Skip to content
2000
image of Exploring the Cardiovascular Protective Effects of Baicalin: A Pathway to New Therapeutic Insights

Abstract

Cardiovascular disorders develop the highest rates of mortality and morbidity worldwide, emphasizing the need for novel pharmacotherapies. The Chinese medicinal plant S. baicalensis has a number of major active components, one of which is called baicalin. According to emerging research, baicalin reduces chronic inflammation, immunological imbalance, lipid metabolism, apoptosis, and oxidative stress. Baicalin improves endothelial function and protects the cardiovascular system from oxidative stress-induced cell injury by scavenging free radicals and inhibiting xanthine oxidase. Therefore, it helps prevent CVD such as hypertension, atherosclerosis, and cardiac arrest. In this review, the therapeutic effects of baicalein are discussed in relation to both the prevention and management of cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347503241008075106
2024-10-14
2024-11-21
Loading full text...

Full text loading...

References

  1. Cardiovascular diseae remains leading cause of death globally: Study. Available from: https://timesofindia.indiatimes.com/home/science/cardiovascular-disease-remains-leading-cause-of-death-globally-study/articleshow/105911934.cms(accessed on 2-10-2024)
  2. Verma S. Strauss M. Angiotensin receptor blockers and myocardial infarction. BMJ 2004 329 7477 1248 1249 10.1136/bmj.329.7477.1248 15564232
    [Google Scholar]
  3. Rossini E. Biscetti F. Rando M.M. Nardella E. Cecchini A.L. Nicolazzi M.A. Covino M. Gasbarrini A. Massetti M. Flex A. Statins in high cardiovascular risk patients: do comorbidities and characteristics matter? Int. J. Mol. Sci. 2022 23 16 9326 10.3390/ijms23169326 36012589
    [Google Scholar]
  4. Shaito A. Thuan D.T.B. Phu H.T. Nguyen T.H.D. Hasan H. Halabi S. Abdelhady S. Nasrallah G.K. Eid A.H. Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front. Pharmacol. 2020 11 422 10.3389/fphar.2020.00422 32317975
    [Google Scholar]
  5. Otręba M. Kośmider L. Stojko J. Rzepecka-Stojko A. Cardioprotective activity of selected polyphenols based on epithelial and aortic cell lines. A review. Molecules 2020 25 22 5343 10.3390/molecules25225343 33207683
    [Google Scholar]
  6. Tan Y.Q. Lin F. Ding Y.K. Dai S. Liang Y.X. Zhang Y.S. Li J. Chen H.W. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine 2022 107 154458 10.1016/j.phymed.2022.154458 36152591
    [Google Scholar]
  7. Wang X. Xie L. Long J. Liu K. Lu J. Liang Y. Cao Y. Dai X. Li X. Therapeutic effect of baicalin on inflammatory bowel disease: A review. J. Ethnopharmacol. 2022 283 114749 10.1016/j.jep.2021.114749 34666140
    [Google Scholar]
  8. Nik Salleh N.N.H. Othman F.A. Kamarudin N.A. Tan S.C. The biological activities and therapeutic potentials of baicalein extracted from Oroxylum indicum: A systematic review. Molecules 2020 25 23 5677 10.3390/molecules25235677 33276419
    [Google Scholar]
  9. He C. Liu X. Sun J. Inhibitory mechanism of baicalein against α-glucosidase. Nat. Prod. Commun. 2019 14 6 1934578X19855825 10.1177/1934578X19855825
    [Google Scholar]
  10. Pang H. Wu T. Peng Z. Tan Q. Peng X. Zhan Z. Song L. Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J. Bone Oncol. 2023 33 100415
    [Google Scholar]
