Skip to content
2000
Volume 24, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Tuberculosis is one of the deadly infectious diseases that has resurfaced in multiple/extensively resistant variants (MDR/XDR), threatening humankind. Today’s world has a higher prevalence of tuberculosis (TB) than it has ever had throughout human history. Due to severe adverse effects, the marketed medications are not entirely effective in these forms. So, developing new drugs with a promising target is an immense necessity. Pks13 has emerged as a promising target for the mycobacterium. The concluding step of mycolic acid production involved Pks13, a crucial enzyme that helps form the precursor of mycolic acid the Claisen-condensation reaction. It has five domains at the active site for targeting the enzyme and is used to test chemical entities for their antitubercular activity. Benzofurans, thiophenes, coumestans, -phenyl indoles, and β lactones are the ligands that inhibit the Pks13 enzyme, showing potential antitubercular properties.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322983240906055750
2024-11-01
2025-05-30
Loading full text...

Full text loading...

References

  1. KaufmannS.H.E. SchaibleU.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus.Trends Microbiol.2005131046947510.1016/j.tim.2005.08.003 16112578
    [Google Scholar]
  2. SpekkerO. HuntD.R. BerthonW. PajaL. MolnárE. PálfiG. SchultzM. Tracking down the white plague. chapter three: Revision of endocranial abnormally pronounced digital impressions as paleopathological diagnostic criteria for Tuberculous meningitis.PLoS One2021163e024902010.1371/journal.pone.0249020 33740029
    [Google Scholar]
  3. DeviA. PahujaI. SinghS.P. VermaA. BhattacharyaD. BhaskarA. DwivediV.P. DasG. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases.Cell. Mol. Immunol.202320660061210.1038/s41423‑023‑01028‑7 37173422
    [Google Scholar]
  4. MishraR. ShuklaP. HuangW. HuN. Gene mutations in Mycobacterium tuberculosis: Multidrug-resistant TB as an emerging global public health crisis.Tuberculosis (Edinb.)20159511510.1016/j.tube.2014.08.012 25257261
    [Google Scholar]
  5. PerveenS. SharmaR. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery.Biochem. Pharmacol.202219711490610.1016/j.bcp.2021.114906 34990594
    [Google Scholar]
  6. BeggsC.B. NoakesC.J. SleighP.A. FletcherL.A. SiddiqiK. The transmission of tuberculosis in confined spaces: An analytical review of alternative epidemiological models.Int. J. Tuberc. Lung Dis.200371110151026 14598959
    [Google Scholar]
  7. WejseC. GustafsonP. NielsenJ. GomesV.F. AabyP. AndersenP.L. SodemannM. TBscore: Signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course.Scand. J. Infect. Dis.200840211112010.1080/00365540701558698 17852907
    [Google Scholar]
  8. YuanT. SampsonN.S. Hit generation in TB drug discovery: From genome to granuloma.Chem. Rev.201811841887191610.1021/acs.chemrev.7b00602 29384369
    [Google Scholar]
  9. BorsariC. FerrariS. VenturelliA. CostiM.P. Target-based approaches for the discovery of new antimycobacterial drugs.Drug Discov. Today201722357658410.1016/j.drudis.2016.11.014 27890671
    [Google Scholar]
