Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Research shows that the development of AD is linked to neuroinflammation, endoplasmic reticulum stress, mitochondrial dysfunction, cell death, and abnormal cholinergic signaling. Glycyrrhiza compounds contain active ingredients and extracts that offer multiple benefits, including targeting various pathways, high efficacy with low toxicity, and long-lasting therapeutic effects. These benefits highlight the significant potential of Glycyrrhiza compounds for preventing and treating AD. This review summarizes recent advancements in Glycyrrhiza compounds for preventing and treating AD. It focuses on their inhibitory effects on key signaling pathways, such as Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and cholinergic signaling. This study aims to establish a scientific framework for using Glycyrrhiza compounds in the clinical prevention and treatment of AD and to support the development of new therapeutic interventions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322320240911194626
2024-09-25
2025-05-14
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  2. PontecorvoM.J. DevousM.D.Sr NavitskyM. LuM. SallowayS. SchaerfF.W. JenningsD. AroraA.K. McGeehanA. LimN.C. XiongH. JoshiA.D. SiderowfA. MintunM.A. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition.Brain20171403aww33410.1093/brain/aww33428077397
    [Google Scholar]
  3. Dias-CarvalhoA. SáS.I. CarvalhoF. FernandesE. CostaV.M. Inflammation as common link to progressive neurological diseases.Arch. Toxicol.20249819511910.1007/s00204‑023‑03628‑837964100
    [Google Scholar]
  4. WalkerK.A. Inflammation and neurodegeneration: Chronicity matters.Aging (Albany NY)20181113410.18632/aging.10170430554190
    [Google Scholar]
  5. LiaoY.F. WangB.J. ChengH.T. KuoL.H. WolfeM.S. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway.J. Biol. Chem.200427947495234953210.1074/jbc.M40203420015347683
    [Google Scholar]
  6. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑630737462
    [Google Scholar]
  7. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  8. WangH. ShenY. ChuangH. ChiuC. YeY. ZhaoL. Neuroinflammation in Alzheimer’s disease: Microglia, molecular participants and therapeutic choices.Curr. Alzheimer Res.201916765967410.2174/156720501666619050315164831580243
    [Google Scholar]
  9. IsmailR. ParboP. MadsenL.S. HansenA.K. HansenK.V. SchaldemoseJ.L. KjeldsenP.L. StokholmM.G. GottrupH. EskildsenS.F. BrooksD.J. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: A longitudinal PET study.J. Neuroinflammation202017115110.1186/s12974‑020‑01820‑632375809
    [Google Scholar]
  10. DyerO. Donanemab: FDA experts recommend approval of Alzheimer’s drug.BMJ2024385q132710.1136/bmj.q132738876494
    [Google Scholar]
