Sustainable Drug DesignElsevier2020
    [Google Scholar]
  44. DasA. BanikB.K. Dipole Moment Studies on Beta Lactams.Green Approaches in Medicinal Chemistry for Sustainable Drug Design.Elsevier2023
    [Google Scholar]
  45. DasA. BanikB.K. Dipole Moment of Medicinally Active Compounds: A Sustainable Approach.Green Approaches in Medicinal Chemistry for Sustainable Drug Design.Elsevier2023
    [Google Scholar]
  46. DasA. DasA. BanikB.K. Influence of dipole moments on the medicinal activities of diverse organic compounds.J. Indian Chem. Soc.202198210000510.1016/j.jics.2021.100005
    [Google Scholar]
  47. DasA. BanikB.K. β-Lactams: Geometry, Dipole Moment and Anticancer Activity.J. Indian Chem. Soc.20209711b24612467
    [Google Scholar]
  48. DasA. Quantitative Structure-Property Relationships of Taxol, Taxotere and Their Epi-Isomers.J. Indian Chem. Soc.2020979
    [Google Scholar]
  49. DasA. AlqashqariA.A. BanikB.K. Quantum Mechanical Calculations of Dipole Moment of Diverse Imines.J. Indian Chem. Soc.20219715631566
    [Google Scholar]
  50. DasA. BanikB.K. Dipole Moment Studies on α-Hydroxy-β-Lactam Derivatives.J. Indian Chem. Soc.20219715671571
    [Google Scholar]
  51. DasA. BanikB.K. Dipole Moment and Anticancer Activity of Beta Lactams.Indian J. Pharm. Sci.20218310711074
    [Google Scholar]
  52. DasA. BanikB.K. Computational Studies of Physicochemical Parameters on Optically Active Anticancer β-Lactams.Heterocyclic Letters202313
    [Google Scholar]
  53. DasA. YadavR. BanikB.K. Dipole moment studies on anticancer polyaromatic compounds.Asian J. Org. Med. Chem.2023
    [Google Scholar]
  54. DasA. BanikB.K. Studies on dipole moment of penicillin isomers and related antibiotics.J. Indian Chem. Soc.2020976
    [Google Scholar]
  55. BanikI. BakerF.F. BanikB.K. Microwave-induced synthesis of enantiopure β- lactams.Mod. Chem. Appl.2017533
    [Google Scholar]
  56. BrownD.P. SaklaniP. LuoJ. Microwave‐Assisted Synthesis and Characterization of Novel Sulfonamide‐β‐Lactam Conjugates.J. Heterocycl. Chem.20185571815182110.1002/jhet.3219
    [Google Scholar]
  57. JanssenG.V. van den HeuvelJ.A.C. MegensR.P. BenningshofJ.C.J. OvaaH. Microwave-assisted diastereoselective two-step three-component synthesis for rapid access to drug-like libraries of substituted 3-amino-β-lactams.Bioorg. Med. Chem.2018261414910.1016/j.bmc.2017.11.01429174508
    [Google Scholar]
  58. BanikI. YadavR.N. BeckerF.F. BanikB.K. Bismuth Nitrate-Induced Microwave-Mediated Deglycosylation of O-Glycosides: Synthesis of Enantiopure 3-Hydroxy β-Lactams.J. Indian Chem. Soc.20189513731376
    [Google Scholar]
  59. NadikiH.H. IslamiM.R. SoltanianS. Thermal and Microwave-Assisted Synthesis of New Highly Functionalized Bis-β-lactams from Available Compounds via Bisketene as an Intermediate.ACS Omega2022737333203332910.1021/acsomega.2c0390236157762
    [Google Scholar]
  60. ZarudnitskiiE.V. PervakI.I. MerkulovA.S. YurchenkoA.A. TolmachevA.A. Trimethylsilyl-1,3,4-oxadiazoles—new useful synthons for the synthesis of various 2,5-disubstituted-1,3,4-oxadiazoles.Tetrahedron20086445104311044210.1016/j.tet.2008.08.040
    [Google Scholar]
  61. TanT.M.C. ChenY. KongK.H. BaiJ. LiY. LimS.G. AngT.H. LamY. Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents.Antiviral Res.200671171410.1016/j.antiviral.2006.02.00716564099
    [Google Scholar]
