Skip to content
2000
Volume 24, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Among heterocyclic compounds, quinoline is one of the best ubiquitous heterocyclic rings for medicinal chemistry purposes. Quinoline appears to be a powerful chemical structure to develop new drug entities. The quinoline derivatives own a wide array of biological activities such as anticancer, antimalarial, antimicrobial, anti-inflammatory, anti-leishmanial, . Because of the wide spectrum of bioactivities, the scientific communities are still looking for more efficient synthetic routes to form quinoline derivatives. Therefore, the primary focus of this review is to provide a thorough and inclusive, updated report on quinoline analogs that may pave the way for more efficient drug development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314303240830074056
2024-11-01
2025-06-25
Loading full text...

Full text loading...

References

  1. AlajarinR. BurgosC. Six-membered heterocyles: Quinoline and IsoquinolineHeterocyclic Chemistry.New YorkWiley & Sons2011
    [Google Scholar]
  2. (a MichaelJ.P. Quinoline, quinazoline and acridone alkaloids.Nat. Prod. Rep.199614605618
    [Google Scholar]
  3. (b BalasubramanianM. Comprehensive Heterocyclic Chemistry IIeds.,1996
    [Google Scholar]
  4. PrajapatiS.M. PatelK.D. VekariyaR.H. PanchalS.N. PatelH.D. Recent advances in the synthesis of quinolines: a review.RSC Advances2014447244632447610.1039/C4RA01814A
    [Google Scholar]
  5. KumarS. BawaS. GuptaH. Biological activities of quinoline derivatives.Mini Rev. Med. Chem.20099141648165410.2174/138955709791012247 20088783
    [Google Scholar]
  6. MarellaA. TanwarO.P. SahaR. AliM.R. SrivastavaS. AkhterM. ShaquiquzzamanM. AlamM.M. Quinoline: A versatile heterocyclic.Saudi Pharm. J.201321111210.1016/j.jsps.2012.03.002 23960814
    [Google Scholar]
  7. SonawaneH.R. VibhuteB.T. AghavB.D. DeoreJ.V. PatilS.K. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview.Eur. J. Med. Chem.202325811554910.1016/j.ejmech.2023.115549 37321110
    [Google Scholar]
  8. KaurT. BhandariD.D. Annotated review on various biological activities of quinoline molecule.Biointerface Res. Appl. Chem.202313355
    [Google Scholar]
  9. Van de WalleT. CoolsL. MangelinckxS. D’hoogheM. Recent contributions of quinolines to antimalarial and anticancer drug discovery research.Eur. J. Med. Chem.202122611386510.1016/j.ejmech.2021.113865 34655985
    [Google Scholar]
  10. MittalR.K. AggarwalM. KhatanaK. PurohitP. Quinoline: Synthesis to Application.Med. Chem.20221913146 35240965
    [Google Scholar]
  11. (a AgrawalA.K. JenekheS.A. Electrochemical properties and electronic structures of conjugated Polyquinolines and Polyanthrazolines.Chem. Mater.19968257958910.1021/cm9504753
    [Google Scholar]
  12. (b JenekheS.A. LuL. AlamM.M. New Conjugated Polymers with Donor−Acceptor Architectures: Synthesis and photophysics of carbazole−quinoline and phenothiazine−quinoline copolymers and oligomers exhibiting large intramolecular charge transfer.Macromolecules200134217315732410.1021/ma0100448
    [Google Scholar]
  13. CombesA. Quinoline synthesis.Bull. Chim. Soc. France.1888498994
    [Google Scholar]
  14. BergstromF.W. Heterocyclic nitrogen compounds. Part IIA. Hexacyclic compounds: Pyridine, Quinoline, and Isoquinoline.Chem. Rev.19443527727710.1021/cr60111a001
    [Google Scholar]
  15. XiangD. XinX. LiuX. KumarS. DongD. One-pot synthesis of Pyrano[2,3-b]quinolines from enaminones under solvent-free conditions.Synlett20111521872190
    [Google Scholar]
  16. FriedlaenderP. Ueber o‐Amidobenzaldehyd.Ber. Dtsch. Chem. Ges.18821522572257510.1002/cber.188201502219
    [Google Scholar]
  17. (a EckertH. Selective reduction of the nitro to the amino functional group by means of the phthalocyaninecobalt (I) anion; synthesis of N-Heterocycles and alkaloids.Angew. Chem. Int. Ed. Engl.198120220821010.1002/anie.198102081
    [Google Scholar]
  18. (b GladialiS. ChelucciG. MudaduM.S. GastautM.A. ThummelR.P. Friedländer synthesis of chiral alkyl-substituted 1,10-phenanthrolines.J. Org. Chem.200166240040510.1021/jo000980611429806
    [Google Scholar]
  19. (c DeS.K. GibbsR.A. A mild and efficient one-step synthesis of quinolines.Tetrahedron Lett.200546101647164910.1016/j.tetlet.2005.01.075
    [Google Scholar]
  20. (a HuangH. JiangH. ChenK. LiuH. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature.J. Org. Chem.200974155476548010.1021/jo901101v19572501
    [Google Scholar]
  21. (b KulkarniA. TörökB. Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines.Green Chem.201012587597810.1039/c001076f
    [Google Scholar]
  22. PovarovL.S. αβ-UNSATURATED ETHERS AND THEIR ANALOGUES IN REACTIONS OF DIENE SYNTHESIS.Russ. Chem. Rev.196736965667010.1070/RC1967v036n09ABEH001680
    [Google Scholar]
  23. KouznetsovV.V. Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids.Tetrahedron200965142721275010.1016/j.tet.2008.12.059
    [Google Scholar]
  24. DoebnerO. von MillerW. “Ueber Chinaldinbasen” Chemische Berichte. Ber. deut.Chem. Ges18831624602464
    [Google Scholar]
  25. ConradM. LimpachL. synthesen von Chinolinderivaten mittelst Acetessigester.Ber. Dtsch. Chem. Ges.188720194494810.1002/cber.188702001215
    [Google Scholar]
  26. PfitzingerW. Chinolinderivate aus Isatinsäure.J. Prakt. Chem.188633110010.1002/prac.18850330110
    [Google Scholar]
  27. ShvekhgeimerM.G.A. The Pfitzinger reaction.Chem. Heterocycl. Compd.200440325729410.1023/B:COHC.0000028623.41308.e5
    [Google Scholar]
