Skip to content
2000
Volume 24, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Diabetes mellitus poses a significant health challenge globally, often leading to debilitating complications, such as neuropathy and retinopathy. Quercetin, a flavonoid prevalent in fruits and vegetables, has demonstrated potential therapeutic effects in these conditions due to its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes and provides a comprehensive understanding of the molecular mechanisms underlying the efficacy of quercetin in ameliorating diabetic neuropathy and retinopathy. A thorough search was carried out across scientific databases, such as SciFinder, PubMed, and Google Scholar, to gather pertinent literature regarding the effect of quercetin on diabetic neuropathy and retinopathy till February 2024. Preclinical studies indicate that quercetin mitigates neuropathic pain, sensory deficits, and nerve damage associated with diabetic neuropathy by improving neuronal function, reducing DNA damage, regulating pro-inflammatory cytokines, enhancing antioxidant enzyme levels and endothelial function, as well as restoring nerve injuries. In diabetic retinopathy, quercetin shows the potential to preserve retinal structure and function, inhibiting neovascularization, preventing retinal cell death, reducing pro-inflammatory cytokines, and increasing neurotrophic factor levels. Moreover, through modulating key signaling pathways, such as AMP-activated Protein Kinase (AMPK) activation, Glucose Transporter 4 (GLUT 4) upregulation, and insulin secretion regulation, quercetin demonstrates efficacy in reducing oxidative stress and inflammation, thereby protecting nerve and retinal tissues. Despite promising preclinical findings, challenges, such as limited bioavailability, necessitate further research to optimize quercetin’s clinical application in order to establish its optimal dosage, formulation, and long-term efficacy in clinical settings.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266330678240821060623
2024-11-01
2025-06-17
Loading full text...

Full text loading...

References

  1. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  2. OsawaT. KatoY. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia.Ann. N. Y. Acad. Sci.20051043144045110.1196/annals.1333.05016037265
    [Google Scholar]
  3. ChuterV. SchaperN. MillsJ. HinchliffeR. RussellD. AzumaN. BehrendtC.A. BoykoE.J. ConteM.S. HumphriesM. KirkseyL. McGinigleK.C. NikolS. NordanstigJ. RoweV. van den BergJ.C. VenermoM. FitridgeR. Effectiveness of bedside investigations to diagnose peripheral artery disease among people with diabetes mellitus: A systematic review.Diabetes Metab. Res. Rev.2024403e368310.1002/dmrr.368337477087
    [Google Scholar]
  4. RaghavS.S. KumarB. SethiyaN.K. LalD.K. Diabetic foot ulcer management and treatment: An overview of published patents.Curr. Diabetes Rev.2024203e12062321790610.2174/157339982066623061216184637309771
    [Google Scholar]
  5. PrabhawathiV. SivakumarP.M. PrabhakarP.K. CetinelS. RN. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy.Mini Rev. Med. Chem.202222141828184610.2174/138955752266622030914085535264089
    [Google Scholar]
  6. JohnsonE.L. HeaverS.L. WaltersW.A. LeyR.E. Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes.J. Mol. Med.20179511810.1007/s00109‑016‑1492‑227900395
    [Google Scholar]
  7. KushnirR. CherkasP.S. HananiM. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: A calcium imaging study.Neuropharmacology201161473974610.1016/j.neuropharm.2011.05.01921645532
    [Google Scholar]
  8. FatimaM. KhanM.R. Investigating the role of polyphenols from Pleurospermum candollei (DC.) extract against diabetic nephropathy through modulating inflammatory cytokines and renal gene expression in rats.J. Mol. Struct.2024130513783210.1016/j.molstruc.2024.137832
    [Google Scholar]
  9. ShenL. LiC. WangW. WangX. TangD. XiaoF. XiaT. Buckwheat extracts rich in flavonoid aglycones and flavonoid glycosides significantly reduced blood glucose in diabetes mice.J. Funct. Foods202411310602910.1016/j.jff.2024.106029