  11. SimsJ.R. ZimmerJ.A. EvansC.D. LuM. ArdayfioP. SparksJ. WesselsA.M. ShcherbininS. WangH. Monkul NeryE.S. CollinsE.C. SolomonP. SallowayS. ApostolovaL.G. HanssonO. RitchieC. BrooksD.A. MintunM. SkovronskyD.M. AbreuR. AgarwalP. AggarwalP. AgroninM. AllenA. AltamiranoD. AlvaG. AndersenJ. AndersonA. AndersonD. ArnoldJ. AsadaT. AsoY. AtitV. AyalaR. BadruddojaM. Badzio-jagielloH. BajacekM. BartonD. BearD. BenjaminS. BergeronR. BhatiaP. BlackS. BlockA. BolouriM. BondW. BouthillierJ. BrangmanS. BrewB. BrisbinS. BriskenT. BrodtmannA. BrodyM. BroschJ. BrownC. BrownstoneP. BukowczanS. BurnsJ. CabreraA. CapoteH. CarrascoA. Cevallos YepezJ. ChavezE. ChertkowH. Chyrchel-paszkiewiczU. CiabarraA. ClemmonsE. CohenD. CohenR. CohenI. ConchaM. CostellB. CrimminsD. Cruz-paganY. CueliA. CupeloR. CzarneckiM. DarbyD. DautzenbergP. De DeynP. De La GandaraJ. DeckK. DibenedettoD. DibuonoM. DinnersteinE. DiricanA. DixitS. DobryniewskiJ. DrakeR. DrysdaleP. DuaraR. DuffyJ. EllenbogenA. FaradjiV. FeinbergM. FeldmanR. FishmanS. FlitmanS. ForchettiC. FragaI. FrankA. FrishbergB. FujigasakiH. FukaseH. FumeroI. FurihataK. GallowayC. GandhiR. GeorgeK. GermainM. GitelmanD. GoetschN. GoldfarbD. GoldsteinM. GoldstickL. Gonzalez RojasY. GoodmanI. GreeleyD. GriffinC. GrigsbyE. GroszD. HafnerK. HartD. HeneinS. HerskowitzB. HigashiS. HigashiY. HoG. HodgsonJ. HohenbergM. HollenbeckL. HolubR. HoriT. HortJ. IlkowskiJ. IngramK.J. IsaacM. IshikawaM. JanuL. JohnstonM. JulioW. JustizW. KagaT. KakigiT. KalaferM. KamijoM. KaplanJ. KarathanosM. KatayamaS. KaulS. KeeganA. KerwinD. KhanU. KhanA. KimuraN. KirkG. KlodowskaG. KowaH. KutzC. KwentusJ. LaiR. LallA. LawrenceM. LeeE. LeonR. LinkerG. LisewskiP. LissJ. LiuC. LoskS. LukaszykE. LynchJ. MacfarlaneS. MacsweeneyJ. ManneringN. MarkovicO. MarksD. MasdeuJ. MatsuiY. MatsuishiK. McallisterP. McconneheyB. McelveenA. McgillL. MeccaA. MegaM. MensahJ. MickielewiczA. MinaeianA. MocherlaB. MurphyC. MurphyP. NagashimaH. NairA. NairM. NardandreaJ. NashM. NasreddineZ. NishidaY. NortonJ. NunezL. OchiaiJ. OhkuboT. OkamuraY. OkorieE. OliveraE. O’mahonyJ. OmidvarO. Ortiz-CruzD. OsowaA. PapkaM. ParkerA. PatelP. PatelA. PatelM. PatryC. PeckhamE. PfefferM. PietrasA. PlopperM. PorsteinssonA. Poulin RobitailleR. PrinsN. PuenteO. RatajczakM. RheeM. RitterA. RodriguezR. Rodriguez AblesL. RojasJ. RossJ. RoyerP. RubinJ. RussellD. RutgersS.M. RutrickS. SadowskiM. SafirsteinB. SagisakaT. ScharreD. SchneiderL. SchreiberC. SchriftM. SchulzP. SchwartzH. SchwartzbardJ. ScottJ. SelemL. SethiP. ShaS. SharlinK. SharmaS. ShiovitzT. ShiwachR. SladekM. SloanB. SmithA. SolomonP. SorialE. SosaE. StedmanM. SteenS. SteinL. StolyarA. StoukidesJ. SudohS. SuttonJ. SyedJ. SzigetiK. TachibanaH. TakahashiY. TatenoA. TaylorJ.D. TaylorK. TcheremissineO. ThebaudA. TheinS. ThurmanL. ToenjesS. TojiH. TomaM. TranD. TruebaP. TsujimotoM. TurnerR. UchiyamaA. UssorowskaD. VaishnaviS. ValorE. VandersluisJ. VasquezA. VelezJ. VergheseC. Vodickova-borzovaK. WatsonD. WeidmanD. WeismanD. WhiteA. WillinghamK. WinkelI. WinnerP. WinstonJ. WolffA. YagiH. YamamotoH. YathirajS. YoshiyamaY. ZbochM. Donanemab in early symptomatic Alzheimer disease.JAMA2023330651252710.1001/jama.2023.1323937459141
    [Google Scholar]
  12. HonigL.S. SabbaghM.N. van DyckC.H. SperlingR.A. HerschS. MattaA. GiorgiL. GeeM. KanekiyoM. LiD. PurcellD. DhaddaS. IrizarryM. KramerL. Updated safety results from phase 3 lecanemab study in early Alzheimer’s disease.Alzheimers Res. Ther.202416110510.1186/s13195‑024‑01441‑838730496
    [Google Scholar]
  13. TorresA. CamargoL. LópezN. Aducanumab: A look two years after its approval.Biomedica202444424610.7705/biomedica.6967
    [Google Scholar]
