Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cardiovascular disorders develop the highest rates of mortality and morbidity worldwide, emphasizing the need for novel pharmacotherapies. The Chinese medicinal plant S. baicalensis has a number of major active components, one of which is called baicalin. According to emerging research, baicalin reduces chronic inflammation, immunological imbalance, lipid metabolism, apoptosis, and oxidative stress. Baicalin improves endothelial function and protects the cardiovascular system from oxidative stress-induced cell injury by scavenging free radicals and inhibiting xanthine oxidase. Therefore, it helps prevent CVD such as hypertension, atherosclerosis, and cardiac arrest. In this review, the therapeutic effects of baicalein are discussed in relation to both the prevention and management of cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347503241008075106
2024-10-10
2025-04-12
Loading full text...

Full text loading...

References

  1. Cardiovascular diseae remains leading cause of death globally: Study.Available from: https://timesofindia.indiatimes.com/home/science/cardiovascular-disease-remains-leading-cause-of-death- globally-study/articleshow/105911934.cms(accessed on 2-10-2024)
  2. VermaS. StraussM. Angiotensin receptor blockers and myocardial infarction.BMJ200432974771248124910.1136/bmj.329.7477.124815564232
    [Google Scholar]
  3. RossiniE. BiscettiF. RandoM.M. NardellaE. CecchiniA.L. NicolazziM.A. CovinoM. GasbarriniA. MassettiM. FlexA. Statins in high cardiovascular risk patients: do comorbidities and characteristics matter?Int. J. Mol. Sci.20222316932610.3390/ijms2316932636012589
    [Google Scholar]
  4. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  5. OtrębaM. KośmiderL. StojkoJ. Rzepecka-StojkoA. Cardioprotective activity of selected polyphenols based on epithelial and aortic cell lines. A review.Molecules20202522534310.3390/molecules2522534333207683
    [Google Scholar]
  6. TanY.Q. LinF. DingY.K. DaiS. LiangY.X. ZhangY.S. LiJ. ChenH.W. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases.Phytomedicine202210715445810.1016/j.phymed.2022.15445836152591
    [Google Scholar]
  7. WangX. XieL. LongJ. LiuK. LuJ. LiangY. CaoY. DaiX. LiX. Therapeutic effect of baicalin on inflammatory bowel disease: A review.J. Ethnopharmacol.202228311474910.1016/j.jep.2021.11474934666140
    [Google Scholar]
  8. Nik SallehN.N.H. OthmanF.A. KamarudinN.A. TanS.C. The biological activities and therapeutic potentials of baicalein extracted from Oroxylum indicum: A systematic review.Molecules20202523567710.3390/molecules2523567733276419
    [Google Scholar]
  9. HeC. LiuX. SunJ. Inhibitory mechanism of baicalein against α-glucosidase.Nat. Prod. Commun.20191461934578X1985582510.1177/1934578X19855825
    [Google Scholar]
  10. PangH. WuT. PengZ. TanQ. PengX. ZhanZ. SongL. WeiB. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways.J. Bone Oncol.202333100415
    [Google Scholar]
  11. WenY. WangY. ZhaoC. The pharmacological efficacy of baicalin in inflammatory diseases.Int. J. Mol. Sci.20232411931737298268
    [Google Scholar]
  12. TaimingL. XuehuaJ. Investigation of the absorption mechanisms of baicalin and baicalein in rats.J. Pharm. Sci.20069561326133310.1002/jps.2059316628739
    [Google Scholar]
  13. XinL. GaoJ. LinH. QuY. ShangC. WangY. LuY. CuiX. Regulatory mechanisms of baicalin in cardiovascular diseases: a review.Front. Pharmacol.20201158320010.3389/fphar.2020.58320033224035
    [Google Scholar]
  14. HuangT. LiuY. ZhangC. Pharmacokinetics and bioavailability enhancement of baicalin: a review.Eur. J. Drug Metab. Pharmacokinet.201944215916810.1007/s13318‑018‑0509‑330209794
    [Google Scholar]
  15. TangY. ZhuH. ZhangY. HuangC. Determination of human plasma protein binding of baicalin by ultrafiltration and high-performance liquid chromatography.Biomed. Chromatogr.200620101116111910.1002/bmc.65516708379
    [Google Scholar]
  16. WeiY. PiC. YangG. XiongX. LanY. YangH. ZhouY. YeY. ZouY. ZhengW. ZhaoL. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations.Molecules201621444410.3390/molecules2104044427104507
    [Google Scholar]
