Skip to content
2000
Volume 24, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Dengue fever, caused by the Dengue virus (DENV) and transmitted by mosquitoes, has become endemic in over 100 countries. Despite considerable research, there is a lack of specific drugs for clinical use against dengue. Hence, further exploration to identify anti- dengue compounds is essential. In recent years, natural products have gained attention for their antiviral properties. Plant-based medicines are particularly appealing due to their safety and low toxicity. This review summarizes natural compounds with potential antiviral activity against DENV, highlighting their mechanisms of action. Various compounds, from traditional herbal remedies to novel plant isolates, show promise against dengue, targeting crucial viral proteins like the envelope protein, proteases, and RNA polymerase. Exploring natural sources of antiviral agents against dengue is crucial. These compounds offer hope for effective treatments and mitigating dengue's global impact.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266312717240821062535
2024-11-01
2025-06-20
Loading full text...

Full text loading...

References

  1. KronenbergerT. Sá Magalhães SerafimM. Kumar TonduruA. Gonçalves MaltarolloV. PosoA. Ligand accessibility insights to the dengue virus NS3-NS2B protease assessed by long- timescale molecular dynamics simulations.ChemMedChem202116162524253410.1002/cmdc.20210024633899341
    [Google Scholar]
  2. OrganizationW.H. Update on the Dengue situation in the Western Pacific Region.2022Available from: https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/dengue/dengue-20220519.pdf?sfvrsn=5160e027_104 (June 8, 2022).
    [Google Scholar]
  3. Abd KadirS.L. YaakobH. Mohamed ZulkifliR. Potential anti-dengue medicinal plants: A review.J. Nat. Med.201367467768910.1007/s11418‑013‑0767‑y23591999
    [Google Scholar]
  4. KhetarpalN. KhannaI. Dengue Fever: Causes, complications, and vaccine strategies.J. Immunol. Res.2016201611410.1155/2016/680309827525287
    [Google Scholar]
  5. GillB.S. History and epidemiology of dengue.2022Available from: http://denggi.myhealth.gov.my/history-and-epidemiology-of-dengue/?lang=en (2022, August 1).
  6. WuW. BaiZ. ZhouH. TuZ. FangM. TangB. LiuJ. LiuL. LiuJ. ChenW. Molecular epidemiology of dengue viruses in southern China from 1978 to 2006.Virol. J.20118132210.1186/1743‑422X‑8‑32221703015
    [Google Scholar]
  7. GublerD.J. Dengue and dengue hemorrhagic fever.Clin. Microbiol. Rev.199811348049610.1128/CMR.11.3.4809665979
    [Google Scholar]
  8. RoyS.K. BhattacharjeeS. Dengue virus: Epidemiology, biology, and disease aetiology.Can. J. Microbiol.2021671068770210.1139/cjm‑2020‑057234171205
    [Google Scholar]
  9. MustafaM.S. RasotgiV. JainS. GuptaV. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control.Med. J. Armed Forces India2015711677010.1016/j.mjafi.2014.09.01125609867
    [Google Scholar]
  10. ShimizuH. SaitoA. MikuniJ. NakayamaE.E. KoyamaH. HonmaT. ShirouzuM. SekineS. ShiodaT. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase.PLoS Negl. Trop. Dis.20191311e000789410.1371/journal.pntd.000789431738758
    [Google Scholar]
  11. TarasukM. SongprakhonP. ChimmaP. SratongnoP. Na-BangchangK. YenchitsomanusP. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.Virus Res.201724018018910.1016/j.virusres.2017.08.01128864423
    [Google Scholar]
  12. FaheemM. Barbosa LimaJ.C. JamalS.B. SilvaP.A. BarbosaJ.A.R.G. An insight into dengue virus proteins as potential drug/vaccine targets.Future Virol.2019141067169110.2217/fvl‑2019‑0107
    [Google Scholar]
  13. TeixeiraR. PereiraW. OliveiraA. Da SilvaA. De OliveiraA. Da SilvaM. Da SilvaC. De PaulaS. Natural products as source of potential dengue antivirals.Molecules20141968151817610.3390/molecules1906815124941340
    [Google Scholar]
  14. Mohd NawiM.S. Ligand based drug discovery of novel dengue-2 NS2B-NS3 protease inhibitors.Universiti Sains Malaysia2015
    [Google Scholar]
  15. DigheS.N. EkwuduO. DuaK. ChellappanD.K. KatavicP.L. ColletT.A. Recent update on anti-dengue drug discovery.Eur. J. Med. Chem.201917643145510.1016/j.ejmech.2019.05.01031128447
    [Google Scholar]
  16. RothanH.A. HanH.C. RamasamyT.S. OthmanS. RahmanN.A. YusofR. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1.BMC Infect. Dis.201212131410.1186/1471‑2334‑12‑31423171075
    [Google Scholar]
  17. HaiN.A. KhanA.A. HaqF. KhanS. Proceedings of 2021 18th International Bhurban Conference on Applied Sciences & Technology (IBCAST)Islamabad, Pakistan, 12 – 16 January 2021, pp. 1-517.