  14. PascoalT.A. BenedetA.L. AshtonN.J. KangM.S. TherriaultJ. ChamounM. SavardM. LussierF.Z. TissotC. KarikariT.K. OttoyJ. MathotaarachchiS. StevensonJ. MassarwehG. SchöllM. de LeonM.J. SoucyJ.P. EdisonP. BlennowK. ZetterbergH. GauthierS. Rosa-NetoP. Microglial activation and tau propagate jointly across Braak stages.Nat. Med.20212791592159910.1038/s41591‑021‑01456‑w34446931
    [Google Scholar]
  15. ThakurS. DhapolaR. SarmaP. MedhiB. ReddyD.H. Neuroinflammation in Alzheimer’s Disease: Current progress in molecular signaling and therapeutics.Inflammation202346111710.1007/s10753‑022‑01721‑135986874
    [Google Scholar]
  16. GonzalesM.M. GarbarinoV.R. PolletE. PalaviciniJ.P. KelloggD.L.Jr KraigE. OrrM.E. Biological aging processes underlying cognitive decline and neurodegenerative disease.J. Clin. Invest.202213210e15845310.1172/JCI15845335575089
    [Google Scholar]
  17. LeeM. McGeerE. McGeerP.L. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: Implications for Alzheimer’s disease pathogenesis.Neurobiol. Aging2015361425210.1016/j.neurobiolaging.2014.07.02425169677
    [Google Scholar]
  18. HouY. LautrupS. CordonnierS. WangY. CroteauD.L. ZavalaE. ZhangY. MoritohK. O’ConnellJ.F. BaptisteB.A. StevnsnerT.V. MattsonM.P. BohrV.A. NAD + supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency.Proc. Natl. Acad. Sci. USA20181158E1876E188510.1073/pnas.171881911529432159
    [Google Scholar]
  19. HartlF.U. BracherA. Hayer-HartlM. Molecular chaperones in protein folding and proteostasis.Nature2011475735632433210.1038/nature1031721776078
    [Google Scholar]
  20. UddinM.S. TewariD. SharmaG. KabirM.T. BarretoG.E. Bin-JumahM.N. PerveenA. Abdel-DaimM.M. AshrafG.M. Molecular mechanisms of ER stress and UPR in the pathogenesis of Alzheimer’s disease.Mol. Neurobiol.20205772902291910.1007/s12035‑020‑01929‑y32430843
    [Google Scholar]
  21. AlberdiE. WyssenbachA. AlberdiM. Sánchez-GómezM.V. CavaliereF. RodríguezJ.J. VerkhratskyA. MatuteC. Ca 2+ ‐dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β‐treated astrocytes and in a model of Alzheimer’s disease.Aging Cell201312229230210.1111/acel.1205423409977
    [Google Scholar]
  22. KondoT. AsaiM. TsukitaK. KutokuY. OhsawaY. SunadaY. ImamuraK. EgawaN. YahataN. OkitaK. TakahashiK. AsakaI. AoiT. WatanabeA. WatanabeK. KadoyaC. NakanoR. WatanabeD. MaruyamaK. HoriO. HibinoS. ChoshiT. NakahataT. HiokiH. KanekoT. NaitohM. YoshikawaK. YamawakiS. SuzukiS. HataR. UenoS. SekiT. KobayashiK. TodaT. MurakamiK. IrieK. KleinW.L. MoriH. AsadaT. TakahashiR. IwataN. YamanakaS. InoueH. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness.Cell Stem Cell201312448749610.1016/j.stem.2013.01.00923434393
    [Google Scholar]
  23. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  24. AbisambraJ.F. JinwalU.K. BlairL.J. O’LearyJ.C.III LiQ. BradyS. WangL. GuidiC.E. ZhangB. NordhuesB.A. CockmanM. SuntharalinghamA. LiP. JinY. AtkinsC.A. DickeyC.A. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation.J. Neurosci.201333229498950710.1523/JNEUROSCI.5397‑12.201323719816
    [Google Scholar]
  25. IsmaelS. Wajidunnisa; Sakata, K.; McDonald, M.P.; Liao, F.F.; Ishrat, T. ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer’s disease.Neurochem. Int.202114810510410.1016/j.neuint.2021.10510434153352
    [Google Scholar]