  17. AbeK. InoueO. YumiokaE. Biliary excretion of metabolites of baicalin, and baicalein in rats.Chem. Pharm. Bull. (Tokyo)199038120821110.1248/cpb.38.2082337942
    [Google Scholar]
  18. MeiZ. DuL. LiuX. ChenX. TianH. DengY. ZhangW. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway.Food Funct.202213119821210.1039/D1FO02579A34881386
    [Google Scholar]
  19. HuoX.K. WangB. ZhengL. CongH.J. XiangT. WangS. SunC. WangC. ZhangL. DengS. WuB. MaX.C. Comparative pharmacokinetic study of baicalin and its metabolites after oral administration of baicalin and Chaiqin Qingning capsule in normal and febrile rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171059142010.1016/j.jchromb.2017.05.01828554061
    [Google Scholar]
  20. XingJ. ChenX. ZhongD. Absorption and enterohepatic circulation of baicalin in rats.Life Sci.200578214014610.1016/j.lfs.2005.04.07216107266
    [Google Scholar]
  21. XiaoY. YeJ. ZhouY. HuangJ. LiuX. HuangB. ZhuL. WuB. ZhangG. CaiY. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway.Arch. Biochem. Biophys.2018640374610.1016/j.abb.2018.01.00629331689
    [Google Scholar]
  22. ZhangR. CuiY. WangY. TianX. ZhengL. CongH. WuB. HuoX. WangC. ZhangB. WangX. YuZ. Catechol-O-methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species.Eur. J. Drug Metab. Pharmacokinet.201742698199210.1007/s13318‑017‑0419‑928536775
    [Google Scholar]
  23. DaiH. ZhangX. YangZ. LiJ. ZhengJ. Effects of baicalin on blood pressure and left ventricular remodeling in rats with renovascular hypertension.Med. Sci. Monit.2017232939294810.12659/MSM.90253628622281
    [Google Scholar]
  24. CalvilloL. GironacciM.M. CrottiL. MeroniP.L. ParatiG. Neuroimmune crosstalk in the pathophysiology of hypertension.Nat. Rev. Cardiol.201916847649010.1038/s41569‑019‑0178‑130894678
    [Google Scholar]
  25. DingL. JiaC. ZhangY. WangW. ZhuW. ChenY. ZhangT. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats.Biomed. Pharmacother.201911132533010.1016/j.biopha.2018.12.08630590320
    [Google Scholar]
  26. WuD. DingL. TangX. WangW. ChenY. ZhangT. Baicalin protects against hypertension-associated intestinal barrier impairment in part through enhanced microbial production of short-chain fatty acids.Front. Pharmacol.201910127110.3389/fphar.2019.0127131719823
    [Google Scholar]
  27. LiuY. XiongM. ZhouF. ShiN. JiaY. Effect of baicalin on gestational hypertension-induced vascular endothelial cell damage.J. Int. Med. Res.2020481010.1177/030006052093428833081553
    [Google Scholar]
  28. XueX. ZhangS. JiangW. WangJ. XinQ. SunC. LiK. QiT. LuanY. Protective effect of baicalin against pulmonary arterial hypertension vascular remodeling through regulation of TNF-α signaling pathway.Pharmacol. Res. Perspect.202191e0070310.1002/prp2.70333421306
    [Google Scholar]
  29. JiangH. WangX. WangH. LiuT. Baicalin attenuates pulmonary vascular remodeling by inhibiting calpain-1 mediated endothelial-to-mesenchymal transition.Heliyon2023912e2307610.1016/j.heliyon.2023.e2307638144352
    [Google Scholar]
  30. LiuH. ChengY. ChuJ. WuM. YanM. WangD. XieQ. AliF. FangY. WeiL. YangY. ShenA. PengJ. Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway.Biomed. Pharmacother.202114311212410.1016/j.biopha.2021.11212434492423
    [Google Scholar]
  31. YanG. WangJ. YiT. ChengJ. GuoH. HeY. ShuiX. WuZ. HuangS. LeiW. Baicalin prevents pulmonary arterial remodeling in vivo via the AKT/ERK/NF-κB signaling pathways.Pulm. Circ.20199411010.1177/204589401987859931723406
    [Google Scholar]
  32. ChengY. YanM. HeS. XieY. WeiL. XuanB. ShangZ. WuM. ZhengH. ChenY. YuanM. PengJ. ShenA. Baicalin alleviates angiotensin II-induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway.J. Cell. Mol. Med.2024289e1832110.1111/jcmm.1832138712979
    [Google Scholar]
  33. MunjalK. GoelY. GauttamV.K. ChopraH. SinglaM. Smriti GuptaS. SharmaR. Molecular targets and therapeutic potential of baicalein: a review.Drug Target Insights2024181304610.33393/dti.2024.270738873988
    [Google Scholar]
  34. FanZ. CaiL. WangS. WangJ. ChenB. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis.Front. Pharmacol.20211262898810.3389/fphar.2021.62898833935719
    [Google Scholar]