  28. El AshryE.S.H. RamadanE.S. Abdel HamidH. HagarM. Microwave‐Assisted Synthesis of Quinoline Derivatives from Isatin.Synth. Commun.200535172243225010.1080/00397910500184719
    [Google Scholar]
  29. BharateJ.B. BharateS.B. VishwakarmaR.A. Metal-free, ionic liquid-mediated synthesis of functionalized quinolines.ACS Comb. Sci.2014161162463010.1021/co500047w 25314670
    [Google Scholar]
  30. BorelC.R. BarbosaL.C.A. MalthaC.R.Á. FernandesS.A. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction.Tetrahedron Lett.201556566266510.1016/j.tetlet.2014.12.016
    [Google Scholar]
  31. MuraM.G. RajamakiS. DeLucaL. CiniE. PorchedduA. A mild and efficient synthesis of substituted Quinolines via a crossdehydrogenative coupling of (Bio)available alcohols and aminoarenes.Adv. Syn. Cat.2015357576582
    [Google Scholar]
  32. ZhangX. DhawanG. MuthengiA. LiuS. WangW. LegrisM. ZhangW. One-pot and catalyst-free synthesis of pyrroloquino-linediones and quinolinedicarboxylates.Green Chem.201719163851385510.1039/C7GC01380A
    [Google Scholar]
  33. JentschN.G. HumeJ.D. CrullE.B. BeautiS.M. PhamA.H. PigzaJ.A. KesslJ.J. DonahueM.G. Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate and derivatives.Beilstein J. Org. Chem.2018142529253610.3762/bjoc.14.229 30344776
    [Google Scholar]
  34. DasS. MaitiD. De SarkarS. Synthesis of polysubstituted Quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling.J. Org. Chem.20188342309231610.1021/acs.joc.7b03198 29345932
    [Google Scholar]
  35. DasS. SinhaS. SamantaD. MondalR. ChakrabortyG. BrandaõP. PaulN.D. Metal–ligand cooperative approach to achieve dehydrogenative functionalization of alcohols to quinolines and quinazolin-4(3H)-ones under mild aerobic conditions.J. Org. Chem.20198416101601017110.1021/acs.joc.9b01343 31327228
    [Google Scholar]
  36. BainsA.K. SinghV. AdhikariD. Homogeneous nickel-catalyzed sustainable synthesis of quinoline and quinoxaline under aerobic aonditions.J. Org. Chem.20208523149711497910.1021/acs.joc.0c01819 33174416
    [Google Scholar]
  37. TalvitieJ. AlankoI. BulatovE. KoivulaJ. PöllänenT. HelajaJ. Phenanthrenequinone-sensitized photocatalytic synthesis of polysubstituted quinolines from2-Vinylarylimines.Org. Lett.202224127427810.1021/acs.orglett.1c03934 34928166
    [Google Scholar]
  38. YangT. LiH. NieZ. SuM.D. LuoW.P. Liu, Q.; Guo, C.C. [3+1+1+1] Annulation to the pyridine structure in quinoline molecules based on DMSO as a nonadjacent dual-methine synthon: Simple synthesis of 3-Arylquinolines from arylaldehydes, arylamines, and DMSO.J. Org. Chem.2022872797280810.1021/acs.joc.1c02708 35076229
    [Google Scholar]
  39. MaJ.T. ChenT. TangB.C. ChenX.L. YuZ.C. ZhouY. ZhuangS.Y. WuY.D. XiangJ.C. WuA.X. A pummerer reaction-enabled modular synthesis of alkyl quinoline-3-carboxylates and 3-Arylquinolines from amino acids.J. Org. Chem.20238863760377110.1021/acs.joc.2c03034 36821870
    [Google Scholar]
  40. LvK.H. ChenL. ZhaoK. YangJ.M. YanS.J. Cu-catalyzed decarboxylative annulation of N-phenylglycines with maleimides: Synthesis of 1H-Pyrrolo[3,4-c]quinoline-1,3(2H)-diones.J. Org. Chem.20238842358236610.1021/acs.joc.2c02757 36753732
    [Google Scholar]
  41. WuH.Y. CaoZ. LiS.Q. FuY.W. LiJ.M. LiX.H. HeC.M. ChenJ.Y. He. C.M.; Chen, J.Y. Visible-light-mediated annulation/thiolation of 2-Isocyanobiaryls with disulfides to organoylthiophenanthridines derivatives.J. Org. Chem.20238824173221732910.1021/acs.joc.3c02152 38044560
    [Google Scholar]
  42. HawleyS.R. BrayP.G. MungthinM. AtkinsonJ.D. O’NeillP.M. WardS.A. Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro.Antimicrob. Agents Chemother.199842368268610.1128/AAC.42.3.682 9517951
    [Google Scholar]
  43. (a BairdJ.K. RieckmannK.H. Can primaquine therapy for vivax malaria be improved?Trends Parasitol.200319311512010.1016/S1471‑4922(03)00005‑912643993
    [Google Scholar]
  44. (b Kevin BairdJ. FryauffD.J. HoffmanS.L. Primaquine for prevention of malaria in travelers.Clin. Infect. Dis.200337121659166710.1086/379714 14689349
    [Google Scholar]
  45. SuroliaN. PadmanabanG. Chloroquine inhibits hemedependent protein synthesis in Plasmodium falciparum.Proc. Natl. Acad. Sci. USA199188114786479010.1073/pnas.88.11.4786 2052558
    [Google Scholar]
  46. GinsburgH. GearyT.G. Current concepts and new ideas on the mechanism of action of quinoline-containing antimalarials.Biochem. Pharmacol.198736101567157610.1016/0006‑2952(87)90038‑4 3297064
    [Google Scholar]
  47. Vancer JagtD.L. HunsakerL.A. CamposN.M. Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum.Mol. Biochem. Parasitol.198618338940010.1016/0166‑6851(86)90095‑2 3515180
    [Google Scholar]
  48. (a CohenS.N. YieldingK.L. Inhibition of DNA and RNA polymerase reactions by chloroquine.Proc. Natl. Acad. Sci. USA196554252152710.1073/pnas.54.2.5215324393
    [Google Scholar]
  49. (b MeshnickS.R. Chloroquine as intercalator: a hypothesis revived.Parasitol. Today199063777910.1016/0169‑4758(90)90215‑P 15463303
    [Google Scholar]
  50. WinstanleyP.A. WardS.A. SnowR.W. Clinical status and implications of antimalarial drug resistance.Microbes Infect.20024215716410.1016/S1286‑4579(01)01523‑4 11880047
    [Google Scholar]
  51. SashidharaK.V. AvulaS.R. PalnatiG.R. SinghS.V. SrivastavaK. PuriS.K. SaxenaJ.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum.Bioorg. Med. Chem. Lett.201222175455545910.1016/j.bmcl.2012.07.028 22850213
    [Google Scholar]
  52. JoshiM.C. WichtK.J. TaylorD. HunterR. SmithP.J. EganT.J. In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles.Eur. J. Med. Chem.20136933834710.1016/j.ejmech.2013.08.046 24077524
    [Google Scholar]
