Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Humic acid (HA) is a bioproduct that can be extracted from different sources and has anti-inflammatory properties that have been little explored in the treatment and prevention of Periodontal Disease (PD). Thus, we aimed to investigate the effects of oral administration of HA on the progression of PD in rats.

Methods

Twenty-four male Wistar rats were distributed into three experimental groups (Control/Sham, PD, and PD + HA). HA was administered by gavage (80 mg/kg/day) for 28 days, and PD was induced 14 days after the beginning of treatment. Bone loss, bone topography, and surface elemental composition were analyzed. Circulating IL1-beta, TNF-alpha, and IL-10 levels were evaluated through Enzyme-Linked Immunosorbent Assay (ELISA).

Results

The animals treated with HA showed lower bone loss ( < 0.05). Calcium and phosphorus levels on the alveolar bone surface were lower in the PD group ( < 0.05) compared to the control group, whereas the animals treated with HA exhibited attenuation in this loss ( < 0.05). The animals treated with HA showed reduced TNF-alpha, IL1-beta, IL-10, and the TNF-alpha/IL-10 ratio compared to those with PD ( < 0.05).

Conclusion

Treatment with HA attenuated the parameters of alveolar bone loss and modulated systemic inflammatory parameters in rats with ligature-induced PD.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266302476240510115556
2024-05-20
2025-06-19
Loading full text...

Full text loading...

References

  1. AlawajiY.N. AlshammariA. MostafaN. CarvalhoR.M. AleksejunieneJ. Periodontal disease prevalence, extent, and risk associations in untreated individuals.Clin. Exp. Dent. Res.20228138039410.1002/cre2.52635015383
    [Google Scholar]
  2. AlmohamadM. Krall KayeE. MoflehD. SpartanoN.L. The association of sedentary behaviour and physical activity with periodontal disease in NHANES 2011–2012.J. Clin. Periodontol.202249875876710.1111/jcpe.1366935634657
    [Google Scholar]
  3. BouzianeA. HamdounR. AbouqalR. EnnibiO. Global prevalence of aggressive periodontitis: A systematic review and meta-analysis.J. Clin. Periodontol.202047440642810.1111/jcpe.1326632011029
    [Google Scholar]
  4. HajishengallisG. ChavakisT. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol.202121742644010.1038/s41577‑020‑00488‑633510490
    [Google Scholar]
  5. CecoroG. AnnunziataM. IuorioM.T. NastriL. GuidaL. Periodontitis, low-grade inflammation and systemic health: A scoping review.Medicina202056627210.3390/medicina5606027232486269
    [Google Scholar]
  6. PinkC. HoltfreterB. VölzkeH. NauckM. DörrM. KocherT. Periodontitis and systemic inflammation as independent and interacting risk factors for mortality: Evidence from a prospective cohort study.BMC Med.202321143010.1186/s12916‑023‑03139‑437953258
    [Google Scholar]
  7. CimõesR. PinhoR.C.M. GurgelB.C.V. BorgesS.B. JúniorM.E. MarcantonioC.C. MeloM.A.R.C. PiattelliA. ShibliJ.A. Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation.Braz. Oral Res.202135S2e10110.1590/1807‑3107bor‑2021.vol35.010134586215
    [Google Scholar]
  8. KwonT. LamsterI.B. LevinL. Current Concepts in the Management of Periodontitis.Int. Dent. J.202171646247610.1111/idj.1263034839889
    [Google Scholar]