  10. ZhangY. The magic bullets and tuberculosis drug targets.Annu. Rev. Pharmacol. Toxicol.200545152956410.1146/annurev.pharmtox.45.120403.100120 15822188
    [Google Scholar]
  11. CampaniçoA. MoreiraR. LopesF. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.Eur. J. Med. Chem.201815052554510.1016/j.ejmech.2018.03.020 29549838
    [Google Scholar]
  12. RamanK. YeturuK. ChandraN. TargetT.B. targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis.BMC Syst. Biol.20082110910.1186/1752‑0509‑2‑109 19099550
    [Google Scholar]
  13. BahugunaA. RawatD.S. An overview of new antitubercular drugs, drug candidates, and their targets.Med. Res. Rev.202040126329210.1002/med.21602 31254295
    [Google Scholar]
  14. KiwuwaM.S. CharlesK. HarrietM.K. Patient and health service delay in pulmonary tuberculosis patients attending a referral hospital: A cross-sectional study.BMC Public Health20055112210.1186/1471‑2458‑5‑122 16307685
    [Google Scholar]
  15. CheonS.A. ChoH.H. KimJ. LeeJ. KimH.J. ParkT.J. Recent tuberculosis diagnosis toward the end TB strategy.J. Microbiol. Methods2016123516110.1016/j.mimet.2016.02.007 26853124
    [Google Scholar]
  16. GolettiD. PetruccioliE. JoostenS.A. OttenhoffT.H.M. Tuberculosis biomarkers: From diagnosis to protection.Infect. Dis. Rep.201682656810.4081/idr.2016.6568 27403267
    [Google Scholar]
  17. NicolM.P. ZarH.J. New specimens and laboratory diagnostics for childhood pulmonary TB: Progress and prospects.Paediatr. Respir. Rev.2011121162110.1016/j.prrv.2010.09.008 21172670
    [Google Scholar]
  18. OnyebujohP. ZumlaA. RibeiroI. RustomjeeR. MwabaP. GomesM. GrangeJ.M. Treatment of tuberculosis: Present status and future prospects.Bull. World Health Organ.20058311857865 16302043
    [Google Scholar]
  19. SwaminathanS. DeivanayagamC.N. RajasekaranS. VenkatesanP. PadmapriyadarsiniC. MenonP.A. PonnurajaC. DilipM. Long term follow up of HIV-infected patients with tuberculosis treated with 6-month intermittent short course chemotherapy.Natl. Med. J. India200821138 18472696
    [Google Scholar]
  20. IdB.D. DestaK. FekadeR. AmareM. TadesseM. IdG.D. ZerihunB. GetuM. SinshawW. SeidG. The epidemiology of first and second-line drug-resistance Mycobacterium tuberculosis complex common species: Evidence from selected tb treatment initiating centers in Ethiopia.PLoS One2021110113
    [Google Scholar]
  21. RobertsonG.T. RameyM.E. MassoudiL.M. CarterC.L. ZimmermanM. KayaF. GrahamB.G. GruppoV. HastingsC. WoolhiserL.K. ScottD.W.L. AsayB.C. Eshun-WilsonF. MaidjE. PodellB.K. VásquezJ.J. LyonsM.A. DartoisV. LenaertsA.J. Comparative analysis of pharmacodynamics in the C3HeB/FeJ mouse tuberculosis model for DprE1 inhibitors TBA-7371, PBTZ169, and OPC-167832.Antimicrob. Agents Chemother.20216511e00583e2110.1128/AAC.00583‑21 34370580
    [Google Scholar]
  22. LechartierB. HartkoornR.C. ColeS.T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis.Antimicrob. Agents Chemother.201256115790579310.1128/AAC.01476‑12 22926573
    [Google Scholar]
  23. MakarovV. LechartierB. ZhangM. NeresJ. van der SarA.M. RaadsenS.A. HartkoornR.C. RyabovaO.B. VocatA. De-costerdL.A. WidmerN. BuclinT. BitterW. AndriesK. PojerF. DysonP.J. ColeS.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones.EMBO Mol. Med.20146337238310.1002/emmm.201303575 24500695