  62. AboraiaA.S. Abdel-RahmanH.M. MahfouzN.M. EL-GendyM.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents.Bioorg. Med. Chem.20061441236124610.1016/j.bmc.2005.09.05316242340
    [Google Scholar]
  63. LiY. LiuJ. ZhangH. YangX. LiuZ. Stereoselective synthesis and fungicidal activities of (E)-α-(methoxyimino)-benzeneacetate derivatives containing 1,3,4-oxadiazole ring.Bioorg. Med. Chem. Lett.20061682278228210.1016/j.bmcl.2006.01.02616455246
    [Google Scholar]
  64. FarshoriN.N. RaufA. SiddiquiM.A. Al-SheddiE.S. Al-OqailM.M. A facile one-pot synthesis of novel 2,5-disubstituted-1,3,4-oxadiazoles under conventional and microwave conditions and evaluation of their in vitro antimicrobial activities.Arab. J. Chem.201710S2853S286110.1016/j.arabjc.2013.11.010
    [Google Scholar]
  65. HargraveK.D. HessF.K. OliverJ.T. N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents.J. Med. Chem.19832681158116310.1021/jm00362a0146876084
    [Google Scholar]
  66. ErgençN. ÇapanG. GünayN.S. ÖzkirimliS. GüngörM. ÖzbeyS. KendiE. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives.Arch. Pharm. (Weinheim)19993321034334710.1002/(SICI)1521‑4184(199910)332:10<343::AID‑ARDP343>3.0.CO;2‑010575366
    [Google Scholar]
  67. PattW.C. HamiltonH.W. TaylorM.D. RyanM.J. TaylorD.G.Jr ConnollyC.J.C. DohertyA.M. KlutchkoS.R. SircarI. SteinbaughB.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors.J. Med. Chem.199235142562257210.1021/jm00092a0061635057
    [Google Scholar]
  68. WadhwaP. KaurT. SharmaA. Solvent‐Free Pot‐, Atom‐ and Step‐Economic Synthesis of Novel Benzo[ d ]thiazole‐[1,3]‐thiazine Hybrids in a One‐Pot Reaction.Asian J. Org. Chem.20165676376910.1002/ajoc.201600098
    [Google Scholar]
  69. Abdel-WahabB. ShaabanS. Thiazolothiadiazoles and Thiazolooxadiazoles: Synthesis and Biological Applications.Synthesis201446131709171610.1055/s‑0033‑1338627
    [Google Scholar]
  70. ChinnarajaD. RajalakshmiR. A facile, solvent and catalyst free, microwave assisted one pot synthesis of hydrazinyl thiazole derivatives.J. Saudi Chem. Soc.201519220020610.1016/j.jscs.2014.05.001
    [Google Scholar]
  71. HamamaW.S. IsmailM.A. ShaabanS. ZoorobH.H. Synthesis and biological evaluation of some new Thiazolo[3,2-a][1,3,5]triazine derivatives.Med. Chem. Res.20122192615262310.1007/s00044‑011‑9783‑1
    [Google Scholar]
  72. BhoiM.N. BoradM.A. PithawalaE.A. PatelH.D. Novel benzothiazole containing 4H-pyrimido[2,1-b]benzothiazoles derivatives: One pot, solvent-free microwave assisted synthesis and their biological evaluation.Arab. J. Chem.20191283799381310.1016/j.arabjc.2016.01.012
    [Google Scholar]
  73. PrajapatiN.P. PatelK.D. VekariyaR.H. PatelH.D. RajaniD.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study.J. Mol. Struct.2019117940141010.1016/j.molstruc.2018.11.025
    [Google Scholar]
  74. CagideF. BorgesF. GomesL.R. LowJ.N. Synthesis and characterisation of new 4-oxo-N-(substituted-thiazol-2-yl)-4H-chromene-2-carboxamides as potential adenosine receptor ligands.J. Mol. Struct.2015108920621510.1016/j.molstruc.2015.02.009
    [Google Scholar]
  75. KakatiD. SarmaR.K. SaikiaR. BaruaN.C. SarmaJ.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones.Steroids201378332132610.1016/j.steroids.2012.12.00323287649
    [Google Scholar]
  76. AsifM. AliA. ZafarA. FarhanM. KhanamH. HadiS.M. Shamsuzzaman Microwave-assisted one pot synthesis, characterization, biological evaluation and molecular docking studies of steroidal thiazoles.J. Photochem. Photobiol. B201716610411510.1016/j.jphotobiol.2016.11.01027888739