    [Google Scholar]
  18. MalaysiaW. Mosquito control methods.2022Available from: https://www.imr.gov.my/wolbachia/2017/01/22/mosquito-control-methods/ (June 26, 2022).
  19. DiseasesN.C.I. Dengue.2022Available from: https://www.ncid.sg/Health-Professionals/Diseases-and-Conditions/Pages/Dengue.aspx#:~:text=Infectious%20Period,5%20days%20after%20illness%20onset (June 26, 2022).
  20. Trujillo-CorreaA.I. Quintero-GilD.C. Diaz-CastilloF. QuiñonesW. RobledoS.M. Martinez-GutierrezM. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting.BMC Complement. Altern. Med.201919129810.1186/s12906‑019‑2695‑131694638
    [Google Scholar]
  21. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.00816105678
    [Google Scholar]
  22. HassanS.T.S. MasarčíkováR. BerchováK. Bioactive natural products with anti-herpes simplex virus properties.J. Pharm. Pharmacol.201567101325133610.1111/jphp.1243626060043
    [Google Scholar]
  23. AzzamH.S. GoertzC. FrittsM. JonasW.B. Natural products and chronic hepatitis C virus.Liver Int.2007271172510.1111/j.1478‑3231.2006.01408.x17241377
    [Google Scholar]
  24. SencanskiM. RadosevicD. PerovicV. GemovicB. StanojevicM. VeljkovicN. GlisicS. Natural products as promising therapeutics for treatment of influenza disease.Curr. Pharm. Des.201521385573558810.2174/138161282166615100211342626429712
    [Google Scholar]
  25. BhakatS. SolimanM.E.S. Chikungunya virus (CHIKV) inhibitors from natural sources: A medicinal chemistry perspective.J. Nat. Med.201569445146210.1007/s11418‑015‑0910‑z25921858
    [Google Scholar]
  26. Hernández-CastroC. Diaz-CastilloF. Martínez-GutierrezM. Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2.Asian Pac. J. Trop. Dis.2015529810610.1016/S2222‑1808(14)60635‑6
    [Google Scholar]
  27. AngelinaM. HanafiM. SuyatnaF.D. DewiB.E. Drug of action cassia alata leaves extract as antiviral to dengue virus serotype-2 in vitro.Pharmacogn. J.202012486487110.5530/pj.2020.12.124
    [Google Scholar]
  28. RothanH.A. ZulqarnainM. AmmarY.A. TanE.C. RahmanN.A. YusofR. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.Trop. Biomed.201431228629625134897
    [Google Scholar]
  29. LealE.S. AdlerN.S. FernándezG.A. GebhardL.G. BattiniL. AucarM.G. VidelaM. MongeM.E. Hernández de los RíosA. Acosta DávilaJ.A. MorellM.L. CordoS.M. GarcíaC.C. GamarnikA.V. CavasottoC.N. BolliniM. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus.Eur. J. Med. Chem.201918211162810.1016/j.ejmech.2019.11162831472473
    [Google Scholar]
  30. Abdul AhmadS.A. PalanisamyU.D. KhooJ.J. DhanoaA. Syed HassanS. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice.Virol. J.20191612610.1186/s12985‑019‑1127‑730813954
    [Google Scholar]
  31. PaesM.V. PinhãoA.T. BarretoD.F. CostaS.M. OliveiraM.P. NogueiraA.C. TakiyaC.M. Farias-FilhoJ.C. SchatzmayrH.G. AlvesA.M.B. BarthO.M. Liver injury and viremia in mice infected with dengue-2 virus.Virology2005338223624610.1016/j.virol.2005.04.04215961136
    [Google Scholar]