  9. GrazianiF. MusicL. BozicD. TsakosG. Is periodontitis and its treatment capable of changing the quality of life of a patient?Br. Dent. J.2019227762162510.1038/s41415‑019‑0735‑331605074
    [Google Scholar]
  10. NazirM. Al-AnsariA. Al-KhalifaK. AlharekyM. GaffarB. AlmasK. Global Prevalence of Periodontal Disease and Lack of Its Surveillance.ScientificWorldJournal202020201810.1155/2020/214616032549797
    [Google Scholar]
  11. RichardsD. Review finds that severe periodontitis affects 11% of the world population.Evid. Based Dent.2014153707110.1038/sj.ebd.640103725343387
    [Google Scholar]
  12. FischerR.G. Lira JuniorR. Retamal-ValdesB. FigueiredoL.C. MalheirosZ. StewartB. FeresM. Periodontal disease and its impact on general health in Latin America. Section V: Treatment of periodontitis.Braz. Oral Res.202034Suppl. 1e02610.1590/1807‑3107bor‑2020.vol34.002632294679
    [Google Scholar]
  13. GrazianiF. KarapetsaD. AlonsoB. HerreraD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?Periodontol. 2000201775115218810.1111/prd.1220128758300
    [Google Scholar]
  14. AralK. AralC.A. KapilaY. Six-month clinical outcomes of non-surgical periodontal treatment with antibiotics on apoptosis markers in aggressive periodontitis.Oral Dis.201925383984710.1111/odi.1303230614174
    [Google Scholar]
  15. WennströmJ.L. NewmanH. N. MacNeillS. R. KilloyW. J. GriffithsG. S. GillamD. G. KrokL. NeedlemanI. G. WeissG. GarrettS. Utilisation of locally delivered doxycycline in non-surgical treatment of chronic periodontitis.J Clin Periodontol200128875376110.1034/j.1600‑051X.2001.280806.x
    [Google Scholar]
  16. de O SilvaV. LobatoR.V. AndradeE.F. OrlandoD.R. BorgesB.D.B. ZangeronimoM.G. de SousaR.V. PereiraL.J. Effects of β-glucans ingestion on alveolar bone loss, intestinal morphology, systemic inflammatory profile, and pancreatic β-cell function in rats with periodontitis and diabetes.Nutrients20179911310.3390/nu909101628906456
    [Google Scholar]
  17. Milovanova-PalmerJ. PendryB. Is there a role for herbal medicine in the treatment and management of periodontal disease?J. Herb. Med.2018129334810.1016/j.hermed.2018.02.004
    [Google Scholar]
  18. ZhangY. DingY. GuoQ. Probiotic species in the management of periodontal diseases: An overview.Front. Cell. Infect. Microbiol.202212March80646310.3389/fcimb.2022.80646335402306
    [Google Scholar]
  19. VerrilloM. ParisiM. SavyD. CaiazzoG. Di CaprioR. LucianoM.A. CacciapuotiS. FabbrociniG. PiccoloA. Antiflammatory activity and potential dermatological applications of characterized humic acids from a lignite and a green compost.Sci. Rep.2022121215210.1038/s41598‑022‑06251‑235140310
    [Google Scholar]
  20. HaasA.N. FurlanetoF. GaioE.J. GomesS.C. PaliotoD.B. CastilhoR.M. SanzM. MessoraM.R. New tendencies in non-surgical periodontal therapy.Braz. Oral Res.202135S2e09510.1590/1807‑3107bor‑2021.vol35.009534586209
    [Google Scholar]
  21. BarzegarP.E.F. RanjbarR. YazdanianM. TahmasebiE. AlamM. AbbasiK. TebyaniyanH. BarzegarE.F.K. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regeneration: A narrative review.Mater. Today Commun.202232August10409910.1016/j.mtcomm.2022.104099
    [Google Scholar]
  22. ÇalışırM. AkpınarA. PoyrazÖ. GözeF. ÇınarZ. The histopathological and morphometric investigation of the effects of systemically administered humic acid on alveolar bone loss in ligature-induced periodontitis in rats.J. Periodontal Res.201651449950710.1111/jre.1232926547279