  53. VandekerckhoveS. MüllerC. VogtD. LateganC. SmithP.J. ChibaleK. De KimpeN. D’hoogheM. Synthesis and antiplasmodial evaluation of novel (4-aminobutyloxy)quinolines.Bioorg. Med. Chem. Lett.201323131832210.1016/j.bmcl.2012.10.094 23195733
    [Google Scholar]
  54. PandeyS. AgarwalP. SrivastavaK. RajaKumar, S.; Puri, S.K.; Verma, P.; Saxena, J.K.; Sharma, A.; Lal, J.; Chauhan, P.M.S. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents.Eur. J. Med. Chem.201366698110.1016/j.ejmech.2013.05.023 23792317
    [Google Scholar]
  55. TeguhS.C. KlonisN. DuffyS. LucantoniL. AveryV.M. HuttonC.A. BaellJ.B. TilleyL. Novel conjugated quinoline-indoles compromise Plasmodium falciparum mitochondrial function and show promising antimalarial activity.J. Med. Chem.201356156200621510.1021/jm400656s 23837878
    [Google Scholar]
  56. CornutD. LemoineH. KanishchevO. OkadaE. AlbrieuxF. BeavoguiA.H. BienvenuA.L. PicotS. BouillonJ.P. MédebielleM. Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities.J. Med. Chem.2013561738310.1021/jm301076q 23102258
    [Google Scholar]
  57. OpsenicaI. OpsenicaD. LanteriC.A. AnovaL. MilhousW.K. SmithK.S. ŠolajaB.A. New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton.J. Med. Chem.200851196216621910.1021/jm8006905 18774792
    [Google Scholar]
  58. CoslédanF. FraisseL. PelletA. GuillouF. MordmüllerB. KremsnerP.G. MorenoA. MazierD. MaffrandJ.P. MeunierB. Selection of a trioxaquine as an antimalarial drug candidate.Proc. Natl. Acad. Sci. USA200810545175791758410.1073/pnas.0804338105 18987321
    [Google Scholar]
  59. (a BiotC. GlorianG. MaciejewskiL.A. BrocardJ.S. DomarleO. BlampainG. MilletP. GeorgesA.J. AbessoloH. DiveD. LebibiJ. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue.J. Med. Chem.199740233715371810.1021/jm970401y9371235
    [Google Scholar]
  60. (b DomarleO. BlampainG. AgnanietH. NzadiyabiT. LebibiJ. BrocardJ. MaciejewskiL. BiotC. GeorgesA.J. MilletP. In vitro antimalarial activity of a new organometallic analog, ferrocene-chloroquine.Antimicrob. Agents Chemother.199842354054410.1128/AAC.42.3.5409517929
    [Google Scholar]
  61. (c DubarF. KhalifeJ. BrocardJ. DiveD. BiotC. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action.Molecules200813112900290710.3390/molecules13112900 19020475
    [Google Scholar]
  62. BellotF. CoslédanF. VendierL. BrocardJ. MeunierB. RobertA. Trioxaferroquines as new hybrid antimalarial drugs.J. Med. Chem.201053104103410910.1021/jm100117e 20443628
    [Google Scholar]
  63. ChiyanzuI. ClarksonC. SmithP.J. LehmanJ. GutJ. RosenthalP.J. ChibaleK. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives.Bioorg. Med. Chem.20051393249326110.1016/j.bmc.2005.02.037 15809160
    [Google Scholar]
  64. AndayiW.A. EganT.J. GutJ. RosenthalP.J. ChibaleK. Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids.ACS Med. Chem. Lett.20134764264610.1021/ml4001084 24900724
    [Google Scholar]
  65. StocksP.A. RaynesK.J. BrayP.G. ParkB.K. O’NeillP.M. WardS.A. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.J. Med. Chem.200245234975498310.1021/jm0108707 12408708
    [Google Scholar]
  66. O’NeillP.M. MukhtarA. StocksP.A. RandleL.E. HindleyS. WardS.A. StorrR.C. BickleyJ.F. O’NeilI.A. MaggsJ.L. HughesR.H. WinstanleyP.A. BrayP.G. ParkB.K. Isoquine and related amodiaquine analogues: a new generation of improved 4-aminoquinoline antimalarials.J. Med. Chem.200346234933494510.1021/jm030796n 14584944
    [Google Scholar]
  67. SolomonV.R. HaqW. SrivastavaK. PuriS.K. KattiS.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives.J. Med. Chem.200750239439810.1021/jm061002i 17228883
    [Google Scholar]
  68. VennerstromJ.L. EllisW.Y. AgerA.L.Jr AndersenS.L. GerenaL. MilhousW.K. Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria.J. Med. Chem.199235112129213410.1021/jm00089a025 1597862
    [Google Scholar]
  69. RyckebuschA. Déprez-PoulainR. Debreu-FontaineM.A. VandaeleR. MourayE. GrellierP. SergheraertC. Parallel synthesis and antimalarial activity of a sulfonamide library.Bioorg. Med. Chem. Lett.200212182595259810.1016/S0960‑894X(02)00475‑4 12182868
    [Google Scholar]
  70. (a BurgessS.J. SelzerA. KellyJ.X. SmilksteinM.J. RiscoeM.K. PeytonD.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum.J. Med. Chem.200649185623562510.1021/jm060399n16942036
    [Google Scholar]
  71. (b BurgessS.J. KellyJ.X. ShomlooS. WittlinS. BrunR. LiebmannK. PeytonD.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds.J. Med. Chem.201053176477648910.1021/jm1006484 20684562
    [Google Scholar]
  72. RadiniI. ElsheikhT. El-TelbaniE. KhidreR. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents.Molecules201621790910.3390/molecules21070909 27428939
    [Google Scholar]
  73. SoaresR.R. da SilvaJ.M.F. CarlosB.C. da FonsecaC.C. de SouzaL.S.A. LopesF.V. de Paula DiasR.M. MoreiraP.O.L. AbramoC. VianaG.H.R. de Pila VarottiF. da SilvaA.D. ScopelK.K.G. New quinoline derivatives demonstrate a promising anti-malarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.Bioorg. Med. Chem. Lett.201525112308231310.1016/j.bmcl.2015.04.014 25920564
    [Google Scholar]
  74. BoechatN. FerreiraM.L.G. PinheiroL.C.S. JesusA.M.L. LeiteM.M.M. JúniorC.C.S. AguiarA.C.C. de AndradeI.M. KrettliA.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum.Chem. Biol. Drug Des.201484332533210.1111/cbdd.12321 24803084
    [Google Scholar]
  75. TopleM.S. PatelN.B. PatelP.P. PurohitA.C. AhmadI. PatelH. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases.J. Mol. Struct.2023127113401610.1016/j.molstruc.2022.134016
    [Google Scholar]