    [Google Scholar]
  77. CordeuL. CubedoE. BandrésE. RebolloA. SáenzX. ChozasH. Victoria DomínguezM. EcheverríaM. MendivilB. SanmartinC. PalopJ.A. FontM. García-FoncillasJ. Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives.Bioorg. Med. Chem.20071541659166910.1016/j.bmc.2006.12.01017204425
    [Google Scholar]
  78. QuintelaJ. PeinadorC. BotanaL. EstévezM. RigueraR. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines.Bioorg. Med. Chem.1997581543155310.1016/S0968‑0896(97)00108‑99313860
    [Google Scholar]
  79. AcostaP. InsuastyB. OrtizA. AboniaR. SortinoM. ZacchinoS.A. QuirogaJ. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity.Arab. J. Chem.20169348149210.1016/j.arabjc.2015.03.002
    [Google Scholar]
  80. BajiÁ. KissT. WölflingJ. KovácsD. IgazN. GopisettyM.K. KiricsiM. FrankÉ. Multicomponent access to androstano-arylpyrimidines under microwave conditions and evaluation of their anti-cancer activity in vitro.J. Steroid Biochem. Mol. Biol.2017172798810.1016/j.jsbmb.2017.06.00128595942
    [Google Scholar]
  81. BhatA.R. ShallaA.H. DongreR.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity.J. Adv. Res.20156694194810.1016/j.jare.2014.10.00726644932
    [Google Scholar]
  82. ChavanR.R. HosamaniK.M. KulkarniB.D. JoshiS.D. Molecular docking studies and facile synthesis of most potent biologically active N-tert-butyl-4-(4-substituted phenyl)-2-((substituted-2-oxo-2H-chromen-4-yl)methylthio)-6-oxo-1,6-dihydropyrimidine-5-carboxamide hybrids: An approach for microwave-assisted syntheses and biological evaluation.Bioorg. Chem.20187818519410.1016/j.bioorg.2018.03.00729579642
    [Google Scholar]
  83. ToneyJ.H. FitzgeraldP.M.D. Grover-SharmaN. OlsonS.H. MayW.J. SundelofJ.G. VanderwallD.E. ClearyK.A. GrantS.K. WuJ.K. KozarichJ.W. PomplianoD.L. HammondG.G. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase.Chem. Biol.19985418519610.1016/S1074‑5521(98)90632‑99545432
    [Google Scholar]
  84. BerghmansS. HuntJ. RoachA. GoldsmithP. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants.Epilepsy Res.2007751182810.1016/j.eplepsyres.2007.03.01517485198
    [Google Scholar]
  85. HerrR.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods.Bioorg. Med. Chem.200210113379339310.1016/S0968‑0896(02)00239‑012213451
    [Google Scholar]
  86. AllenF.H. GroomC.R. LiebeschuetzJ.W. BardwellD.A. OlssonT.S.G. WoodP.A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: the structural basis for tetrazole-carboxylic acid bioisosterism.J. Chem. Inf. Model.201252385786610.1021/ci200521k22303876
    [Google Scholar]
  87. FranzR.G. Comparisons of pKa and log P values of some carboxylic and phosphonic acids: Synthesis and measurement.AAPS PharmSci20013211310.1208/ps03021011741262
    [Google Scholar]
  88. PadmajaR.D. RejS. ChandaK. Environmentally friendly, microwave-assisted synthesis of 5-substituted 1 H-tetrazoles by recyclable CuO nanoparticles via (3+2) cycloaddition of nitriles and NaN3.Chin. J. Catal.201738111918192410.1016/S1872‑2067(17)62920‑6
    [Google Scholar]
  89. ChinthaparthiR.R. GangireddyC.S.R. KandulaM.K.R. BalamS.K. CirandurS.R. An Elegant Synthesis of a New Class of 1-(Substituted)-1 H -1,2,3-triazol-4-yl)methyl)diphenylphosphineoxides by Microwave Irradiation.J. Heterocycl. Chem.20155261876188210.1002/jhet.2297