    [Google Scholar]
  24. TiberiS. VjechaM.J. ZumlaA. GalvinJ. MiglioriG.B. ZumlaA. Accelerating development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic.Int. J. Infect. Dis.2021113Suppl. 1S96S9910.1016/j.ijid.2021.02.067 33713815
    [Google Scholar]
  25. SarathyJ.P. GruberG. DickT. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline.Antibiotics (Basel)20198426110.3390/antibiotics8040261 31835707
    [Google Scholar]
  26. SarathyJ.P. RagunathanP. CooperC.B. UptonA.M. GrüberG. Crossm without retaining the parental drug’s uncoupler activity.Antimicrob. Agents Chemother.20206481310.1128/AAC.01540‑19
    [Google Scholar]
  27. PortevinD. de Sousa-D’AuriaC. HoussinC. GrimaldiC. ChamiM. DafféM. GuilhotC. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in Mycobacteria and related organisms.Proc. Natl. Acad. Sci. USA2004101131431910.1073/pnas.0305439101 14695899
    [Google Scholar]
  28. WangX. ZhaoW. WangB. DingW. GuoH. ZhaoH. MengJ. LiuS. LuY. LiuY. ZhangD. Bioorganic chemistry identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads.Bioinorg. Chem.2021114211
    [Google Scholar]
  29. GavaldaS. LégerM. van der RestB. StellaA. BardouF. MontrozierH. ChalutC. Burlet-SchiltzO. MarrakchiH. DafféM. QuémardA. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis.J. Biol. Chem.200928429192551926410.1074/jbc.M109.006940 19436070
    [Google Scholar]
  30. ZhangW. LunS. WangS.H. JiangX.W. YangF. TangJ. MansonA.L. EarlA.M. GunosewoyoH. BishaiW.R. YuL.F. Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis.J. Med. Chem.201861379180310.1021/acs.jmedchem.7b01319 29328655
    [Google Scholar]
  31. WangX. ZhaoW. WangB. DingW. GuoH. ZhaoH. MengJ. LiuS. LuY. LiuY. ZhangD. Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads.Bioorg. Chem.202111410511010.1016/j.bioorg.2021.105110 34175719
    [Google Scholar]
  32. JenniS. LeibundgutM. MaierT. BanN. Architecture of a fungal fatty acid synthase at 5 A resolution.Science200631157651263126710.1126/science.1123251 16513976
    [Google Scholar]
  33. Gastambide-OdierM. LedererE. ScarselliV. Gastambide-odierM. LedererE. Biosynthesis of corynomycolic acid from two molecules of palmitic acid.Nature19591844698Suppl. 201563156410.1038/1841563b0 13826789
    [Google Scholar]
  34. Lea-SmithD.J. PykeJ.S. TullD. McConvilleM.J. CoppelR.L. CrellinP.K. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan.J. Biol. Chem.200728215110001100810.1074/jbc.M608686200 17308303
    [Google Scholar]
  35. PandeyS. SinghA. YangG. d’AndreaF.B. JiangX. HartmanT.E. MosiorJ.W. BourlandR. GoldB. RobertsJ. GeigerA. TangS. RheeK. OuerfelliO. SacchettiniJ.C. NathanC.F. Burns-HuangK. Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis.Microbiol. Spectr.202192e00928e2110.1128/Spectrum.00928‑21 34550010
    [Google Scholar]
  36. WachiM. Amino Acid Exporters in Corynebacterium Glutamicum BT - Corynebacterium.Biology and Biotechnology. YukawaH. InuiM. Berlin, HeidelbergSpringer2013335349
    [Google Scholar]
  37. XiaF. ZhangH. YangH. ZhengM. MinW. SunC. YuanK. YangP. Targeting polyketide synthase 13 for the treatment of tuberculosis.Eur. J. Med. Chem.202325911570210.1016/j.ejmech.2023.115702 37544185
    [Google Scholar]