  11. Wen Y. Wang Y. Zhao C. The pharmacological efficacy of baicalin in inflammatory diseases. Int. J. Mol. Sci. 2023 24 11 9317 37298268
    [Google Scholar]
  12. Taiming L. Xuehua J. Investigation of the absorption mechanisms of baicalin and baicalein in rats. J. Pharm. Sci. 2006 95 6 1326 1333 10.1002/jps.20593 16628739
    [Google Scholar]
  13. Xin L. Gao J. Lin H. Qu Y. Shang C. Wang Y. Lu Y. Cui X. Regulatory mechanisms of baicalin in cardiovascular diseases: a review. Front. Pharmacol. 2020 11 583200 10.3389/fphar.2020.583200 33224035
    [Google Scholar]
  14. Huang T. Liu Y. Zhang C. Pharmacokinetics and bioavailability enhancement of baicalin: a review. Eur. J. Drug Metab. Pharmacokinet. 2019 44 2 159 168 10.1007/s13318‑018‑0509‑3 30209794
    [Google Scholar]
  15. Tang Y. Zhu H. Zhang Y. Huang C. Determination of human plasma protein binding of baicalin by ultrafiltration and high‐performance liquid chromatography. Biomed. Chromatogr. 2006 20 10 1116 1119 10.1002/bmc.655 16708379
    [Google Scholar]
  16. Wei Y. Pi C. Yang G. Xiong X. Lan Y. Yang H. Zhou Y. Ye Y. Zou Y. Zheng W. Zhao L. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations. Molecules 2016 21 4 444 10.3390/molecules21040444 27104507
    [Google Scholar]
  17. Abe K. Inoue O. Yumioka E. Biliary excretion of metabolites of baicalin, and baicalein in rats. Chem. Pharm. Bull. (Tokyo) 1990 38 1 208 211 10.1248/cpb.38.208 2337942
    [Google Scholar]
  18. Mei Z. Du L. Liu X. Chen X. Tian H. Deng Y. Zhang W. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct. 2022 13 1 198 212 10.1039/D1FO02579A 34881386
    [Google Scholar]
  19. Huo X.K. Wang B. Zheng L. Cong H.J. Xiang T. Wang S. Sun C. Wang C. Zhang L. Deng S. Wu B. Ma X.C. Comparative pharmacokinetic study of baicalin and its metabolites after oral administration of baicalin and Chaiqin Qingning capsule in normal and febrile rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1059 14 20 10.1016/j.jchromb.2017.05.018 28554061
    [Google Scholar]
  20. Xing J. Chen X. Zhong D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci. 2005 78 2 140 146 10.1016/j.lfs.2005.04.072 16107266
    [Google Scholar]
  21. Xiao Y. Ye J. Zhou Y. Huang J. Liu X. Huang B. Zhu L. Wu B. Zhang G. Cai Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch. Biochem. Biophys. 2018 640 37 46 10.1016/j.abb.2018.01.006 29331689
    [Google Scholar]
  22. Zhang R. Cui Y. Wang Y. Tian X. Zheng L. Cong H. Wu B. Huo X. Wang C. Zhang B. Wang X. Yu Z. Catechol-O-methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species. Eur. J. Drug Metab. Pharmacokinet. 2017 42 6 981 992 10.1007/s13318‑017‑0419‑9 28536775
    [Google Scholar]
  23. Dai H. Zhang X. Yang Z. Li J. Zheng J. Effects of baicalin on blood pressure and left ventricular remodeling in rats with renovascular hypertension. Med. Sci. Monit. 2017 23 2939 2948 10.12659/MSM.902536 28622281
    [Google Scholar]
  24. Calvillo L. Gironacci M.M. Crotti L. Meroni P.L. Parati G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat. Rev. Cardiol. 2019 16 8 476 490 10.1038/s41569‑019‑0178‑1 30894678
    [Google Scholar]
  25. Ding L. Jia C. Zhang Y. Wang W. Zhu W. Chen Y. Zhang T. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats. Biomed. Pharmacother. 2019 111 325 330 10.1016/j.biopha.2018.12.086 30590320
    [Google Scholar]