  32. FisherR. LustigY. SklanE.H. SchwartzE. The role of NS1 protein in the diagnosis of flavivirus infections.Viruses202315257210.3390/v1502057236851784
    [Google Scholar]
  33. GlasnerD.R. Puerta-GuardoH. BeattyP.R. HarrisE. The good, the bad, and the shocking: The multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis.Annu. Rev. Virol.20185122725310.1146/annurev‑virology‑101416‑04184830044715
    [Google Scholar]
  34. ShuklaR. AhujaR. BeesettiH. GargA. AggarwalC. ChaturvediS. NayyarK. AroraU. LalA.A. KhannaN. Sinococuline, a bioactive compound of Cocculus hirsutus has potent anti-dengue activity.Sci. Rep.2023131102610.1038/s41598‑023‑27927‑336658277
    [Google Scholar]
  35. YaoX. LingY. GuoS. WuW. HeS. ZhangQ. ZouM. NandakumarK.S. ChenX. LiuS. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections.Phytomedicine20184225826710.1016/j.phymed.2018.03.01829655694
    [Google Scholar]
  36. YusofR. ClumS. WetzelM. MurthyH.M.K. PadmanabhanR. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro.J. Biol. Chem.2000275149963996910.1074/jbc.275.14.996310744671
    [Google Scholar]
  37. TomlinsonS. MalmstromR. WatowichS. New approaches to structure-based discovery of dengue protease inhibitors.Infect. Disord. Drug Targets20099332734310.2174/187152651090903032719519486
    [Google Scholar]
  38. LimL. DangM. RoyA. KangJ. SongJ. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation.ACS Omega2020540256772568610.1021/acsomega.0c0003933073093
    [Google Scholar]
  39. SaleemH.N. BatoolF. MansoorH.J. Shahzad-ul-HussanS. SaeedM. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of syzygium aromaticum (cloves).ACS Omega2019411525153310.1021/acsomega.8b02861
    [Google Scholar]
  40. SulaimanS.N. HarionoM. SallehH.M. ChongS.-L. YeeL.S. ZahariA. WahabH.A. DerbréS. AwangK. Chemical constituents from endiandra kingiana (Lauraceae) as potential inhibitors for dengue type 2 NS2B/NS3 serine protease and its molecular docking.Nat. Prod. Commun.2019149
    [Google Scholar]
  41. KitaniS. YoshidaM. BoonlucksanawongO. PanbangredW. AnuegoonpipatA. KurosuT. IkutaK. IgarashiY. NihiraT. CystargamideB. Cystargamide B, a cyclic lipodepsipeptide with protease inhibitory activity from Streptomyces sp.J. Antibiot.201871766266610.1038/s41429‑018‑0044‑029567952
    [Google Scholar]
  42. de SousaL.R.F. WuH. NeboL. FernandesJ.B. da SilvaM.F.G.F. KieferW. KanitzM. BodemJ. DiederichW.E. SchirmeisterT. VieiraP.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies.Bioorg. Med. Chem.201523346647010.1016/j.bmc.2014.12.01525564380
    [Google Scholar]
  43. WuD. MaoF. YeY. LiJ. XuC. LuoX. ChenJ. ShenX. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells.Acta Pharmacol. Sin.20153691126113610.1038/aps.2015.5626279156
    [Google Scholar]
  44. DangM. LimL. RoyA. SongJ. Myricetin allosterically inhibits the dengue NS2B-NS3 protease by disrupting the active and locking the inactive conformations.ACS Omega2022732798280810.1021/acsomega.1c0556935097276
    [Google Scholar]