  76. KumarA. JainS. ChauhanS. AggarwalS. SainiD. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction.Chem. Biol. Interact.202337311037910.1016/j.cbi.2023.110379 36738914
    [Google Scholar]
  77. YadavA. KaushikC.P. ParshadM. YadavP. YadavJ. SangwanJ. Quinoline-thiazole-1,2,3 triazole hybrids: Synthesis, antimalarial, antimicrobial activity and molecular docking studies.Synth. Commun.202454131068108510.1080/00397911.2024.2364848
    [Google Scholar]
  78. YadavJ. KaushikC.P. Quinoline-1,2,3-triazole hybrids: Design, synthesis, antimalarial and antimicrobial evaluation.J. Mol. Struct.2024131613888210.1016/j.molstruc.2024.138882
    [Google Scholar]
  79. ChoudharyD. RaniP. RangraN.K. GuptaG.K. KhokraS.L. BhandareR.R. ShaikA.B. Designing novel anti-plasmodial quinoline–furanone hybrids: computational insights, synthesis, and biological evaluation targeting Plasmodium falciparum lactate dehydrogenase.RSC Advances20241426187641877610.1039/D4RA01804D 38867738
    [Google Scholar]
  80. CnubbenN.H.P. WortelboerH.M. van ZandenJ.J. RietjensI.M.C.M. van BladerenP.J. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.Expert Opin. Drug Metab. Toxicol.20051221923210.1517/17425255.1.2.219 16922638
    [Google Scholar]
  81. KawaseM. MotohashiN. New multidrug resistance reversal agents.Curr. Drug Targets200341314310.2174/1389450033347064 12528988
    [Google Scholar]
  82. LevittM.L. KotyP.P. Tyrosine kinase inhibitors in preclinical development.Invest. New Drugs199917321322610.1023/A:1006372102543 10665475
    [Google Scholar]
  83. AlqasoumiS.I. Al-TaweelA.M. AlafeefyA.M. HamedM.M. NoamanE. GhorabM.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents.Bioorg. Med. Chem. Lett.200919246939694210.1016/j.bmcl.2009.10.065 19879135
    [Google Scholar]
  84. GhorabM.M. RagabF.A. HeibaH.I. GhorabW.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase.J. Heterocycl. Chem.20114861269127910.1002/jhet.749
    [Google Scholar]
  85. HeinigerB. GakharG. PrasainK. HuaD.H. NguyenT.A. Second-generation substituted quinolines as anticancer drugs for breast cancer.Anticancer Res.2010301039273932 21036704
    [Google Scholar]
  86. GuadencioS.P. MacMillanJ.B. JensenP.R. FenicalW. Ammosamides A and B new cytotoxic alkaloids isolated from a marine Streptomyces sp.Planta Med.2008741083
    [Google Scholar]
  87. HughesC.C. FenicalW. Total synthesis of the ammosamides.J. Am. Chem. Soc.201013282528252910.1021/ja9106572 20131899
    [Google Scholar]
  88. HughesC.C. MacMillanJ.B. GaudêncioS.P. JensenP.R. FenicalW. The ammosamides: structures of cell cycle modulators from a marine-derived Streptomyces species.Angew. Chem. Int. Ed.200948472572710.1002/anie.200804890 19090514
    [Google Scholar]
  89. HughesC.C. MacMillanJ.B. GaudêncioS.P. FenicalW. La ClairJ.J. Ammosamides A and B target myosin.Angew. Chem. Int. Ed.200948472873210.1002/anie.200804107 19097126
    [Google Scholar]
  90. ReddyP.V.N. JensenK.C. MesecarA.D. FanwickP.E. CushmanM. Design, synthesis, and biological evaluation of potent quinoline and pyrroloquinoline ammosamide analogues as inhibitors of quinone reductase 2.J. Med. Chem.201255136737710.1021/jm201251c 22206487
    [Google Scholar]
  91. WangY. AiJ. WangY. ChenY. WangL. LiuG. GengM. ZhangA. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent.J. Med. Chem.20115472127214210.1021/jm101340q 21405128
    [Google Scholar]
  92. ShiA. NguyenT.A. BattinaS.K. RanaS. TakemotoD.J. ChiangP.K. HuaD.H. Synthesis and anti-breast cancer activities of substituted quinolines.Bioorg. Med. Chem. Lett.200818113364336810.1016/j.bmcl.2008.04.024 18457950
    [Google Scholar]
  93. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.013 23628470
    [Google Scholar]
  94. QiB. MiB. ZhaiX. XuZ. ZhangX. TianZ. GongP. Discovery and optimization of novel 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazones as c-Met kinase inhibitors.Bioorg. Med. Chem.201321175246526010.1016/j.bmc.2013.06.026 23838381
    [Google Scholar]
  95. AdsuleS. BarveV. ChenD. AhmedF. DouQ.P. PadhyeS. SarkarF.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells.J. Med. Chem.200649247242724610.1021/jm060712l 17125278
    [Google Scholar]
  96. MulakayalaN. RambabuD. RajaM.R. M, C.; Kumar, C.S.; Kalle, A.M.; Rama Krishna, G.; Malla Reddy, C.; Basaveswara Rao, M.V.; Pal, M. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti-cancer agents.Bioorg. Med. Chem.201220275976810.1016/j.bmc.2011.12.001 22202437
    [Google Scholar]
  97. KühnleM. EggerM. MüllerC. MahringerA. BernhardtG. FrickerG. KönigB. BuschauerA. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar.J. Med. Chem.20095241190119710.1021/jm8013822 19170519
    [Google Scholar]
  98. BauerS. Ochoa-PuentesC. SunQ. BauseM. BernhardtG. KönigB. BuschauerA. Quinoline carboxamide-type ABCG2 modulators: indole and quinoline moieties as anilide replacements.ChemMedChem20138111773177810.1002/cmdc.201300319 24039190
    [Google Scholar]
  99. UtsugiT. AoyagiK. AsaoT. OkazakiS. AoyagiY. SanoM. WierzbaK. YamadaY. Antitumor activity of a novel quinoline derivative, TAS-103, with inhibitory effects on topoisomerases I and II.Jpn. J. Cancer Res.19978810992100210.1111/j.1349‑7006.1997.tb00320.x 9414662
    [Google Scholar]
  100. (a ChenI.L. ChenY.L. TzengC.C. ChenI.S. Synthesis and cytotoxic evaluation of some 4-Anilinofuro[2,3-b]quinoline derivatives.Helv. Chim. Acta20028572214222110.1002/1522‑2675(200207)85:7<2214::AID‑HLCA2214>3.0.CO;2‑W
    [Google Scholar]