    [Google Scholar]
  23. de MeloB.A.G. MottaF.L. SantanaM.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments.Mater. Sci. Eng. C201662496797410.1016/j.msec.2015.12.00126952503
    [Google Scholar]
  24. van RensburgC.E.J. The antiinflammatory properties of humic substances: A mini review.Phytother. Res.201529679179510.1002/ptr.531925732236
    [Google Scholar]
  25. VaškováJ. StupákM. Vidová UgurbaşM. ŽatkoD. VaškoL. Therapeutic efficiency of humic acids in intoxications.Life202313497110.3390/life1304097137109500
    [Google Scholar]
  26. WangX. TianP. MuhmoodA. LiuJ. SuY. ZhangQ. ZhengY. DongR. Investigating the evolution of structural characteristics of humic acid generated during the continuous anaerobic digestion and its potential for chromium adsorption and reduction.Fermentation20228732210.3390/fermentation8070322
    [Google Scholar]
  27. ShaoY. BaoM. HuoW. YeR. AjmalM. LuW. From biomass to humic acid: Is there an accelerated way to go?Chem. Eng. J.2023452January13917210.1016/j.cej.2022.139172
    [Google Scholar]
  28. AguiarN.O. OlivaresF.L. NovotnyE.H. DobbssL.B. BalmoriD.M. Santos-JúniorL.G. ChagasJ.G. FaçanhaA.R. CanellasL.P. Bioactivity of humic acids isolated from vermicomposts at different maturation stages.Plant Soil20133621-216117410.1007/s11104‑012‑1277‑5
    [Google Scholar]
  29. ArifM. AlagawanyM. Abd El-HackM. E. SaeedM. ArainM. A. ElnesrS. S. Humic acid as a feed additive in poultry diets: A review.Iran. J. Veter. Res.2019203167
    [Google Scholar]
  30. AristimunhaP.C. MallheirosR.D. FerketP.R. CardinalK.M. FilhoA.L.B.M. SantosE.T. CavalcanteD.T. RibeiroA.M.L. Effect of dietary organic acids and humic substance supplementation on performance, immune response and gut morphology of broiler chickens.J. Appl. Poult. Res.2020291859410.3382/japr/pfz031
    [Google Scholar]
  31. JingJ. ZhangS. YuanL. LiY. LinZ. XiongQ. ZhaoB. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings.Sci. Rep.20201011750210.1038/s41598‑020‑74349‑633060730
    [Google Scholar]
  32. RasouliF. NasiriY. AsadiM. HassanpouraghdamM.B. GolestanehS. PirsarandibY. Fertilizer type and humic acid improve the growth responses, nutrient uptake, and essential oil content on Coriandrum sativum L.Sci. Rep.2022121743710.1038/s41598‑022‑11555‑435523852
    [Google Scholar]
  33. OzkanA. SenH.M. SehitogluI. AlacamH. GuvenM. ArasA.B. AkmanT. SilanC. CosarM. KaramanH.I.O. Neuroprotective effect of humic Acid on focal cerebral ischemia injury: An experimental study in rats.Inflammation2015381323910.1007/s10753‑014‑0005‑025173888
    [Google Scholar]
  34. VetvickaV. GarciaMinaJ. YvinJ. Prophylactic effects of humic acid and #8211; glucan combination against experimental liver injury.J. Intercult. Ethnopharmacol.20154324925510.5455/jice.2015051910311326401416
    [Google Scholar]
  35. SocolD.C. Clinical review of humic acid as an antiviral: Leadup to translational applications in clinical humeomics.Front. Pharmacol.202313101890410.3389/fphar.2022.101890436712657
    [Google Scholar]
  36. KrempaskáK. VaŠkoL. VaŠkováJ. Humic acids as therapeutic compounds in lead intoxication.Curr. Clin. Pharmacol.201611315916710.2174/157488471166616081323322527526696