    [Google Scholar]
  90. ŽukauskaitėŽ. BuinauskaitėV. SolovjovaJ. MalinauskaitėL. KveselytėA. BieliauskasA. RagaitėG. ŠačkusA. Microwave-assisted synthesis of new fluorescent indoline-based building blocks by ligand free Suzuki-Miyaura cross-coupling reaction in aqueous media.Tetrahedron201672222955296310.1016/j.tet.2016.04.010
    [Google Scholar]
  91. AksenovA.V. NadeinO.N. AksenovN.A. SkomorokhovA.A. AksenovaI.V. RubinM.A. Microwave synthesis of 2-[(E)-2-(1H-indol-3-yl)vinyl]hetarenes.Chem. Heterocycl. Compd.2015511086586810.1007/s10593‑015‑1788‑0
    [Google Scholar]
  92. VaughtJ.L. CarsonJ.R. CarmosinR.J. BlumP.S. PersicoF.J. HagemanW.E. ShankR.P. RaffaR.B. Antinociceptive action of McN-5195 in rodents: a structurally novel (indolizine) analgesic with a nonopioid mechanism of action.J. Pharmacol. Exp. Ther.199025511102170621
    [Google Scholar]
  93. HagishitaS. YamadaM. ShirahaseK. OkadaT. MurakamiY. ItoY. MatsuuraT. WadaM. KatoT. UenoM. ChikazawaY. YamadaK. OnoT. TeshirogiI. OhtaniM. Potent inhibitors of secretory phospholipase A2: synthesis and inhibitory activities of indolizine and indene derivatives.J. Med. Chem.199639193636365810.1021/jm960395q8809154
    [Google Scholar]
  94. JaisankarP. PalB. MannaR.K. PradhanP.K. MeddaS. BasuM.K. GiriV.S. Synthesis of antileishmanial (5R)-(-)-5-carbomethoxy-3-formyl-5,6-dihydroindolo-[2,3-a]-indolizine.ARKIVOC20042003915015710.3998/ark.5550190.0004.918
    [Google Scholar]
  95. ChandrashekharappaS. VenugopalaK.N. NayakS.K. GleiserM. R.; García, D.A.; Kumalo, H.M.; Kulkarni, R.S.; Mahomoodally, F.M.; Venugopala, R.; Mohan, M.K.; Odhav, B. One-Pot Microwave Assisted Synthesis and Structural Elucidation of Novel Ethyl 3-Substituted-7-Methylindolizine-1-Carboxylates with Larvicidal Activity against Anopheles Arabiensis. J. Mol. Struct.2018115637738410.1016/j.molstruc.2017.11.131
    [Google Scholar]
  96. PandaJ. KumarA. SahooB.M. BanikB.K. Microwave-Assisted Synthesis and Evaluation of Indole Derivatives as Potential Anthelmintic Agents.J. Indian Chem. Soc.20189512831288
    [Google Scholar]
  97. HåheimK.S. Urdal HelgelandI.T. LindbäckE. SydnesM.O. Mapping the reactivity of the quinoline ring-system – Synthesis of the tetracyclic ring-system of isocryptolepine and regioisomers.Tetrahedron201975212949295710.1016/j.tet.2019.04.026
    [Google Scholar]
  98. ParvatkarP.T. ParameswaranP.S. BandyopadhyayD. MukherjeeS. BanikB.K. Microwave-induced bismuth(III)-catalyzed synthesis of linear indoloquinolines.Tetrahedron Lett.201758302948295110.1016/j.tetlet.2017.06.040
    [Google Scholar]
  99. SahooB.M. RaoD.S. BanikB.K. SahooK.C. Microwave-Mediated Green Chemistry Approach for the Synthesis of Some Chalcone Derivatives and Evaluation of Their Anthelmintic Activity.J. Indian Chem. Soc.20189512951299
    [Google Scholar]
  100. KhanS.A. AsiriA.M. Al-GhamdiN.S.M. AsadM. ZayedM.E.M. ElrobyS.A.K. AqlanF.M. WaniM.Y. SharmaK. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies.J. Mol. Struct.20191190778510.1016/j.molstruc.2019.04.046
    [Google Scholar]
  101. Leena Gupta Archna Talwar ChauhanP.M.S. Prem M.S. Chauhan Bis and tris indole alkaloids from marine organisms: new leads for drug discovery.Curr. Med. Chem.200714161789180310.2174/09298670778105890417627517
    [Google Scholar]
  102. RahmanM.M. GrayA.I. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity.Phytochemistry200566131601160610.1016/j.phytochem.2005.05.00115955541