  101. (b ChenI.L. ChenY.L. TzengC.C. Chemical constituents from Dehaasia triandra. III. Bisbenzylisoquinoline alkaloids from the leaves and their conformational analysis.Chung Kuo Yao Hsueh Tsa Chih2003553547
    [Google Scholar]
  102. (c HuangY.T. HuangD.M. GuhJ.H. ChenI.L. TzengC.C. TengC.M. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line.J. Biol. Chem.200528042771277910.1074/jbc.M408850200 15536083
    [Google Scholar]
  103. ChenY. ChenI. WangT. HanC. TzengC. Synthesis and anticancer evaluation of certain 4-anilinofuro[2,3-]quinoline and 4-anilinofuro[3,2-]quinoline derivatives.Eur. J. Med. Chem.200540992893410.1016/j.ejmech.2005.04.003 15913847
    [Google Scholar]
  104. TsengC.H. ChenY.L. LuP.J. YangC.N. TzengC.C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives.Bioorg. Med. Chem.20081663153316210.1016/j.bmc.2007.12.028 18180162
    [Google Scholar]
  105. TsengC.H. TzengC.C. YangC.L. LuP.J. ChenH.L. LiH.Y. ChuangY.C. YangC.N. ChenY.L. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2.J. Med. Chem.201053166164617910.1021/jm1005447 20662543
    [Google Scholar]
  106. ChenY.W. ChenY.L. TsengC.H. LiangC.C. YangC.N. YaoY.C. LuP.J. TzengC.C. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers.J. Med. Chem.201154134446446110.1021/jm200046z 21599000
    [Google Scholar]
  107. TsengC.H. ChenY.L. HsuC.Y. ChenT.C. ChengC.M. TsoH.C. LuY.J. TzengC.C. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers.Eur. J. Med. Chem.20135927428210.1016/j.ejmech.2012.11.027 23237975
    [Google Scholar]
  108. MarganakopS.B. KambleR.R. HoskeriJ. PrasadD.J. MetiG.Y. Facile synthesis of novel quinoline derivatives as anticancer agents.Med. Chem. Res.20142362727273510.1007/s00044‑013‑0855‑2
    [Google Scholar]
  109. LiS. HuL. LiJ. ZhuJ. ZengF. HuangQ. QiuL. DuR. CaoR. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents.Eur. J. Med. Chem.201916266667810.1016/j.ejmech.2018.11.048 30496987
    [Google Scholar]
  110. JafariF. BaghayiH. LavaeeP. HadizadehF. SoltaniF. MoallemzadehH. MirzaeiS. AboutorabzadehS.M. GhodsiR. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents.Eur. J. Med. Chem.201916429230310.1016/j.ejmech.2018.12.060 30599418
    [Google Scholar]
  111. ÖktenS. AydınA. KoçyiğitÜ.M. ÇakmakO. ErkanS. AndacC.A. TaslimiP. Gülçinİ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors.Arch. Pharm. (Weinheim)20203539200008610.1002/ardp.202000086 32537757
    [Google Scholar]
  112. NafieM.S. KishkS.M. MahgoubS. AmerA.M. Quinoline‐based thiazolidinone derivatives as potent cytotoxic and apoptosis‐inducing agents through EGFR inhibition.Chem. Biol. Drug Des.202299454756010.1111/cbdd.13997 34873844
    [Google Scholar]
  113. ZaraeiS.O. Al-AchN.N. AnbarH.S. El-GamalR. TaraziH. TokatlyR.T. KallaR.R. MuntherM.A. WahbaM.M. AlshihabiA.M. ShehataM.K. SbenatiR.M. ShahinA.I. El-AwadyR. Al-TelT.H. El-GamalM.I. Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity.Eur. J. Med. Chem.202223811443410.1016/j.ejmech.2022.114434 35551038
    [Google Scholar]
  114. OmidkhahN. HadizadehF. AbnousK. GhodsiR. Synthesis, structure activity relationship and biological evaluation of a novel se-ries of quinoline–based benzamide derivatives as anticancer agents and histone deacetylase (HDAC) inhibitors.J. Mol. Struct.2022126713359910.1016/j.molstruc.2022.133599
    [Google Scholar]
  115. RoyJ. KyaniA. HanafiM. XuY. Takyi-WilliamsJ. SunD. OsmanE.E.A. NeamatiN. Design and synthesis of orally active quinolyl pyrazinamides as sigma 2 receptor ligands for the treatment of pancreatic cancer.J. Med. Chem.20236631990201910.1021/acs.jmedchem.2c01769 36692906
    [Google Scholar]
  116. HuS. LiuY. MaJ. DingW. ChenH. JiangH. ChenH. WeiS. LiuY. JinQ. YuanH. YanL. Discovery and structural optimization of novel quinolone derivatives as potent irreversible pan-fibroblast growth factor receptor inhibitors for treating solid tumors.J. Med. Chem.202366138858887510.1021/acs.jmedchem.3c00455 37335602
    [Google Scholar]
  117. (a YoshikawaT. NaitoY. TanigawaT. KondoM. Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance.Arzneimittelforschung19934333633668387788
    [Google Scholar]
  118. (b SuzukiM. MiuraS. MoriM. KaiA. SuzukiH. FukumuraD. SuematsuM. TsuchiyaM. Rebamipide, a novel antiulcer agent, attenuates Helicobacter pylori induced gastric mucosal cell injury associated with neutrophil derived oxidants.Gut199435101375137810.1136/gut.35.10.13757959190
    [Google Scholar]
  119. (c HahmK.B. ParkI.S. KimY.S. KimJ.H. ChoS.W. LeeS.I. YounJ.K. Role of rebamipide on induction of heat-shock proteins and protection against reactive oxygen metabolite-mediated cell damage in cultured gastric mucosal cells.Free Radic. Biol. Med.199722471171610.1016/S0891‑5849(96)00406‑69013134
    [Google Scholar]
  120. (d HongW.S. JungH.Y. YangS.K. MyungS.J. KimJ.H. MinY.I. ChungM.H. LeeH.S. KimH.W. The antioxidant effect of rebamipide on oxygen free radical production by H. pylori -activated human neutrophils: in comparison with N-acetylcysteine, ascorbic acid and glutathione.Pharmacol. Res.200144429329710.1006/phrs.2001.0839 11592863
    [Google Scholar]
  121. BrownT.H. IfeR.J. KeelingD.J. LaingS.M. LeachC.A. ParsonsM.E. PriceC.A. ReavillD.R. WiggallK.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 1. 1-Aryl-4-methylpyrrolo[3,2-c]quinolines as conformationally restrained analogs of 4-(arylamino)quinolines.J. Med. Chem.199033252753310.1021/jm00164a010 2153816
    [Google Scholar]
  122. HinoK. KawashimaK. OkaM. NagaiY. UnoH. MatsumotoJ. A novel class of antiulcer agents. 4-Phenyl-2-(1-piperazinyl)quinolines.Chem. Pharm. Bull. (Tokyo)198937111011510.1248/cpb.37.110 2720842
    [Google Scholar]