  45. LeeJ.C. ChangF.R. ChenS.R. WuY.H. HuH.C. WuY.C. BacklundA. ChengY.B. Anti-dengue virus constituents from formosan zoanthid palythoa mutuki.Mar. Drugs201614815110.3390/md1408015127517937
    [Google Scholar]
  46. LimS.P. NobleC.G. ShiP.Y. The dengue virus NS5 protein as a target for drug discovery.Antiviral Res.2015119576710.1016/j.antiviral.2015.04.01025912817
    [Google Scholar]
  47. PanyaA. SongprakhonP. PanwongS. JantakeeK. KaewkodT. TragoolpuaY. SawasdeeN. LeeV.S. NimmanpipugP. YenchitsomanusP. Cordycepin inhibits virus replication in dengue virus-infected vero cells.Molecules20212611311810.3390/molecules2611311834071102
    [Google Scholar]
  48. PeyratL.A. EparvierV. EydouxC. GuillemotJ.C. StienD. LitaudonM. Chemical diversity and antiviral potential in the pantropical Diospyros genus.Fitoterapia201611291510.1016/j.fitote.2016.04.01727126897
    [Google Scholar]
  49. CoulerieP. EydouxC. HnawiaE. StuhlL. MaciukA. LebouvierN. CanardB. FigadèreB. GuillemotJ.C. NourM. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase.Planta Med.201278767267710.1055/s‑0031‑129835522411725
    [Google Scholar]
  50. CoulerieP. NourM. MaciukA. EydouxC. GuillemotJ.C. LebouvierN. HnawiaE. LeblancK. LewinG. CanardB. FigadèreB. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp.Planta Med.201379141313131810.1055/s‑0033‑135067223929244
    [Google Scholar]
  51. BourjotM. LeyssenP. EydouxC. GuillemotJ.C. CanardB. RasoanaivoP. GuéritteF. LitaudonM. FlacourtosidesA-F. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi.J. Nat. Prod.201275475275810.1021/np300059n22439591
    [Google Scholar]
  52. PeyratL.A. EparvierV. EydouxC. GuillemotJ.C. LitaudonM. StienD. Carneic acids from an endophytic Phomopsis sp. as dengue virus polymerase inhibitors.J. Nat. Prod.20208382330233610.1021/acs.jnatprod.9b0116932686414
    [Google Scholar]
  53. RatanakomolT. RoytrakulS. WikanN. SmithD.R. Berberine inhibits dengue virus through dual mechanisms.Molecules20212618550110.3390/molecules2618550134576974
    [Google Scholar]
  54. ChengY.B. ChienY.T. LeeJ.C. TsengC.K. WangH.C. LoI.W. WuY.H. WangS.Y. WuY.C. ChangF.R. Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2.J. Nat. Prod.201477112367237410.1021/np500282925330401
    [Google Scholar]
  55. SannaG. MadedduS. GilibertiG. NtalliN.G. CottigliaF. De LoguA. AgusE. CaboniP. Limonoids from melia azedarach fruits as inhibitors of flaviviruses and mycobacterium tubercolosis.PLoS One20151010e014127210.1371/journal.pone.014127226485025
    [Google Scholar]
  56. SilvaF.C. RodriguesV.G. DuarteL.P. LulaI.S. SinisterraR.D. Vieira-FilhoS.A. RodriguesR.A.L. KroonE.G. OliveiraP.L. FariasL.M. MagalhãesP.P. SilvaG.D.F. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol.An. Acad. Bras. Cienc.20178931555156410.1590/0001‑376520172016004628954173
    [Google Scholar]
  57. ZandiK. LimT.H. RahimN.A. ShuM.H. TeohB.T. SamS.S. DanlamiM.B. TanK.K. AbubakarS. Extract of Scutellaria baicalensis inhibits dengue virus replication.BMC Complement. Altern. Med.20131319110.1186/1472‑6882‑13‑9123627436
    [Google Scholar]