    [Google Scholar]
  37. VaškováJ. VelikáB. PilátováM. KronI. VaškoL. Effects of humic acids in vitro. in vitro Cell. Dev. Biol. Anim.2011475-637638210.1007/s11626‑011‑9405‑821487922
    [Google Scholar]
  38. ŞehitoğluM.H. ÖztopuzÖ. Karaboğaİ. OvalıM.A. UzunM. Humic acid has protective effect on gastric ulcer by alleviating inflammation in rats.Cytol. Genet.2022561849710.3103/S0095452722010091
    [Google Scholar]
  39. VetvickaV. BaigorriR. ZamarreñoA.M. MinaG.J.M. YvinJ.C. Glucan and humic acid: Synergistic effects on the immune system.J. Med. Food201013486386910.1089/jmf.2009.017820553181
    [Google Scholar]
  40. VerrilloM. CuomoP. MontoneA.M.I. SavyD. SpacciniR. CapparelliR. PiccoloA. Humic substances from composted fennel residues control the inflammation induced by Helicobacter pylori infection in AGS cells.PLoS One2023183e028163110.1371/journal.pone.028163136893132
    [Google Scholar]
  41. ÇalışırM. AkpınarA. PoyrazÖ. GözeF. ÇınarZ. Humic acid, a polyphenolic substance, decreases alveolar bone loss in experimental periodontitis in rats.J. Vet. Dent.201936425726510.1177/089875642091053132207389
    [Google Scholar]
  42. SchnitzerM. GuptaU.C. Determination of acidity in soil organic matter.Soil Sci. Soc. Am. J.196529327427710.2136/sssaj1965.03615995002900030016x
    [Google Scholar]
  43. MiloriD.M.B.P. Martin-NetoL. BayerC. MielniczukJ. BagnatoV.S. Humification degree of soil humic acids determined by fluerescence spectroscopy.Soil Sci.20021671173974910.1097/00010694‑200211000‑00004
    [Google Scholar]
  44. AnY. ZhaoJ. XuH. AnL. WangJ. WuY. LiuQ. Effect of humic acid as a photosensitizer combined with low-energy laser on orthodontic tooth movement in rats.J. Dent. Sci.202217140741410.1016/j.jds.2021.08.00635028064
    [Google Scholar]
  45. MessoraM.R. OliveiraL.F.F. FoureauxR.C. TabaM.Jr ZangerônimoM.G. FurlanetoF.A.C. PereiraL.J. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis.J. Periodontol.201384121818182610.1902/jop.2013.12064423327675
    [Google Scholar]
  46. GusmãoJ.N.F.M. FonsecaK.M. FerreiraB.S.P. de AlvesF.B.W. Ribeiro JúniorH.L. LisboaM.R.P. PereiraK.M.A. ValeM.L. GondimD.V. Electroacupuncture reduces inflammation but not bone loss on periodontitis in arthritic rats.Inflammation202144111612810.1007/s10753‑020‑01313‑x32789781
    [Google Scholar]
  47. MartinsC.S. LeitãoR.F.C. CostaD.V.S. MeloI.M. SantosG.S. LimaV. BaldimV. WongD.V. BonfimL.E. MeloC.B. G de OliveiraM. BritoG.A. Topical HPMC/S-nitrosoglutathione solution decreases inflammation and bone resorption in experimental periodontal disease in rats.PLoS One2016114e015371610.1371/journal.pone.015371627116554
    [Google Scholar]
  48. PangZ. ZhouG. EwaldJ. ChangL. HacarizO. BasuN. XiaJ. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data.Nat. Protoc.20221781735176110.1038/s41596‑022‑00710‑w35715522
    [Google Scholar]
  49. XiaJ. WishartD.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst.Nat. Protoc.20116674376010.1038/nprot.2011.31921637195
    [Google Scholar]
  50. CanellasL.P. OlivaresF.L. FaçanhaO.A.L. FaçanhaA.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots.Plant Physiol.200213041951195710.1104/pp.00708812481077
    [Google Scholar]