    [Google Scholar]
  103. ArbiserJ.L. GovindarajanB. BattleT.E. LynchR. FrankD.A. Ushio-FukaiM. PerryB.N. SternD.F. BowdenG.T. LiuA. KleinE. KolodziejskiP.J. EissaN.T. HossainC.F. NagleD.G. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar.J. Invest. Dermatol.200612661396140210.1038/sj.jid.570027616614726
    [Google Scholar]
  104. Claudio Viegas-Junior DanuelloA. da Silva BolzaniV. BarreiroE.J. FragaC.A.M. Eliezer J. Barreiro Carlos Alberto Manssour Fraga Molecular hybridization: a useful tool in the design of new drug prototypes.Curr. Med. Chem.200714171829185210.2174/09298670778105880517627520
    [Google Scholar]
  105. AddlaD. WenS.Q. GaoW.W. MaddiliS.K. ZhangL. ZhouC.H. Design, synthesis, and biological evaluation of novel carbazole aminothiazoles as potential DNA-targeting antimicrobial agents.MedChemComm20167101988199410.1039/C6MD00357E
    [Google Scholar]
  106. JasassR.S. AlshehreiF. FarghalyT.A. Microwave‐Assisted Synthesis of Antimicrobial Agents Containing Carbazole and Thiazole Moieties.J. Heterocycl. Chem.20185592099210610.1002/jhet.3253
    [Google Scholar]
  107. SundbergR.J. SmithS.Q. The IBOGA alkaloids and their role as precursors of anti-neoplastic bisindole catharanthus alkaloids.Alkaloids Chem. Biol.20025928137610.1016/S0099‑9598(02)59009‑X12561419
    [Google Scholar]
  108. Naresh YadavR. BobbalaA. BanikK Iodine-catalyzed microwave-induced multicomponent aza-diels alder [4+2] cycloaddition reaction: a versatile approach towards bicyclo-[2,2,2]-octanones.Mod Chem Appl.20186
    [Google Scholar]
  109. ShibinskayaM.O. LyakhovS.A. MazepaA.V. AndronatiS.A. TurovA.V. ZholobakN.M. SpivakN.Y. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo[2,3-b]quinoxalines.Eur. J. Med. Chem.20104531237124310.1016/j.ejmech.2009.12.01420056519
    [Google Scholar]
  110. HarmenbergJ. WahrenB. BergmanJ. AkerfeldtS. LundbladL. Antiherpesvirus activity and mechanism of action of indolo-(2,3-b)quinoxaline and analogs.Antimicrob. Agents Chemother.198832111720172410.1128/AAC.32.11.17202855298
    [Google Scholar]
  111. WilhelmssonL.M. KingiN. BergmanJ. Interactions of antiviral indolo[2,3-b]quinoxaline derivatives with DNA.J. Med. Chem.200851247744775010.1021/jm800787b19053744
    [Google Scholar]
  112. AvulaS. KomsaniJ.R. KoppireddiS. YadlaR. Microwave-assisted Synthesis of 6-(5-Aryl-1,3,4-oxadiazol-2-yl)methyl-6 H -indolo[2,3- b ]quinoxalines.J. Heterocycl. Chem.20155261737174210.1002/jhet.2272
    [Google Scholar]
  113. JiaoY. ChoC.S. Microwave‐assisted copper powder‐catalyzed coupling and cyclization of β‐bromo‐α,β‐unsaturated amides with amidine hydrochlorides leading to pyrimidinones.Appl. Organomet. Chem.201529637237510.1002/aoc.3301
    [Google Scholar]
  114. KułagaD. JaśkowskaJ. JasińskiR. Microwave‐assisted solvent‐free synthesis of ipsapirone.J. Heterocycl. Chem.20195651498150410.1002/jhet.3520
    [Google Scholar]
  115. KędziaA. KudelkoA. ŚwiątkowskiM. KruszyńskiR. Microwave-promoted synthesis of highly luminescent s-tetrazine-1,3,4-oxadiazole and s-tetrazine-1,3,4-thiadiazole hybrids.Dyes Pigments202017210786510.1016/j.dyepig.2019.107865
    [Google Scholar]
  116. KhaldounK. SaferA. BoukabchaN. DegeN. RuchaudS. SouabM. BachS. ChouaihA. Saidi-BesbesS. Synthesis and evaluation of new isatin-aminorhodanine hybrids as PIM1 and CLK1 kinase inhibitors.J. Mol. Struct.20191192829010.1016/j.molstruc.2019.04.122