  38. IoergerT.R. O’MalleyT. LiaoR. GuinnK.M. HickeyM.J. MohaideenN. MurphyK.C. BoshoffH.I.M. MizrahiV. RubinE.J. SassettiC.M. BarryC.E.III ShermanD.R. ParishT. SacchettiniJ.C. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis.PLoS One201389e7524510.1371/journal.pone.0075245 24086479
    [Google Scholar]
  39. AlbertW. Burgstahler and Leonard R.Worden. Coumarone. Org. Synth.19664628
    [Google Scholar]
  40. SapkalS.B. ShelkeK.F. ShingateB.B. ShingareM.S. An efficient synthesis of benzofuran derivatives under conventional/nonconventional method.Chin. Chem. Lett.201021121439144210.1016/j.cclet.2010.06.038
    [Google Scholar]
  41. Abu-HashemA.A. HusseinH.A.R. AlyA.S. GoudaM.A. Synthesis of benzofuran derivatives via different methods.Synth. Commun.201444162285231210.1080/00397911.2014.894528
    [Google Scholar]
  42. ZhaoW. WangB. LiuY. FuL. ShengL. ZhaoH. LuY. ZhangD. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis.Eur. J. Med. Chem.202018911207510.1016/j.ejmech.2020.112075 31986405
    [Google Scholar]
  43. SinghN. PolkamN. KantR. PradeshU. AnireddyJ. Design, synthesis and evaluation of 4h-chromene-4-one analogues as potential anti-bacterial and anti-fungal agents.Chem. Biol. Lett.202072740
    [Google Scholar]
  44. FakhrI.M.I. RadwanM.A.A. El-BatranS. Abd El-SalamO.M.E. El-ShenawyS.M. Synthesis and pharmacological evaluation of 2-substitutedbenzo[b]thiophenes as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20094441718172510.1016/j.ejmech.2008.02.034 18433939
    [Google Scholar]
  45. WilsonR. KumarP. ParasharV. VilchèzeC. Veyron-ChurletR. FreundlichJ.S. BarnesS.W. WalkerJ.R. SzymonifkaM.J. MarchianoE. ShenaiS. ColangeliR. JacobsW.R.Jr NeiditchM.B. KremerL. AllandD. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis.Nat. Chem. Biol.20139849950610.1038/nchembio.1277 23770708
    [Google Scholar]
  46. MeenaC.L. SinghP. ShaliwalR.P. KumarV. KumarA. TiwariA.K. AsthanaS. SinghR. MahajanD. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis.Eur. J. Med. Chem.202020811277210.1016/j.ejmech.2020.112772 32920342
    [Google Scholar]
  47. CleghornL.A.T. RayP.C. OdingoJ. KumarA. WescottH. KorkegianA. MasquelinT. Lopez MoureA. WilsonC. DavisS. HuggettM. TurnerP. SmithA. EpemoluO. ZuccottoF. RileyJ. ScullionP. ShishikuraY. FergusonL. RullasJ. GuijarroL. ReadK.D. GreenS.R. HipskindP. ParishT. WyattP.G. Identification of morpholino thiophenes as novel Mycobacterium tuberculosis inhibitors, targeting QcrB.J. Med. Chem.201861156592660810.1021/acs.jmedchem.8b00172 29944372
    [Google Scholar]
  48. TahlanK. WilsonR. KastrinskyD.B. AroraK. NairV. FischerE. BarnesS.W. WalkerJ.R. AllandD. BarryC.E.III BoshoffH.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20125641797180910.1128/AAC.05708‑11 22252828
    [Google Scholar]
  49. NikolakopoulosG. FiglerH. LindenJ. ScammellsP.J. 2-Aminothiophene-3-carboxylates and carboxamides as adenosine A1 receptor allosteric enhancers.Bioorg. Med. Chem.20061472358236510.1016/j.bmc.2005.11.018 16314104
    [Google Scholar]
  50. WangP. BattS.M. WangB. FuL. QinR. LuY. LiG. BesraG.S. HuangH. Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities.J. Med. Chem.20216496241626110.1021/acs.jmedchem.1c00263 33852302
    [Google Scholar]