    [Google Scholar]
  10. FanaroG.B. MarquesM.R. CalazaK.C. BritoR. PessoniA.M. MendonçaH.R. LemosD.E.A. de Brito AlvesJ.L. de SouzaE.L. Cavalcanti NetoM.P. New insights on dietary polyphenols for the management of oxidative stress and neuroinflammation in diabetic retinopathy.Antioxidants2023126123710.3390/antiox1206123737371967
    [Google Scholar]
  11. ZhangL. WangX. ChangL. RenY. SuiM. FuY. ZhangL. HaoL. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats.Ren. Fail.2024461232749510.1080/0886022X.2024.232749538465879
    [Google Scholar]
  12. LakyM. ArslanM. ZhuX. Rausch-FanX. MoritzA. SculeanA. LakyB. RamseierC.A. StähliA. EickS. Quercetin in the prevention of induced periodontal disease in animal models: A systematic review and meta-analysis.Nutrients202416573510.3390/nu1605073538474862
    [Google Scholar]
  13. JianX. ShiC. LuoW. ZhouL. JiangL. LiuK. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders.Biomed. Pharmacother.202417311641810.1016/j.biopha.2024.11641838461683
    [Google Scholar]
  14. KambojS. MukhijaM. MongaJ. SinglaR. ChaudharyJ. Mechanistic investigation of quercetin in the management of complications of diabetes mellitus by network pharmacology.JMC202441684
    [Google Scholar]
  15. AhmadI. HodaM. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action.Life Sci.202024524511735010.1016/j.lfs.2020.11735031982401
    [Google Scholar]
  16. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  17. PandeyP. KhanF. RamniwasS. SaeedM. AhmadI. A mechanistic review of the pharmacological potential of narirutin: A dietary flavonoid.Naunyn Schmiedebergs Arch. Pharmacol.202481310.1007/s00210‑024‑03022‑w38457040
    [Google Scholar]
  18. PeiB. YangM. QiX. ShenX. ChenX. ZhangF. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway.Biochem. Biophys. Res. Commun.2016478119920510.1016/j.bbrc.2016.07.06827450812
    [Google Scholar]
  19. ChungS.S.M. Contribution of polyol pathway to diabetes-induced oxidative stress.J. Am. Soc. Nephrol.200712874437
    [Google Scholar]
  20. DongY. WangJ. FengD. QinH. WenH. YinZ. GaoG. LiC. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage.Int. J. Med. Sci.201411328229010.7150/ijms.763424516353
    [Google Scholar]
  21. GaoL. QinJ. ChenY. JiangW. ZhuD. ZhouX. DingJ. QiuH. ZhouY. DongQ. GuanY. Risk factors for subclinical diabetic peripheral neuropathy in type 2 diabetes mellitus.Diabetes Metab. Syndr. Obes.20241741742610.2147/DMSO.S43302438288341
    [Google Scholar]
  22. BansalV. KalitaJ. MisraU.K. Diabetic neuropathy.Postgrad. Med. J.2006829649510010.1136/pgmj.2005.03613716461471
    [Google Scholar]
  23. BoultonA.J.M. VinikA.I. ArezzoJ.C. BrilV. FeldmanE.L. FreemanR. MalikR.A. MaserR.E. SosenkoJ.M. ZieglerD. American Diabetes Association Diabetic neuropathies.Diabetes Care200528495696210.2337/diacare.28.4.95615793206
    [Google Scholar]
  24. ZakinE. AbramsR. SimpsonD.M. Diabetic neuropathy.Semin Neurol201939556056910.1055/s‑0039‑1688978
    [Google Scholar]
  25. NkongeK.M. NkongeD.K. NkongeT.N. Screening for diabetic peripheral neuropathy in resource-limited settings.Diabetol. Metab. Syndr.20231515510.1186/s13098‑023‑01032‑x36945043
    [Google Scholar]
  26. FangX.X. WangH. SongH.L. WangJ. ZhangZ.J. Neuroinflammation involved in diabetes-related pain and itch.Front. Pharmacol.20221392161210.3389/fphar.2022.92161235795572
    [Google Scholar]
  27. VincentA.M. CallaghanB.C. SmithA.L. FeldmanE.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets.Nat. Rev. Neurol.201171057358310.1038/nrneurol.2011.13721912405
    [Google Scholar]
  28. RauskolbS. DombertB. SendtnerM. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis.Neurobiol. Dis.201797Pt B10311310.1016/j.nbd.2016.04.00727142684
    [Google Scholar]
  29. NagpalA.S. LeetJ. EganK. GarzaR. Diabetic neuropathy: A critical, narrative review of published data from 2019.Curr. Pain Headache Rep.20212531510.1007/s11916‑020‑00928‑x33630186