  123. CheonH.G. LeeS.S. LimH. LeeD.H. Pharmacological properties of a newly synthesized H+/K+ ATPase inhibitor, 1-(2-methyl-4-methoxyphenyl)-4-[(3-hydroxypropyl)amino]-6-methyl-2,3-dihydropyrrolo[3,2-c]quinoline.Eur. J. Pharmacol.20014111-218719210.1016/S0014‑2999(00)00920‑1 11137875
    [Google Scholar]
  124. CheonH.G. KimH.J. MoH.K. LeeB.H. ChoiJ.K. Pharmacological properties of the gastric H(+)/K(+) ATPase inhibitor, AU-461.Pharmacology200060316116810.1159/000028361 10754453
    [Google Scholar]
  125. IfeR.J. BrownT.H. KeelingD.J. LeachC.A. MeesonM.L. ParsonsM.E. ReavillD.R. TheobaldC.J. WiggallK.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 3. 3-Substituted-4-(phenylamino)quinolines.J. Med. Chem.199235183413342210.1021/jm00096a018 1326634
    [Google Scholar]
  126. LeachC.A. BrownT.H. IfeR.J. KeelingD.J. LaingS.M. ParsonsM.E. PriceC.A. WiggallK.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 2. 1-Arylpyrrolo[3,2-c]quinolines: effect of the 4-substituent.J. Med. Chem.199235101845185210.1021/jm00088a021 1316968
    [Google Scholar]
  127. KimH. KimD.G. LeeB.Y. LeeJ.W. KimK.H. Inhibitory effects of reversible proton pump inhibitors YH 1238 and YH1885 on acid secretion in isolated gastric cells.Korean J. Physiol. Pharmacol.19971337343
    [Google Scholar]
  128. UchidaM. OtsuboK. MatsubaraJ. OhtaniT. MoritaS. YamasakiK. Synthesis of 4-(phenylamino)quinoline-3-carboxamides as a novel class of gastric H+/K+-ATPase inhibitors.Chem. Pharm. Bull. (Tokyo)199543469369810.1248/cpb.43.693 7600619
    [Google Scholar]
  129. CheonH.G. KimH.J. MoH.K. ShinE. LeeY. Anti-ulcer activity of newly synthesized acylquinoline derivatives.Arch. Pharm. Res.199922213714210.1007/BF02976537 10230503
    [Google Scholar]
  130. YumE.K. YangO.K. KangS.K. CheonH.G. KimS.S. ChoiJ.K. Synthesis of 4-Phenylamino-3-vinylquinoline Derivatives as Gastric H +/K + -ATPase Inhibitors.Bull. Korean Chem. Soc.20042571091109410.5012/bkcs.2004.25.7.1091
    [Google Scholar]
  131. TurnerS.C. EsbenshadeT.A. BennaniY.L. HancockA.A. A new class of histamine H3-Receptor antagonists: synthesis and structure–Activity relationships of 7,8,9,10-Tetrahydro-6H-cyclohepta[b]quinolines.Bioorg. Med. Chem. Lett.200313132131213510.1016/S0960‑894X(03)00356‑1 12798320
    [Google Scholar]
  132. GunaydinC. BilgeS.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level.Eurasian J. Med.201850211612110.5152/eurasianjmed.2018.0010 30002579
    [Google Scholar]
  133. ChiaE.W. PearceA.N. BerridgeM.V. LarsenL. PerryN.B. SansomC.E. GodfreyC.A. HantonL.R. LuG.L.L. WaltonM. DennyW.A. WebbV.L. CoppB.R. HarperJ.L. Synthesis and anti-inflammatory structure–activity relationships of thiazine–quinoline–quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis.Bioorg. Med. Chem.200816219432944210.1016/j.bmc.2008.09.052 18835721
    [Google Scholar]
  134. SunX.Y. WeiC.X. ChaiK.Y. PiaoH.R. QuanZ.S. Synthesis and Anti‐inflammatory Activity Evaluation of Novel 7‐Alkoxy‐1‐amino‐4,5‐dihydro[1,2,4]triazole[4,3‐ a]quinolines.Arch. Pharm. (Weinheim)2008341528829310.1002/ardp.200700182 18389515
    [Google Scholar]
  135. ChenY.L. ChenI.L. LuC.M. TzengC.C. TsaoL.T. WangJ.P. Synthesis and anti-inflammatory evaluation of 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives. Part 2.Bioorg. Med. Chem.200311183921392710.1016/S0968‑0896(03)00439‑5 12927852
    [Google Scholar]
  136. ChenY.L. ChenI.L. LuC.M. TzengC.C. TsaoL.T. WangJ.P. Synthesis and anti-inflammatory evaluation of 4-anilinofuro[2,3- b]quinoline and 4-phenoxyfuro[2,3- b]quinoline derivatives. Part 3.Bioorg. Med. Chem.200412238739210.1016/j.bmc.2003.10.051 14723957
    [Google Scholar]
  137. ChenY.L. ZhaoY.L. LuC.M. TzengC.C. WangJ.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4.Bioorg. Med. Chem.200614134373437810.1016/j.bmc.2006.02.039 16524734
    [Google Scholar]
  138. MazzoniO. EspositoG. DiurnoM.V. BrancaccioD. CarotenutoA. GriecoP. NovellinoE. FilippelliW. Synthesis and pharmacological evaluation of some 4-oxo-quinoline-2-carboxylic acid derivatives as anti-inflammatory and analgesic agents.Arch. Pharm. (Weinheim)20103431056156910.1002/ardp.201000016 20938950
    [Google Scholar]
  139. ZarghiA. GhodsiR. AziziE. DaraieB. HedayatiM. DadrassO.G. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors.Bioorg. Med. Chem.200917145312531710.1016/j.bmc.2009.05.084 19560931
    [Google Scholar]
  140. BaruahB. DasuK. VaitilingamB. VanguriA. Rao CasturiS. Rao YeleswarapuK. 1,2-Diaryl-1-ethanone and pyrazolo[4,3-c] quinoline-4-one as novel selective cyclooxygenase-2 inhibitors.Bioorg. Med. Chem. Lett.200414244544810.1016/j.bmcl.2003.10.052 14698178
    [Google Scholar]
  141. RajanarendarE. Nagi ReddyM. Rama KrishnaS. Rama MurthyK. ReddyY.N. RajamM.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones.Eur. J. Med. Chem.20125527328310.1016/j.ejmech.2012.07.029 22846796
    [Google Scholar]
  142. UpadhyayK.D. DodiaN.M. KhuntR.C. ChaniaraR.S. ShahA.K. Synthesis and Biological Screening of Pyrano[3,2- c]quinoline Analogues as Anti-inflammatory and Anticancer Agents.ACS Med. Chem. Lett.20189328328810.1021/acsmedchemlett.7b00545 29541375
    [Google Scholar]
  143. DouadiK. ChafaaS. DouadiT. Al-NoaimiM. KaabiI. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA/BSA binding.J. Mol. Struct.2020121712830510.1016/j.molstruc.2020.128305
    [Google Scholar]
  144. PallaviB. SharmaP. BaigN. Kumar MadduluriV. SahA.K. SaumyaU. DubeyU.S. ShuklaP. Quinoline glycoconjugates as potentially anticancer and anti-inflammatory agents: An investigation involving synthesis, biological screening, and docking.ChemistrySelect20205319878988210.1002/slct.202002345