  51. LunS. XiaoS. ZhangW. WangS. GunosewoyoH. YuL.F. BishaiW.R. Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis.Antimicrob. Agents Chemother.202395518 33558290
    [Google Scholar]
  52. BhukyaB. AlamS. ChaturvediV. TrivediP. KumarS. KhanF. NegiA.S. SrivastavaS.K. Brevifoliol and its analogs: A new class of anti-tubercular agents.Curr. Top. Med. Chem.202121976777610.2174/1568026620666200528155236 32484109
    [Google Scholar]
  53. GuptaV. AmbatwarR. BhanwalaN. KhatikG.L. Coumarin as a privileged and medicinally important scaffold in the treatment of tuberculosis.Curr. Top. Med. Chem.202323161489150210.2174/1568026623666230330084058
    [Google Scholar]
  54. ZhangW. LunS. WangS.S. CaiY.P. YangF. TangJ. BishaiW.R. YuL.F. Structure-based optimization of coumestan derivatives as polyketide synthase 13-thioesterase(Pks13-TE) Inhibitors with improved hERG profiles for Mycobacterium tuberculosis treatment.J. Med. Chem.20226519132401325210.1021/acs.jmedchem.2c01064 36174223
    [Google Scholar]
  55. ZhangW. LunS. LiuL.L. XiaoS. DuanG. GunosewoyoH. YangF. TangJ. BishaiW.R. YuL.F. identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. part II.J. Med. Chem.20196273575358910.1021/acs.jmedchem.9b00010 30875203
    [Google Scholar]
  56. ZhangW. LiuL. LunS. WangS.S. XiaoS. GunosewoyoH. YangF. TangJ. BishaiW.R. YuL.F. Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules.Eur. J. Med. Chem.202121311320210.1016/j.ejmech.2021.113202 33516983
    [Google Scholar]
  57. ZeilerE. KorotkovV.S. Lorenz-BaathK. BöttcherT. SieberS.A. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP.Bioorg. Med. Chem.201220258359110.1016/j.bmc.2011.07.047 21855356
    [Google Scholar]
  58. CavalierJ.F. SpillingC.D. DurandT. CamoinL. CanaanS. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery.Eur. J. Med. Chem.202120911290810.1016/j.ejmech.2020.112908 33071055
    [Google Scholar]
  59. GoinsC.M. SudasingheT.D. LiuX. WangY. O’DohertyG.A. RonningD.R. Characterization of tetrahydrolipstatin and stereoderivatives on the inhibition of essential Mycobacterium tuberculosis lipid esterases.Biochemistry201857162383239310.1021/acs.biochem.8b00152 29601187
    [Google Scholar]
  60. LehmannJ. ChengT.Y. AggarwalA. ParkA.S. ZeilerE. RajuR.M. AkopianT. KandrorO. SacchettiniJ.C. MoodyD.B. RubinE.J. SieberS.A. An antibacterial β‐lactone kills Mycobacterium tuberculosis by disrupting mycolic acid biosynthesis.Angew. Chem. Int. Ed.201857134835310.1002/anie.201709365 29067779
    [Google Scholar]
  61. UppumavuluriN.T. KrovvidiS.R. MailavaramR.P. MohantyS.K. DebP.K. VenugopalaK.N. Pks 13 inhibitors—a promising target for future antitubercular agents.Med. Chem. Res.20233281574158810.1007/s00044‑023‑03107‑w
    [Google Scholar]
  62. CaiY. ZhangW. LunS. ZhuT. XuW. YangF. TangJ. BishaiW.R. YuL. Design, Synthesis and biological evaluation of n-phenylindole derivatives as pks13 inhibitors against Mycobacterium tuberculosis.Molecules202227
    [Google Scholar]
  63. BugaenkoD.I. KarchavaA.V. YurovskayaM.A. Synthesis of indoles: Recent advances.Russ. Chem. Rev.20198829915910.1070/RCR4844
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322983240906055750
Loading
/content/journals/ctmc/10.2174/0115680266322983240906055750
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test