    [Google Scholar]
  117. ŁukasikN. LubochE. ChojnackiJ. Wagner-WysieckaE. 1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties.J. Mol. Struct.2017114671372210.1016/j.molstruc.2017.06.057
    [Google Scholar]
  118. DongamantiA. DevulapallyM.G. AamateV.K. GunduS. Microwave-assisted synthesis and antimicrobial evaluation of novel pyrazolines.Chem. Heterocycl. Compd.2015511087288210.1007/s10593‑015‑1790‑6
    [Google Scholar]
  119. KalenaG.P. JainA. BanerjiA. Amberlyst 15 Catalyzed Prenylation of Phenols: One-Step Synthesis of Benzopyrans.Molecules19972710010510.3390/20700100
    [Google Scholar]
  120. Revol-JunellesA.M. MathisR. KrierF. FleuryY. DelfourA. LeebvreG. Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins.Lett. Appl. Microbiol.199623212012410.1111/j.1472‑765X.1996.tb00045.x8987453
    [Google Scholar]
  121. ZayedM.E.M. KumarP. KhanS.A. Microwave assisted synthesis, spectroscopic and photophysical properties of novel pyrazol-3-one containing push -pull chromophore.J. Mol. Struct.2020120212710310.1016/j.molstruc.2019.127103
    [Google Scholar]
  122. ThangarajM. RanjanB. MuthusamyR. MurugesanA. GenganR.M. Microwave Synthesis of Fused Pyrans by Humic Acid Supported Ionic Liquid Catalyst and Their Antimicrobial, Antioxidant, Toxicity Assessment, and Molecular Docking Studies.J. Heterocycl. Chem.201956386788510.1002/jhet.3465
    [Google Scholar]
  123. UlusR. Yeşildağİ. ElmastaşM. KayaM. Rapid synthesis of novel 1,8-dioxoacridine carboxylic acid derivatives by microwave irradiation and their free radical scavenging activity.Med. Chem. Res.201524103752375910.1007/s00044‑015‑1417‑6
    [Google Scholar]
  124. AntoniniI. PolucciP. KellandL.R. MentaE. PescalliN. MartelliS. 2,3-Dihydro-1H,7H-pyrimido[5,6,1-de]acridine-1,3,7-trione derivatives, a class of cytotoxic agents active on multidrug-resistant cell lines: synthesis, biological evaluation, and structure-activity relationships.J. Med. Chem.199942142535254110.1021/jm980558610411474
    [Google Scholar]
  125. Yeşildağİ. UlusR. BaşarE. AslanM. KayaM. BülbülM. Facile, highly efficient, and clean one-pot synthesis of acridine sulfonamide derivatives at room temperature and their inhibition of human carbonic anhydrase isoenzymes.Monatsh. Chem.201414561027103410.1007/s00706‑013‑1145‑x
    [Google Scholar]
  126. KayaM. YıldırırY. TürkerL. Synthesis and laser activity of halo‐acridinedione derivatives.J. Heterocycl. Chem.200946229429710.1002/jhet.45
    [Google Scholar]
  127. UlusR. AdayB. TançM. SupuranC.T. KayaM. Microwave assisted synthesis of novel acridine–acetazolamide conjugates and investigation of their inhibition effects on human carbonic anhydrase isoforms hCA I, II, IV and VII.Bioorg. Med. Chem.201624163548355510.1016/j.bmc.2016.05.06427298005
    [Google Scholar]
  128. KeF. LiuC. ZhangP. XuJ. ChenX. Efficient and selective microwave-assisted copper-catalyzed synthesis of quinazolinone derivatives in aqueous.Synth. Commun.201848243089309810.1080/00397911.2018.1533974
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266315936240807101931
Loading
/content/journals/ctmc/10.2174/0115680266315936240807101931
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bioactive; Microwave; N-heterocycles; Organic compounds; Steroidal derivatives; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test