  58. AraS. Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus.J. Venom. Anim. Toxins Incl. Trop. Dis.2011174406413
    [Google Scholar]
  59. MoghaddamE. TeohB.T. SamS.S. LaniR. HassandarvishP. ChikZ. YuehA. AbubakarS. ZandiK. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus.Sci. Rep.201441545210.1038/srep0545224965553
    [Google Scholar]
  60. ChangF.R. LiP.S. Huang LiuR. HuH.C. HwangT.L. LeeJ.C. ChenS.L. WuY.C. ChengY.B. Bioactive phenolic components from the twigs of Atalantia buxifolia.J. Nat. Prod.20188171534153910.1021/acs.jnatprod.7b0093829975532
    [Google Scholar]
  61. ChiowK.H. PhoonM.C. PuttiT. TanB.K.H. ChowV.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection.Asian Pac. J. Trop. Med.2016911710.1016/j.apjtm.2015.12.00226851778
    [Google Scholar]
  62. Gómez-CalderónC. Mesa-CastroC. RobledoS. GómezS. Bolivar-AvilaS. Diaz-CastilloF. Martínez-GutierrezM. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.BMC Complement. Altern. Med.20171715710.1186/s12906‑017‑1562‑128100218
    [Google Scholar]
  63. WhitbyK. PiersonT.C. GeissB. LaneK. EngleM. ZhouY. DomsR.W. DiamondM.S. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo.J. Virol.200579148698870610.1128/JVI.79.14.8698‑8706.200515994763
    [Google Scholar]
  64. LinL.T. ChenT.Y. LinS.C. ChungC.Y. LinT.C. WangG.H. AndersonR. LinC.C. RichardsonC.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry.BMC Microbiol.201313118710.1186/1471‑2180‑13‑18723924316
    [Google Scholar]
  65. Loaiza-CanoV. Monsalve-EscuderoL.M. FilhoC.S.M.B. Martinez-GutierrezM. SousaD.P. Antiviral role of phenolic compounds against dengue virus: A review.Biomolecules20201111110.3390/biom1101001133374457
    [Google Scholar]
  66. BrandãoG. KroonE. SouzaD. FilhoJ. OliveiraA. Chemistry and antiviral activity of arrabidaea pulchra (Bignoniaceae).Molecules20131889919993210.3390/molecules1808991923959197
    [Google Scholar]
  67. ZandiK. TeohB.T. SamS.S. WongP.F. MustafaM.R. AbuBakarS. Antiviral activity of four types of bioflavonoid against dengue virus type-2.Virol. J.20118156010.1186/1743‑422X‑8‑56022201648
    [Google Scholar]
  68. PaemaneeA. HitakarunA. RoytrakulS. SmithD.R. Screening of melatonin, α-tocopherol, folic acid, acetyl-l-carnitine and resveratrol for anti-dengue 2 virus activity.BMC Res. Notes201811130710.1186/s13104‑018‑3417‑329769094
    [Google Scholar]
  69. PanraksaP. RamphanS. KhongwichitS. SmithD.R. Activity of andrographolide against dengue virus.Antiviral Res.2017139697810.1016/j.antiviral.2016.12.01428034742
    [Google Scholar]
  70. SimõesL.R. MacielG.M. BrandãoG.C. KroonE.G. CastilhoR.O. OliveiraA.B. Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil.Lett. Appl. Microbiol.201153660260710.1111/j.1472‑765X.2011.03146.x21895729
    [Google Scholar]
  71. ChengY.B. LeeJ.C. LoI.W. ChenS.R. HuH.C. WuY.H. WuY.C. ChangF.R. Ecdysones from Zoanthus spp. with inhibitory activity against dengue virus 2.Bioorg. Med. Chem. Lett.20162692344234810.1016/j.bmcl.2016.03.02926988299
    [Google Scholar]