  51. AraújoK.V. PittarelloM. CarlettiP. CamposA.R.M. DobbssL.B. Structural characterization and bioactivity of humic and fulvic acids extracted from preserved and degraded brazilian cerrado biomes soils.Eurasian Soil Sci.202154S1S16S2510.1134/S1064229322030024
    [Google Scholar]
  52. BarrosoA.L.P. PittarelloM. NetoA.C. BusatoJ.G. SantosJ.L.A. DobbssL.B. Humic acids from vermicompost and Eucalyptus urograndis essential oil: Biological activity on Stylosanthes guianensis (Leguminosae) seedlings.J. Essent. Oil-Bear. Plants20192251322133210.1080/0972060X.2019.1684385
    [Google Scholar]
  53. CanellasL.P. DobbssL.B. OliveiraA.L. ChagasJ.G. AguiarN.O. RumjanekV.M. NovotnyE.H. OlivaresF.L. SpacciniR. PiccoloA. Chemical properties of humic matter as related to induction of plant lateral roots.Eur. J. Soil Sci.201263331532410.1111/j.1365‑2389.2012.01439.x
    [Google Scholar]
  54. DobbssL.B. RumjaneckV.M. BaldottoM.A. AryC.X.V. CanellasL.P. Chemical and spectroscopic characterization of humic and fulvic acids isolated from the surface layer of Brazilian Oxisols. Rev. Bras. Ciênc. Solo2009331516310.1590/S0100‑06832009000100006
    [Google Scholar]
  55. GholamiH. SaharkhizM.J. Raouf FardF. GhaniA. NadafF. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory ( Cichorium intybus L.).Biocatal. Agric. Biotechnol.201814April28629210.1016/j.bcab.2018.03.021
    [Google Scholar]
  56. DobbssL.B. CanellasP.L. OlivaresL.F. AguiarO.N. PeresL.E.P. AzevedoM. SpacciniR. PiccoloA. FaçanhaA.R. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.J. Agric. Food Chem.20105863681368810.1021/jf904385c20232906
    [Google Scholar]
  57. Kamar ZamanA.M. YaacobJ.S. YaacobJ.S. Exploring the potential of vermicompost as a sustainable strategy in circular economy: Improving plants’ bioactive properties and boosting agricultural yield and quality.Environ. Sci. Pollut. Res. Int.2022299129481296410.1007/s11356‑021‑18006‑z35034296
    [Google Scholar]
  58. ShaA.M. GaribB.T. AzeezS.H. GulS.S. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats.J. Dent. Sci.202116390591410.1016/j.jds.2020.09.01534141104
    [Google Scholar]
  59. AzziD.V. de PereiraJ.A.N. de SilvaO.V. de FoureauxC.R. LimaA.R.V. BarducciR.S. AlbuquerqueA.S. ReisG.L. de OliveiraR.R. AndradeE.F. ZangeronimoM.G. Chalfun-JúniorA. PereiraL.J. Dose-response effect of prebiotic ingestion (β-glucans isolated from Saccharomyces cerevisiae) in diabetic rats with periodontal disease.Diabetol. Metab. Syndr.202113111110.1186/s13098‑021‑00729‑134663444
    [Google Scholar]
  60. RybalkaM.A. StepchenkoL.M. ShuleshkoO.O. ZhorinaL.V. The impact of humic acid additives on mineral metabolism of rabbits in the postnatal period of ontogenesis.Regul. Mech. Biosyst.202011228929310.15421/022043
    [Google Scholar]
  61. TrckovaM. LorencovaA. BabakV. NecaJ. CiganekM. The effect of leonardite and lignite on the health of weaned piglets.Res. Vet. Sci.2018119August13414210.1016/j.rvsc.2018.06.00429929065
    [Google Scholar]
  62. ZralýZ. PísaříkováB. Effect of sodium humate on the content of trace elements in organs of weaned piglets.Acta Vet. Brno2010791737910.2754/avb201079010073
    [Google Scholar]
  63. SpencerH. FullerH. NorrisC. WilliamsD. Effect of magnesium on the intestinal absorption of calcium in man.J. Am. Coll. Nutr.199413548549210.1080/07315724.1994.107184397836628
    [Google Scholar]