  26. KarvandiM.S. Sheikhzadeh HesariF. ArefA.R. MahdaviM. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation.Front. Cell. Neurosci.202317110524710.3389/fncel.2023.110524736950516
    [Google Scholar]
  27. FengY. LiX. ZhouW. LouD. HuangD. LiY. KangY. XiangY. LiT. ZhouW. SongW. Regulation of SET Gene Expression by NFkB.Mol. Neurobiol.20175464477448510.1007/s12035‑016‑9967‑227351675
    [Google Scholar]
  28. Mohammed-AliZ. CruzG.L. DickhoutJ.G. Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease.J. Immunol. Res.2015201511010.1155/2015/42850825977931
    [Google Scholar]
  29. VukicV. CallaghanD. WalkerD. LueL.F. LiuQ.Y. CouraudP.O. RomeroI.A. WekslerB. StanimirovicD.B. ZhangW. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway.Neurobiol. Dis.20093419510610.1016/j.nbd.2008.12.00719162185
    [Google Scholar]
  30. SantosL.E. FerreiraS.T. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer’s disease.Neuropharmacology201813635036010.1016/j.neuropharm.2017.11.016
    [Google Scholar]
  31. MearesG.P. LiuY. RajbhandariR. QinH. NozellS.E. MobleyJ.A. CorbettJ.A. BenvenisteE.N. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation.Mol. Cell. Biol.201434203911392510.1128/MCB.00980‑1425113558
    [Google Scholar]
  32. Llorens-MartínM. JuradoJ. HernándezF. AvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.201474624904272
    [Google Scholar]
  33. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x18088381
    [Google Scholar]
  34. SikoraE. Bielak-ZmijewskaA. DudkowskaM. KrzystyniakA. MosieniakG. WesierskaM. WlodarczykJ. Cellular senescence in brain aging.Front. Aging Neurosci.20211364692410.3389/fnagi.2021.64692433732142
    [Google Scholar]
  35. Antico ArciuchV.G. ElgueroM.E. PoderosoJ.J. CarrerasM.C. Mitochondrial regulation of cell cycle and proliferation.Antioxid. Redox Signal.201216101150118010.1089/ars.2011.408521967640
    [Google Scholar]
  36. VerdinE. HirscheyM.D. FinleyL.W.S. HaigisM.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling.Trends Biochem. Sci.2010351266967510.1016/j.tibs.2010.07.00320863707
    [Google Scholar]
  37. BillupsB. ForsytheI.D. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.J. Neurosci.200222145840584710.1523/JNEUROSCI.22‑14‑05840.200212122046
    [Google Scholar]
  38. TangF.L. LiuW. HuJ.X. ErionJ.R. YeJ. MeiL. XiongW.C. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function.Cell Rep.201512101631164310.1016/j.celrep.2015.08.00126321632
    [Google Scholar]
  39. ReddyP.H. YinX. ManczakM. KumarS. PradeepkiranJ.A. VijayanM. ReddyA.P. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease.Hum. Mol. Genet.201827142502251610.1093/hmg/ddy15429701781
    [Google Scholar]
  40. LustbaderJ.W. CirilliM. LinC. XuH.W. TakumaK. WangN. CaspersenC. ChenX. PollakS. ChaneyM. TrincheseF. LiuS. Gunn-MooreF. LueL.F. WalkerD.G. KuppusamyP. ZewierZ.L. ArancioO. SternD. YanS.S. WuH. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease.Science2004304566944845210.1126/science.109123015087549
    [Google Scholar]
  41. KrishnanK.J. RatnaikeT.E. De GruyterH.L.M. JarosE. TurnbullD.M. Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer’s disease.Neurobiol. Aging20123392210221410.1016/j.neurobiolaging.2011.08.00921925769
    [Google Scholar]