    [Google Scholar]
  145. GhanimA.M. GirgisA.S. KariukiB.M. SamirN. SaidM.F. AbdelnaserA. NasrS. BekheitM.S. AbdelhameedM.F. AlmalkiA.J. IbrahimT.S. PandaS.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates.Bioorg. Chem.202211910555710.1016/j.bioorg.2021.105557 34952242
    [Google Scholar]
  146. HuangL. YangL. WanJ.P. ZhouL. LiuY. HaoG. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity.Org. Biomol. Chem.202220214385439010.1039/D2OB00661H 35579116
    [Google Scholar]
  147. SunX.Y. WuR. WenX. GuoL. ZhouC.P. LiJ. QuanZ.S. BaoJ. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4,5-dihydro-imidazo[1,2-a]quinoline derivatives.Eur. J. Med. Chem.20136045145510.1016/j.ejmech.2012.12.034 23321259
    [Google Scholar]
  148. EswaranS. AdhikariA.V. ShettyN.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety.Eur. J. Med. Chem.200944114637464710.1016/j.ejmech.2009.06.031 19647905
    [Google Scholar]
  149. EswaranS. AdhikariA.V. ChowdhuryI.H. PalN.K. ThomasK.D. New quinoline derivatives: Synthesis and investigation of anti-bacterial and antituberculosis properties.Eur. J. Med. Chem.20104583374338310.1016/j.ejmech.2010.04.022 20537437
    [Google Scholar]
  150. GuoM. ZhengC.J. SongM.X. WuY. SunL.P. LiY.J. LiuY. PiaoH.R. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents.Bioorg. Med. Chem. Lett.201323154358436110.1016/j.bmcl.2013.05.082 23787100
    [Google Scholar]
  151. SabatiniS. GosettoF. ManfroniG. TabarriniO. KaatzG.W. PatelD. CecchettiV. Evolution from a natural flavones nucleus to obtain 2-(4-Propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump.J. Med. Chem.201154165722573610.1021/jm200370y 21751791
    [Google Scholar]
  152. Mitton-FryM.J. BricknerS.J. HamelJ.C. BrennanL. CasavantJ.M. ChenM. ChenT. DingX. DriscollJ. HardinkJ. HoangT. HuaE. HubandM.D. MaloneyM. MarfatA. McCurdyS.P. McLeodD. PlotkinM. ReillyU. RobinsonS. SchaferJ. ShepardR.M. SmithJ.F. StoneG.G. SubramanyamC. YoonK. YuanW. ZaniewskiR.P. ZookC. Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV.Bioorg. Med. Chem. Lett.201323102955296110.1016/j.bmcl.2013.03.047 23566517
    [Google Scholar]
  153. JayagobiM. RaghunathanR. SainathS. RaghunathanM. Synthesis and antibacterial property of pyrrolopyrano quinolinones and pyrroloquinolines.Eur. J. Med. Chem.20114662075208210.1016/j.ejmech.2011.02.060 21444131
    [Google Scholar]
  154. InsuastyD. VidalO. BernalA. MarquezE. GuzmanJ. InsuastyB. QuirogaJ. SvetazL. ZacchinoS. PuertoG. AboniaR. Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids.Antibiotics (Basel)20198423910.3390/antibiotics8040239 31795101
    [Google Scholar]
  155. KatariyaK.D. ShahS.R. ReddyD. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking.Bioorg. Chem.20209410340610.1016/j.bioorg.2019.103406 31718889
    [Google Scholar]
  156. El-ShershabyM.H. El-GamalK.M. BayoumiA.H. El-AdlK. AhmedH.E.A. AbulkhairH.S. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives.Arch. Pharm. (Weinheim)20213542200027710.1002/ardp.202000277 33078877
    [Google Scholar]
  157. DiaconuD. AntociV. MangalagiuV. Amariucai-MantuD. MangalagiuI.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity.Sci. Rep.20221211698810.1038/s41598‑022‑21435‑6 36216981
    [Google Scholar]
  158. EvrenA.E. KaradumanA.B. SağlikB.N. ÖzkayY. YurttaşL. Investigation of novel quinoline-thiazole derivatives as antimicrobial agents: in vitro and in silico approaches.ACS Omega2023811410142910.1021/acsomega.2c06871 36643421
    [Google Scholar]
  159. PalitP. PairaP. HazraA. BanerjeeS. GuptaA.D. DastidarS.G. MondalN.B. Phase transfer catalyzed synthesis of bis-quinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation.Eur. J. Med. Chem.200944284585310.1016/j.ejmech.2008.04.014 18538452
    [Google Scholar]
  160. CoaJ.C. GarcíaE. CardaM. AgutR. VélezI.D. MuñozJ.A. YepesL.M. RobledoS.M. CardonaW.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids.Med. Chem. Res.20172671405141410.1007/s00044‑017‑1846‑5
    [Google Scholar]
  161. UpadhyayA. KushwahaP. GuptaS. DoddaR.P. RamalingamK. KantR. GoyalN. SashidharaK.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents.Eur. J. Med. Chem.201815417218110.1016/j.ejmech.2018.05.014 29793211
    [Google Scholar]
  162. ChanquiaS.N. LarreguiF. PuenteV. LabriolaC. LombardoE. García LiñaresG. Synthesis and biological evaluation of new quin-oline derivatives as antileishmanial and antitrypanosomal agents.Bioorg. Chem.20198352653410.1016/j.bioorg.2018.10.053 30469145
    [Google Scholar]
  163. AlmandilN.B. TahaM. RahimF. WadoodA. ImranS. AlqahtaniM.A. BamaroufY.A. IbrahimM. MosaddikA. GollapalliM. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies.Bioorg. Chem.20198510911610.1016/j.bioorg.2018.12.025 30605884
    [Google Scholar]
  164. GlanzmannN. AntinarelliL.M.R. da Costa NunesI.K. PereiraH.M.G. CoelhoE.A.F. CoimbraE.S. da SilvaA.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.Biomed. Pharmacother.202114111185710.1016/j.biopha.2021.111857 34323702
    [Google Scholar]
  165. UpadhyayA. ChandrakarP. GuptaS. ParmarN. SinghS.K. RashidM. KushwahaP. WahajuddinM. SashidharaK.V. KarS. Synthesis, Biological Evaluation, Structure–Activity Relationship, and Mechanism of Action Studies of Quinoline–Metronidazole Derivatives Against Experimental Visceral Leishmaniasis.J. Med. Chem.201962115655567110.1021/acs.jmedchem.9b00628 31124675
    [Google Scholar]