  72. HuangH.C. ChenL.C. ChangT.H. ZhuT.F. ChenC.L. ChengM.J. ChenJ.J. A new lignanamide derivative and bioactive constituents of lycium chinense.Chem. Nat. Compd.20195561002100610.1007/s10600‑019‑02879‑1
    [Google Scholar]
  73. Diosa-ToroM. TroostB. van de PolD. HeberleA.M. Urcuqui-InchimaS. ThedieckK. SmitJ.M. Tomatidine, a novel antiviral compound towards dengue virus.Antiviral Res.2019161909910.1016/j.antiviral.2018.11.01130468746
    [Google Scholar]
  74. YaoX. LingY. GuoS. HeS. WangJ. ZhangQ. WuW. ZouM. ZhangT. NandakumarK.S. ChenX. LiuS. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5.Eur. J. Pharmacol.2018821112010.1016/j.ejphar.2017.12.02929246851
    [Google Scholar]
  75. KaushikS. KaushikS. DarL. YadavJ.P. Eugenol isolated from supercritical fluid extract of Ocimum sanctum: A potent inhibitor of DENV-2.AMB Express202313110510.1186/s13568‑023‑01607‑x37783874
    [Google Scholar]
  76. PandaK. AlagarasuK. PatilP. AgrawalM. MoreA. KumarN.V. MainkarP.S. ParasharD. CherianS. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2).Molecules20212610301610.3390/molecules2610301634069351
    [Google Scholar]
  77. PengM. WatanabeS. ChanK.W.K. HeQ. ZhaoY. ZhangZ. LaiX. LuoD. VasudevanS.G. LiG. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.Antiviral Res.201714317618510.1016/j.antiviral.2017.03.02628389141
    [Google Scholar]
  78. KanyaboonP. SaeleeT. SuroengritA. HengphasatpornK. RungrotmongkolT. ChavasiriW. BoonyasuppayakornS. Cardol triene inhibits dengue infectivity by targeting kl loops and preventing envelope fusion.Sci. Rep.2018811664310.1038/s41598‑018‑35035‑w30413789
    [Google Scholar]
  79. QuintanaV.M. SeliskoB. BrunettiJ.E. EydouxC. GuillemotJ.C. CanardB. DamonteE.B. JulanderJ.G. CastillaV. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses.Antiviral Res.202017610474910.1016/j.antiviral.2020.10474932081740
    [Google Scholar]
  80. ChenJ.M. FanY.C. LinJ.W. ChenY.Y. HsuW.L. ChiouS.S. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN.Int. J. Mol. Sci.2017189195710.3390/ijms1809195728895925
    [Google Scholar]
  81. ShuklaR. RajpootR.K. PoddarA. AhujaR. BeesettiH. ShanmugamR.K. ChaturvediS. NayyarK. SinghD. SingamaneniV. GuptaP. GuptaA.P. GairolaS. KumarP. BediY.S. JainT. VashishtaB. PatilR. MadanH. MadanS. KalraR. SoodR. VishwakarmaR.A. ReddyD.S. LalA.A. AroraU. KhannaN. Cocculus hirsutus-derived phytopharmaceutical drug has potent anti-dengue activity.Front. Microbiol.20211274611010.3389/fmicb.2021.74611034912307
    [Google Scholar]
  82. ZandiK. TeohB.T. SamS.S. WongP.F. MustafaM.R. AbuBakarS. Novel antiviral activity of baicalein against dengue virus.BMC Complement. Altern. Med.201212121410.1186/1472‑6882‑12‑21423140177
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266312717240821062535
Loading
/content/journals/ctmc/10.2174/0115680266312717240821062535
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Dengue; DENV; E protein; Natural products; NS1 protein; NS2B-NS3 protease; NS5 protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test