    [Google Scholar]
  30. SkapekS.X. FerrariA. GuptaA.A. LupoP.J. ButlerE. ShipleyJ. BarrF.G. HawkinsD.S. ViswanathanV. Rhabdomyosarcoma.Nat. Rev. Dis. Primers2019511810.1038/s41572‑018‑0051‑230617281
    [Google Scholar]
  31. BasbaumA.I. BautistaD.M. ScherrerG. JuliusD. Cellular and molecular mechanisms of pain.Cell2009139226728410.1016/j.cell.2009.09.02819837031
    [Google Scholar]
  32. AzevedoM.I. PereiraA.F. NogueiraR.B. RolimF.E. BritoG.A.C. WongD.V.T. Lima-JúniorR.C.P. de Albuquerque RibeiroR. ValeM.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy.Mol. Pain2013991744-8069-9-5310.1186/1744‑8069‑9‑5324152430
    [Google Scholar]
  33. de SouzaS.R.G. de Miranda NetoM.H. Martins PerlesJ.V.C. Vieira FrezF.C. ZignaniI. RamalhoF.V. Hermes-UlianaC. BossolaniG.D.P. ZanoniJ.N. Antioxidant effects of the quercetin in the jejunal myenteric innervation of diabetic rats.Front. Med.20174810.3389/fmed.2017.0000828224126
    [Google Scholar]
  34. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  35. WangW. HuangC.Y. TsaiF.J. TsaiC.C. YaoC.H. ChenY.S. Growth-promoting effects of quercetin on peripheral nerves in rats.Int. J. Artif. Organs201134111095110510.5301/ijao.500006422183523
    [Google Scholar]
  36. YardimA. KandemirF.M. OzdemirS. KucuklerS. ComakliS. GurC. CelikH. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways.Neurotoxicology2020818113714610.1016/j.neuro.2020.10.00133038355
    [Google Scholar]
  37. MahmoudH. El HoranyH.E. AboalsoudM. Abd-EllatifR. El SheikhA.A. AboalsoudA. Targeting oxidative stress, autophagy, and apoptosis by quercetin to ameliorate cisplatin-induced peripheral neuropathy in rats.J. Microsc. Ultrastruct.202311210711410.4103/jmau.jmau_78_2237448816
    [Google Scholar]
  38. UnayS. BilginM.D. Investigation of effects of quercetin and low-level laser therapy in cisplatin-induced in vitro peripheral neuropathy model.Lasers Med. Sci.20233814910.1007/s10103‑023‑03718‑036689023
    [Google Scholar]
  39. KabirMT TabassumN UddinMS AzizF BehlT MathewB RahmanMH AkterR RaufA AleyaL Therapeutic potential of polyphenols in the management of diabetic neuropathy.eCAM202113120
    [Google Scholar]
  40. OyenihiA.B. AyelesoA.O. MukwevhoE. MasolaB. Antioxidant strategies in the management of diabetic neuropathy.BioMed Res. Int.2015201551504211510.1155/2015/51504225821809
    [Google Scholar]
  41. ThakurV. SadanandanJ. ChattopadhyayM. High-mobility group box 1 protein signaling in painful diabetic neuropathy.Int. J. Mol. Sci.202021388110.3390/ijms2103088132019145
    [Google Scholar]
  42. PurohitS. TranP.M.H. TranL.K.H. SatterK.B. HeM. ZhiW. BaiS. HopkinsD. GardinerM. WakadeC. BryantJ. BernardR. MorganJ. BodeB. ReedJ.C. SheJ.X. Serum levels of inflammatory proteins are associated with peripheral neuropathy in a cross-sectional type-1 diabetes cohort.Front. Immunol.20211265423310.3389/fimmu.2021.65423333868296
    [Google Scholar]
  43. YanL. Vaghari-TabariM. MalakotiF. MoeinS. QujeqD. YousefiB. AsemiZ. Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications.Crit. Rev. Food Sci. Nutr.202363289163918610.1080/10408398.2022.206782535468007
    [Google Scholar]
  44. AnjaneyuluM. ChopraK. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain.Prog. Neuropsychopharmacol. Biol. Psychiatry20032761001100510.1016/S0278‑5846(03)00160‑X14499317
    [Google Scholar]
  45. AnjaneyuluM. ChopraK. Effect of irbesartan on the antioxidant defence system and nitric oxide release in diabetic rat kidney.Am. J. Nephrol.200424548849610.1159/00008072215353911
    [Google Scholar]
  46. KandhareA.D. RaygudeK.S. KumarV.S. RajmaneA.R. VisnagriA. GhuleA.E. GhoshP. BadoleS.L. BodhankarS.L. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats.Biomed.201224173186
    [Google Scholar]
  47. RaygudeK.S. KandhareA.D. GhoshP. GhuleA.E. BodhankarS.L. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats.Inflammopharmacology201220633134110.1007/s10787‑012‑0122‑z22349996
    [Google Scholar]