  64. MudroňováD. KaraffováV. SemjonB. NaďP. KoščováJ. BartkovskýM. MakišA. BujňákL. NagyJ. MojžišováJ. MarcinčákS. Effects of dietary supplementation of humic substances on production parameters, immune status and gut microbiota of laying hens.Agriculture202111874410.3390/agriculture11080744
    [Google Scholar]
  65. RiedeU.N. Zeck-KappG. FreudenbergN. KellerH.U. SeubertB. Humate-induced activation of human granulocytes.Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.1991601273410.1007/BF028995241673274
    [Google Scholar]
  66. ŞengülM. BostancıV. The effect of humic acid on bone regeneration in rats.Cumhuriy. Dent. J.202124436137010.7126/cumudj.999234
    [Google Scholar]
  67. ÇalışırM. AkpınarA. TalmaçA.C. AlpanL.A. GözeÖ.F. Humic acid enhances wound healing in the rat palate.Evid. Based Complement. Alternat. Med.201820181610.1155/2018/178351330154905
    [Google Scholar]
  68. HuangH. PanW. WangY. KimH.S. ShaoD. HuangB. HoT.C. LaoY.H. QuekC.H. ShiJ. ChenQ. ShiB. ZhangS. ZhaoL. LeongK.W. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis.Nat. Commun.2022131592510.1038/s41467‑022‑33492‑636207325
    [Google Scholar]
  69. PariharA.S. JainP. VedA. DubeyR. SinghN. MaytreyeeR. Comparative evaluation of serum tumor necrosis factor α in health and chronic periodontitis: A case–control study.Contemp. Clin. Dent.202011434234910.4103/ccd.ccd_97_1833850400
    [Google Scholar]
  70. ZhangQ. ChenB. YanF. GuoJ. ZhuX. MaS. YangW. Interleukin-10 inhibits bone resorption: A potential therapeutic strategy in periodontitis and other bone loss diseases.BioMed Res. Int.201420141510.1155/2014/28483624696846
    [Google Scholar]
  71. TrofimovaE.S. ZykovaM.V. DaniletsM.G. LigachevaA.A. SherstoboevE.Y. TsupkoA.V. MikhalyovD.A. BelousovM.V. Immunomodulating properties of humic acids extracted from oligotrophic sphagnum magellanicum peat.Bull. Exp. Biol. Med.2021170446146510.1007/s10517‑021‑05088‑533713226
    [Google Scholar]
  72. AndradeE. SilvaV. MouraN. FoureauxR. OrlandoD. MouraR. PereiraL. Physical exercise improves glycemic and inflammatory profile and attenuates progression of periodontitis in diabetic rats (HFD/STZ).Nutrients20181011170210.3390/nu1011170230405072
    [Google Scholar]
  73. PurnamasariD. KhumaediA.I. SoerosoY. MarhamahS. The influence of diabetes and or periodontitis on inflammation and adiponectin level.Diabetes Metab. Syndr.20191332176218210.1016/j.dsx.2019.05.01231235154
    [Google Scholar]
  74. MurbachT.S. GlávitsR. EndresJ.R. ClewellA.E. HirkaG. VértesiA. BéresE. SzakonyinéP.I. A toxicological evaluation of a fulvic and humic acids preparation.Toxicol. Rep.20207January1242125410.1016/j.toxrep.2020.08.03032995299
    [Google Scholar]
  75. HricikováS. KožárováI. HudákováN. ReitznerováA. NagyJ. MarcinčákS. Humic substances as a versatile intermediary.Life202313485810.3390/life1304085837109387
    [Google Scholar]
  76. VelmuruganC. VivekB. WilsonE. BharathiT. SundaramT. Evaluation of safety profile of black shilajit after 91 days repeated administration in rats.Asian Pac. J. Trop. Biomed.20122321021410.1016/S2221‑1691(12)60043‑423569899
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266302476240510115556
Loading
/content/journals/ctmc/10.2174/0115680266302476240510115556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test