  26. Wu D. Ding L. Tang X. Wang W. Chen Y. Zhang T. Baicalin protects against hypertension-associated intestinal barrier impairment in part through enhanced microbial production of short-chain fatty acids. Front. Pharmacol. 2019 10 1271 10.3389/fphar.2019.01271 31719823
    [Google Scholar]
  27. Liu Y. Xiong M. Zhou F. Shi N. Jia Y. Effect of baicalin on gestational hypertension-induced vascular endothelial cell damage. J. Int. Med. Res. 2020 48 10 10.1177/0300060520934288 33081553
    [Google Scholar]
  28. Xue X. Zhang S. Jiang W. Wang J. Xin Q. Sun C. Li K. Qi T. Luan Y. Protective effect of baicalin against pulmonary arterial hypertension vascular remodeling through regulation of TNF‐α signaling pathway. Pharmacol. Res. Perspect. 2021 9 1 e00703 10.1002/prp2.703 33421306
    [Google Scholar]
  29. Jiang H. Wang X. Wang H. Liu T. Baicalin attenuates pulmonary vascular remodeling by inhibiting calpain-1 mediated endothelial-to-mesenchymal transition. Heliyon 2023 9 12 e23076 10.1016/j.heliyon.2023.e23076 38144352
    [Google Scholar]
  30. Liu H. Cheng Y. Chu J. Wu M. Yan M. Wang D. Xie Q. Ali F. Fang Y. Wei L. Yang Y. Shen A. Peng J. Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway. Biomed. Pharmacother. 2021 143 112124 10.1016/j.biopha.2021.112124 34492423
    [Google Scholar]
  31. Yan G. Wang J. Yi T. Cheng J. Guo H. He Y. Shui X. Wu Z. Huang S. Lei W. Baicalin prevents pulmonary arterial remodeling in vivo via the AKT/ERK/NF‐κB signaling pathways. Pulm. Circ. 2019 9 4 1 10 10.1177/2045894019878599 31723406
    [Google Scholar]
  32. Cheng Y. Yan M. He S. Xie Y. Wei L. Xuan B. Shang Z. Wu M. Zheng H. Chen Y. Yuan M. Peng J. Shen A. Baicalin alleviates angiotensin II‐induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway. J. Cell. Mol. Med. 2024 28 9 e18321 10.1111/jcmm.18321 38712979
    [Google Scholar]
  33. Munjal K. Goel Y. Gauttam V.K. Chopra H. Singla M. Smriti Gupta S. Sharma R. Molecular targets and therapeutic potential of baicalein: a review. Drug Target Insights 2024 18 1 30 46 10.33393/dti.2024.2707 38873988
    [Google Scholar]
  34. Fan Z. Cai L. Wang S. Wang J. Chen B. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front. Pharmacol. 2021 12 628988 10.3389/fphar.2021.628988 33935719
    [Google Scholar]
  35. Xu M. Li X. Song L. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharm. Biol. 2020 58 1 655 663 10.1080/13880209.2020.1779318 32649845
    [Google Scholar]
  36. Liu X. Zhang S. Xu C. Sun Y. Sui S. Zhang Z. Luan Y. The protective of baicalin on myocardial ischemia-reperfusion injury. Curr. Pharm. Biotechnol. 2020 21 13 1386 1393 10.2174/1389201021666200605104540 32503406
    [Google Scholar]
  37. Wu J. Chen H. Qin J. Chen N. Lu S. Jin J. Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1‐Mediated Mitochondrial Fission after Cardiac Arrest‐Induced Myocardial Damage. Oxid. Med. Cell. Longev. 2021 2021 1 8865762 10.1155/2021/8865762 33603953
    [Google Scholar]
  38. Wang J. Zhang S. Di L. Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modified, baicalin-loaded nanoparticulate system. Drug Deliv. 2021 28 1 2198 2204 10.1080/10717544.2021.1989086 34662253
    [Google Scholar]
  39. Cai Y. Jiang S. Huang C. Shen A. Zhang X. Yang W. Xiao Y. Gao S. Du R. Zheng G. Yan T. Craig Wan C. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. Phytomedicine 2023 114 154747 10.1016/j.phymed.2023.154747 36931095