  48. ShiY. LiangX. ZhangH. WuQ. QuL. SunQ. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition.Acta Pharmacol. Sin.20133491140114810.1038/aps.2013.5923770986
    [Google Scholar]
  49. FerreiraP.E.B. LopesC.R. AlvesA.M. AlvesÉ.P. LindenD.R. ZanoniJ.N. ButtowN.C. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats.World J. Gastroenterol.201319386416642610.3748/wjg.v19.i38.641624151360
    [Google Scholar]
  50. QuL. LiangX. GuB. LiuW. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy.Neural Regen. Res.20149121195120310.4103/1673‑5374.13532825206782
    [Google Scholar]
  51. ChisI.C. ClichiciA. NagyA.L. OrosA. CatoiC. ClichiciS. Quercetin in association with moderate exercise training attenuates injuries induced by experimental diabetes in sciatic nerves.J. Physiol. Pharmacol.201768687788629550800
    [Google Scholar]
  52. YangR. LiL. YuanH. LiuH. GongY. ZouL. LiS. WangZ. ShiL. JiaT. ZhaoS. WuB. YiZ. GaoY. LiG. XuH. LiuS. ZhangC. LiG. LiangS. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia.J. Cell. Physiol.201923432756276410.1002/jcp.2709130145789
    [Google Scholar]
  53. XieJ. SongW. LiangX. ZhangQ. ShiY. LiuW. ShiX. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level.Biomed. Pharmacother.202012711014710.1016/j.biopha.2020.11014732559841
    [Google Scholar]
  54. ZhangQ. SongW. ZhaoB. XieJ. SunQ. ShiX. YanB. TianG. LiangX. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro.Front. Neurosci.20211563617210.3389/fnins.2021.63617233746703
    [Google Scholar]
  55. ZhaoB. ZhangQ. LiangX. XieJ. SunQ. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway.Eur. J. Pharmacol.202191217460710.1016/j.ejphar.2021.17460734743981
    [Google Scholar]
  56. KumarN.P. AnnamalaiA.R. ThakurR.S. Antinociceptive property of Emblica officinalis Gaertn (Amla) in high fat diet-fed/low dose streptozotocin induced diabetic neuropathy in rats.Indian J. Exp. Biol.200947973774219957886
    [Google Scholar]
  57. UneH.D. DureshahwarK. MubashirM. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy.Pharmacognosy Res.20179328729310.4103/pr.pr_147_1628827972
    [Google Scholar]
  58. ThipkaewC. WattanathornJ. MuchimapuraS. Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes.BioMed Res. Int.2017201711210.1155/2017/201749328251151
    [Google Scholar]
  59. Usman AbidH.M. HanifM. MahmoodK. AbidS. KhanM. KhurshidU. AzeemM. AmeerN. Sajid ChughtaiF.R. PandeyK. QaiserM. Exploring the Potent Combination of Quercetin–Boronic Acid, Epalrestat, and Urea Containing Nanoethosomal Keratolytic Gel for the Treatment of Diabetic Neuropathic Pain: In Vitro and In Vivo StudiesMol. Pharmaceutics202410.1021/acs.molpharmaceut.3c00236
    [Google Scholar]
  60. ValensiP. Le DevehatC. RichardJ.L. FarezC. KhodabandehlouT. RosenbloomR.A. LeFanteC. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy.J. Diabetes Complications200519524725310.1016/j.jdiacomp.2005.05.01116112498
    [Google Scholar]
  61. GuiS. TangW. HuangZ. WangX. GuiS. GaoX. XiaoD. TaoL. JiangZ. WangX. Ultrasmall coordination polymer nanodots fe-quer nanozymes for preventing and delaying the development and progression of diabetic retinopathy.Adv. Funct. Mater.20233336230026110.1002/adfm.202300261
    [Google Scholar]
  62. LuoY. LiC. Advances in research related to microrna for diabetic retinopathy.J. Diabetes Res.2024202412110.1155/2024/852048938375094
    [Google Scholar]
  63. ChangW.L. LiuP.Y. YehS.L. LeeH.J. Effects of dried onion powder and quercetin on obesity-associated hepatic menifestation and retinopathy.Int. J. Mol. Sci.202223191109110.3390/ijms23191109136232387
    [Google Scholar]
  64. RenJ. ZhangS. PanY. JinM. LiJ. LuoY. SunX. LiG. Diabetic retinopathy: Involved cells, biomarkers, and treatments.Front. Pharmacol.20221395369110.3389/fphar.2022.95369136016568
    [Google Scholar]
  65. BungauS. Abdel-DaimM.M. TitD.M. GhanemE. SatoS. Maruyama-InoueM. YamaneS. KadonosonoK. Health benefits of polyphenols and carotenoids in age-related eye diseases.Oxid. Med. Cell. Longev.200510.1155/2019/978342930891116