  166. KatiyarS. RamalingamK. KumarA. AnsariA. BisenA.C. MishraG. SanapS.N. BhattaR.S. PurkaitB. GoyalN. SashidharaK.V. Design, synthesis, and biological evaluation of quinoline-piperazine/pyrrolidine derivatives as possible antileishmanial agents.Eur. J. Med. Chem.202326111586310.1016/j.ejmech.2023.115863 37837672
    [Google Scholar]
  167. DasP. DengX. ZhangL. RothM.G. FontouraB.M.A. PhillipsM.A. De BrabanderJ.K. SAR-based optimization of a 4-quinoline carboxylic acid analogue with potent antiviral activity.ACS Med. Chem. Lett.20134651752110.1021/ml300464h 23930152
    [Google Scholar]
  168. CartaA. BriguglioI. PirasS. CoronaP. BoattoG. NiedduM. GiunchediP. MarongiuM.E. GilibertiG. IulianoF. BloisS. IbbaC. BusoneraB. La CollaP. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors.Bioorg. Med. Chem.201119237070708410.1016/j.bmc.2011.10.009 22047799
    [Google Scholar]
  169. ZhuangL. WaiJ.S. EmbreyM.W. FisherT.E. EgbertsonM.S. PayneL.S. GuareJ.P.Jr VaccaJ.P. HazudaD.J. FelockP.J. WolfeA.L. StillmockK.A. WitmerM.V. MoyerG. SchleifW.A. GabryelskiL.J. LeonardY.M. LynchJ.J.Jr MichelsonS.R. YoungS.D. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells.J. Med. Chem.200346445345610.1021/jm025553u 12570367
    [Google Scholar]
  170. BanoB. AbbasiS. KhanJ. HussainS. RasheedS. PerveenS. KhanK. ChoudharyM. Antiglycation activity of quinoline derivatives- a new therapeutic class for the management of type 2 diabetes complications.Med. Chem.2014111606810.2174/1573406410666140526151254 24875825
    [Google Scholar]
  171. Al-GhorbaniM. AlharbiO. Al-OdayniA.B. AbduhN.A.Y. Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes.Pharmaceuticals (Basel)2023169122210.3390/ph16091222 37765030
    [Google Scholar]
  172. NikookarH. Mohammadi-KhanaposhtaniM. ImanparastS. FaramarziM.A. RanjbarP.R. MahdaviM. LarijaniB. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents.Bioorg. Chem.20187728028610.1016/j.bioorg.2018.01.025 29421703
    [Google Scholar]
  173. TahaM. SultanS. ImranS. RahimF. ZamanK. WadoodA. Ur RehmanA. UddinN. Mohammed KhanK. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies.Bioorg. Med. Chem.201927184081408810.1016/j.bmc.2019.07.035 31378594
    [Google Scholar]
  174. Abdel-BakyY.M. OmerA.M. El-FakharanyE.M. AmmarY.A. AbusaifM.S. RagabA. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation.Sci. Rep.20231312279210.1038/s41598‑023‑50130‑3 38123716
    [Google Scholar]
  175. CeleN. AwoladeP. SeboletsweP. KhuboneL. OlofinsanK. IslamM.S. JordaanA. WarnerD.F. SinghP. Synthesis, antidiabetic and antitubercular evaluation of Quinoline-pyrazolopyrimidine hybrids and Quinoline-4-Arylamines.ChemistryOpen20242024e20240001410.1002/open.202400014 38506589
    [Google Scholar]
  176. NajafiZ. SaeediM. MahdaviM. SabourianR. KhanaviM. TehraniM.B. MoghadamF.H. EdrakiN. Karimpor-RazkenariE. SharifzadehM. ForoumadiA. ShafieeA. AkbarzadehT. Design and synthesis of novel anti-Alzheimer’s agents: Acridine-chromenone and quinoline-chromenone hybrids.Bioorg. Chem.201667849410.1016/j.bioorg.2016.06.001 27289559
    [Google Scholar]
  177. CampsP. FormosaX. GaldeanoC. Muñoz-TorreroD. RamírezL. GómezE. IsambertN. LavillaR. BadiaA. ClosM.V. BartoliniM. ManciniF. AndrisanoV. ArceM.P. Rodríguez-FrancoM.I. HuertasÓ. DafniT. LuqueF.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds.J. Med. Chem.200952175365537910.1021/jm900859q 19663388
    [Google Scholar]
  178. CaiS.X. ZhouZ.L. HuangJ.C. WhittemoreE.R. EgbuwokuZ.O. LüY. HawkinsonJ.E. WoodwardR.M. WeberE. KeanaJ.F.W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes: novel and highly potent antagonists for NMDA receptor glycine site.J. Med. Chem.199639173248325510.1021/jm960214k 8765507
    [Google Scholar]
  179. KumarR. ThakurA. Sachin; Chandra, D.; Kumar Dhiman, A.; Kumar Verma, P.; Sharma, U. Quinoline-based metal complexes: Synthesis and applications.Coord. Chem. Rev.202449921545310.1016/j.ccr.2023.215453
    [Google Scholar]
  180. ZhouZ. DuL.Q. MoD.Y. ZhuL.G. BianH. Synthesis and anticancer mechanisms of nickel(II)-2-amino-8-quinolinol complexes with 2,2′-bipyridine ancillary ligands.Inorg. Chem. Commun.202315211071210.1016/j.inoche.2023.110712
    [Google Scholar]
  181. YangY. DuL.Q. HuangY. LiangC.J. QinQ.P. LiangH. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells.J. Inorg. Biochem.202324111215210.1016/j.jinorgbio.2023.112152 36736244
    [Google Scholar]
  182. DamenaT. ZelekeD. DesalegnT. DemissieT.B. EswaramoorthyR. Synthesis, characterization, and biological activities of novel vanadium(IV) and cobalt(II) complexes.ACS Omega2022754389440410.1021/acsomega.1c06205 35155932
    [Google Scholar]
  183. MehtaJ.V. GajeraS.B. RavalD.B. ThakkarV.R. PatelM.N. Biological assessment of substituted quinoline based heteroleptic organometallic compounds.MedChemComm2016781617162710.1039/C6MD00251J
    [Google Scholar]
  184. ZhongH.J. WangW. KangT.S. YanH. YangY. XuL. WangY. MaD.L. LeungC.H. A rhodium(III) complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease.J. Med. Chem.201760149750310.1021/acs.jmedchem.6b00250 27976900
    [Google Scholar]
  185. NguyenM. VendierL. StiglianiJ.L. MeunierB. RobertA. Structures of the copper and zinc complexes of PBT2, a chelating agent evaluated as potential drug for neurodegenerative diseases.Eur. J. Inorg. Chem.20172017360060810.1002/ejic.201601120
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314303240830074056
Loading
/content/journals/ctmc/10.2174/0115680266314303240830074056
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anti-inflammatory; Antibacterial; Anticancer; Antimalarial; Quinoline; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test