  35. XuM. LiX. SongL. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway.Pharm. Biol.202058165566310.1080/13880209.2020.177931832649845
    [Google Scholar]
  36. LiuX. ZhangS. XuC. SunY. SuiS. ZhangZ. LuanY. The protective of baicalin on myocardial ischemia-reperfusion injury.Curr. Pharm. Biotechnol.202021131386139310.2174/138920102166620060510454032503406
    [Google Scholar]
  37. WuJ. ChenH. QinJ. ChenN. LuS. JinJ. LiY. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1- Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage.Oxid. Med. Cell. Longev.202120211886576210.1155/2021/886576233603953
    [Google Scholar]
  38. WangJ. ZhangS. DiL. Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modified, baicalin-loaded nanoparticulate system.Drug Deliv.20212812198220410.1080/10717544.2021.198908634662253
    [Google Scholar]
  39. CaiY. JiangS. HuangC. ShenA. ZhangX. YangW. XiaoY. GaoS. DuR. ZhengG. YanT. Craig WanC. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway.Phytomedicine202311415474710.1016/j.phymed.2023.15474736931095
    [Google Scholar]
  40. ChenZ. PanX. ShengZ. YanG. ChenL. MaG. Baicalin suppresses the proliferation and migration of Ox-LDL-VSMCs in atherosclerosis through upregulating miR-126-5p.Biol. Pharm. Bull.20194291517152310.1248/bpb.b19‑0019631204352
    [Google Scholar]
  41. LinL. WuX. DaveyA.K. WangJ. The anti-inflammatory effect of baicalin on hypoxia/reoxygenation and TNF-α induced injury in cultural rat cardiomyocytes.Phytother. Res.201024342943710.1002/ptr.300319827018
    [Google Scholar]
  42. LuanY. SunC. WangJ. JiangW. XinQ. ZhangZ. WangY. Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway.J. Cell. Biochem.201912033212321910.1002/jcb.2758730242878
    [Google Scholar]
  43. YuH. ChenB. RenQ. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway.Artif. Cells Nanomed. Biotechnol.20194713657366310.1080/21691401.2019.165787931478766
    [Google Scholar]
  44. WangL. LiY. LinS. PuZ. LiH. TangZ. Protective effects of Baicalin on experimental myocardial infarction in rats.Rev. Bras. Cir. Cardiovasc.201833438439010.21470/1678‑9741‑2018‑005930184036
    [Google Scholar]
  45. JiangW.B. ZhaoW. ChenH. WuY.Y. WangY. FuG.S. YangX.J. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2.Clin. Exp. Pharmacol. Physiol.201845330331110.1111/1440‑1681.1287629047162
    [Google Scholar]
  46. WenckerD. ChandraM. NguyenK. MiaoW. GarantziotisS. FactorS.M. ShiraniJ. ArmstrongR.C. KitsisR.N. A mechanistic role for cardiac myocyte apoptosis in heart failure.J. Clin. Invest.2003111101497150410.1172/JCI1766412750399
    [Google Scholar]
  47. FujiwaraT. TakedaN. HaraH. IshiiS. NumataG. TokiwaH. KatohM. MaemuraS. SuzukiT. TakiguchiH. YanaseT. KubotaY. NomuraS. HatanoM. UedaK. HaradaM. TokoH. TakimotoE. AkazawaH. MoritaH. NishimuraS. KomuroI. PGC-1α–mediated angiogenesis prevents pulmonary hypertension in mice.JCI Insight2023817e16263210.1172/jci.insight.16263237681410
    [Google Scholar]
  48. FengP. YangY. LiuN. WangS. Baicalin regulates TLR4/IκBα/NFκB signaling pathway to alleviate inflammation in Doxorubicin related cardiotoxicity.Biochem. Biophys. Res. Commun.20226371810.1016/j.bbrc.2022.10.06136375245
    [Google Scholar]
  49. ZengY. LiaoX. GuoY. LiuF. BuF. ZhanJ. ZhangJ. CaiY. ShenM. Baicalin-peptide supramolecular self-assembled nanofibers effectively inhibit ferroptosis and attenuate doxorubicin-induced cardiotoxicity.J. Control. Release202436683884810.1016/j.jconrel.2023.12.03438145663
    [Google Scholar]
  50. SunX. WangX. HeQ. ZhangM. ChuL. ZhaoY. WuY. ZhangJ. HanX. ChuX. WuZ. GuanS. Investigation of the ameliorative effects of baicalin against arsenic trioxide-induced cardiac toxicity in mice.Int. Immunopharmacol.20219910802410.1016/j.intimp.2021.10802434333357
    [Google Scholar]
  51. El-ElaS.R.A. ZaghloulR.A. EissaL.A. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β- catenin pathways.Nutrition202210211173210.1016/j.nut.2022.11173235816809
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347503241008075106
Loading
/content/journals/ctmc/10.2174/0115680266347503241008075106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test