    [Google Scholar]
  66. StinoA.M. RumoraA.E. KimB. FeldmanE.L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy.J. Peripher. Nerv. Syst.2020252768410.1111/jns.1238732412144
    [Google Scholar]
  67. WangL. GaoP. ZhangM. HuangZ. ZhangD. DengQ. LiY. ZhaoZ. QinX. JinD. ZhouM. TangX. HuY. WangL. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013.JAMA2017317242515252310.1001/jama.2017.759628655017
    [Google Scholar]
  68. LeeM. YunS. LeeH. YangJ. Quercetin mitigates inflammatory responses induced by vascular endothelial growth factor in mouse retinal photoreceptor cells through suppression of nuclear factor kappa B.Int. J. Mol. Sci.20171811249710.3390/ijms1811249729165402
    [Google Scholar]
  69. ChenR. HollbornM. GroscheA. ReichenbachA. WiedemannP. BringmannA. KohenL. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells.Mol. Vis.20142024225824623967
    [Google Scholar]
  70. KimC.S. KimJ. KimY.S. JoK. LeeY.M. JungD.H. LeeI.S. KimJ.H. KimJ.S. Improvement in diabetic retinopathy through protection against retinal apoptosis in spontaneously diabetic torii rats mediated by ethanol extract of Osteomeles schwerinae CK Schneid.Nutrients201911354610.3390/nu1103054630836664
    [Google Scholar]
  71. WangY. KimH.J. SparrowJ.R. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells.Exp. Eye Res.2017160160455510.1016/j.exer.2017.04.01028461203
    [Google Scholar]
  72. DarbandS.G. SadighparvarS. YousefiB. KavianiM. Ghaderi-PakdelF. MihanfarA. RahimiY. MobarakiK. MajidiniaM. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis.Life Sci.202025311758410.1016/j.lfs.2020.11758432220623
    [Google Scholar]
  73. KumarB. GuptaS.K. NagT.C. SrivastavaS. SaxenaR. JhaK.A. SrinivasanB.P. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats.Exp. Eye Res.201412519320210.1016/j.exer.2014.06.00924952278
    [Google Scholar]
  74. ChenY. LiF. MengX. LiX. Suppression of retinal angiogenesis by quercetin in a rodent model of retinopathy of prematurity.Zhonghua Yi Xue Za Zhi201595141113111526081216
    [Google Scholar]
  75. OlaM.S. AhmedM.M. ShamsS. Al-RejaieS.S. Neuroprotective effects of quercetin in diabetic rat retina.Saudi J. Biol. Sci.20172461186119410.1016/j.sjbs.2016.11.01728855811
    [Google Scholar]
  76. ChenB. HeT. XingY. CaoT. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy.Exp. Ther. Med.20171466022602610.3892/etm.2017.527529285153
    [Google Scholar]
  77. WangX. LiH. WangH. ShiJ. Quercetin attenuates high glucose-induced injury in human retinal pigment epithelial cell line ARPE-19 by up-regulation of miR-29b.J. Biochem.2020167549550210.1093/jb/mvaa00131960917
    [Google Scholar]
  78. WangR. QiuZ. WangG. HuQ. ShiN. ZhangZ. WuY. ZhouC. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice.Eur. J. Pharmacol.202088217326610.1016/j.ejphar.2020.17326632553736
    [Google Scholar]
  79. KaymazA. UlasF. ErimsahS. OztabagC.K. Investigation of the effect of quercetin in an experimental oxygen-induced retinopathy model.Exp. Biomed. Res.20214213114010.30714/j‑ebr.2021267976
    [Google Scholar]
  80. LiR. YaoG-M. YanH-L. WangL. WangL. Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy.Int. J. Ophthalmol.2021141424910.18240/ijo.2021.01.0633469482
    [Google Scholar]
  81. ChaoL.I.U. YanG.E.N.G. Zhen-huaZ.H.A.N.G. Yan-zhiG.U. Effect of quercetin liposome on angiopoietin-like protein 2 and its receptor Tie2 expression in the retina.Chin. J. Exp. Ophthalmol.201212613616
    [Google Scholar]
  82. ChenX-L. ChaiG-R. LiuS. YangH-W. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression.Neural Regen. Res.20211671344135010.4103/1673‑5374.30102733318415
    [Google Scholar]
  83. LiuY. GongY. LiM. LiJ. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2–related factor 2 pathway.Nutr. Res.2024122556710.1016/j.nutres.2023.12.00338185061
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266330678240821060623
Loading
/content/journals/ctmc/10.2174/0115680266330678240821060623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test