    [Google Scholar]
  40. Chen Z. Pan X. Sheng Z. Yan G. Chen L. Ma G. Baicalin suppresses the proliferation and migration of Ox-LDL-VSMCs in atherosclerosis through upregulating miR-126-5p. Biol. Pharm. Bull. 2019 42 9 1517 1523 10.1248/bpb.b19‑00196 31204352
    [Google Scholar]
  41. Lin L. Wu X. Davey A.K. Wang J. The anti‐inflammatory effect of baicalin on hypoxia/reoxygenation and TNF‐α induced injury in cultural rat cardiomyocytes. Phytother. Res. 2010 24 3 429 437 10.1002/ptr.3003 19827018
    [Google Scholar]
  42. Luan Y. Sun C. Wang J. Jiang W. Xin Q. Zhang Z. Wang Y. Baicalin attenuates myocardial ischemia‐reperfusion injury through Akt/NF‐κB pathway. J. Cell. Biochem. 2019 120 3 3212 3219 10.1002/jcb.27587 30242878
    [Google Scholar]
  43. Yu H. Chen B. Ren Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3657 3663 10.1080/21691401.2019.1657879 31478766
    [Google Scholar]
  44. Wang L. Li Y. Lin S. Pu Z. Li H. Tang Z. Protective effects of Baicalin on experimental myocardial infarction in rats. Rev. Bras. Cir. Cardiovasc. 2018 33 4 384 390 10.21470/1678‑9741‑2018‑0059 30184036
    [Google Scholar]
  45. Jiang W.B. Zhao W. Chen H. Wu Y.Y. Wang Y. Fu G.S. Yang X.J. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation‐induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clin. Exp. Pharmacol. Physiol. 2018 45 3 303 311 10.1111/1440‑1681.12876 29047162
    [Google Scholar]
  46. Wencker D. Chandra M. Nguyen K. Miao W. Garantziotis S. Factor S.M. Shirani J. Armstrong R.C. Kitsis R.N. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest. 2003 111 10 1497 1504 10.1172/JCI17664 12750399
    [Google Scholar]
  47. Fujiwara T. Takeda N. Hara H. Ishii S. Numata G. Tokiwa H. Katoh M. Maemura S. Suzuki T. Takiguchi H. Yanase T. Kubota Y. Nomura S. Hatano M. Ueda K. Harada M. Toko H. Takimoto E. Akazawa H. Morita H. Nishimura S. Komuro I. PGC-1α–mediated angiogenesis prevents pulmonary hypertension in mice. JCI Insight 2023 8 17 e162632 10.1172/jci.insight.162632 37681410
    [Google Scholar]
  48. Feng P. Yang Y. Liu N. Wang S. Baicalin regulates TLR4/IκBα/NFκB signaling pathway to alleviate inflammation in Doxorubicin related cardiotoxicity. Biochem. Biophys. Res. Commun. 2022 637 1 8 10.1016/j.bbrc.2022.10.061 36375245
    [Google Scholar]
  49. Zeng Y. Liao X. Guo Y. Liu F. Bu F. Zhan J. Zhang J. Cai Y. Shen M. Baicalin-peptide supramolecular self-assembled nanofibers effectively inhibit ferroptosis and attenuate doxorubicin-induced cardiotoxicity. J. Control. Release 2024 366 838 848 10.1016/j.jconrel.2023.12.034 38145663
    [Google Scholar]
  50. Sun X. Wang X. He Q. Zhang M. Chu L. Zhao Y. Wu Y. Zhang J. Han X. Chu X. Wu Z. Guan S. Investigation of the ameliorative effects of baicalin against arsenic trioxide-induced cardiac toxicity in mice. Int. Immunopharmacol. 2021 99 108024 10.1016/j.intimp.2021.108024 34333357
    [Google Scholar]
  51. El-Ela S.R.A. Zaghloul R.A. Eissa L.A. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β-catenin pathways. Nutrition 2022 102 111732 10.1016/j.nut.2022.111732 35816809
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347503241008075106
Loading
/content/journals/ctmc/10.2174/0115680266347503241008075106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test