  42. Luna-SánchezM. BianchiP. QuintanaA. Mitochondria-induced immune response as a trigger for neurodegeneration: A pathogen from within.Int. J. Mol. Sci.20212216852310.3390/ijms2216852334445229
    [Google Scholar]
  43. ZhaoY. LiuB. XuL. YuS. FuJ. WangJ. YanX. SuJ. ROS-Induced mtDNA release: The emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression.Antioxidants (Basel)20211012191710.3390/antiox10121917
    [Google Scholar]
  44. LinM. LiuN. QinZ. WangY. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases.Acta Pharmacol. Sin.202243102439244710.1038/s41401‑022‑00879‑635233090
    [Google Scholar]
  45. BaderV. WinklhoferK.F. Mitochondria at the interface between neurodegeneration and neuroinflammation.Semin. Cell Dev. Biol.20209916317110.1016/j.semcdb.2019.05.02831154011
    [Google Scholar]
  46. VoetS. SrinivasanS. LamkanfiM. van LooG. Inflammasomes in neuroinflammatory and neurodegenerative diseases.EMBO Mol. Med.2019116e1024810.15252/emmm.20181024831015277
    [Google Scholar]
  47. GulenM.F. SamsonN. KellerA. SchwabenlandM. LiuC. GlückS. ThackerV.V. FavreL. MangeatB. KroeseL.J. KrimpenfortP. PrinzM. AblasserA. cGAS–STING drives ageing-related inflammation and neurodegeneration.Nature2023620797337438010.1038/s41586‑023‑06373‑137532932
    [Google Scholar]
  48. LiuS. CaiX. WuJ. CongQ. ChenX. LiT. DuF. RenJ. WuY.T. GrishinN.V. ChenZ.J. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.Science20153476227aaa263010.1126/science.aaa263025636800
    [Google Scholar]
  49. ZhangC. ShangG. GuiX. ZhangX. BaiX. ChenZ.J. Structural basis of STING binding with and phosphorylation by TBK1.Nature2019567774839439810.1038/s41586‑019‑1000‑230842653
    [Google Scholar]
  50. BarberG.N. STING-dependent cytosolic DNA sensing pathways.Trends Immunol.2014352889310.1016/j.it.2013.10.01024309426
    [Google Scholar]
  51. SunL. WuJ. DuF. ChenX. ChenZ.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.Science2013339612178679110.1126/science.123245823258413
    [Google Scholar]
  52. TaylorJ.M. MooreZ. MinterM.R. CrackP.J. Type-I interferon pathway in neuroinflammation and neurodegeneration: Focus on Alzheimer's disease.J Neural Transm (Vienna)2018125579780710.1007/s00702‑017‑1745‑4
    [Google Scholar]
  53. XieX. MaG. LiX. ZhaoJ. ZhaoZ. ZengJ. Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice.Nat. Aging20233220221210.1038/s43587‑022‑00337‑237118112
    [Google Scholar]
  54. FuchsY. StellerH. Programmed cell death in animal development and disease.Cell2011147474275810.1016/j.cell.2011.10.03322078876
    [Google Scholar]
  55. ChenX. KangR. KroemerG. TangD. Ferroptosis in infection, inflammation, and immunity.J. Exp. Med.20212186e2021051810.1084/jem.2021051833978684
    [Google Scholar]
  56. StockwellB.R. JiangX. GuW. Emerging mechanisms and disease relevance of ferroptosis.Trends Cell Biol.202030647849010.1016/j.tcb.2020.02.00932413317
    [Google Scholar]
  57. LeiP. BaiT. SunY. Mechanisms of ferroptosis and relations with regulated cell death: A review.Front. Physiol.20191013910.3389/fphys.2019.0013930863316
    [Google Scholar]
  58. LeeJ.H. LeeM.S. Brain iron accumulation in Atypical Parkinsonian Syndromes: In vivo MRI evidences for distinctive patterns.Front. Neurol.2019107410.3389/fneur.2019.0007430809185
    [Google Scholar]
  59. Kwiatek-MajkusiakJ. DicksonD. TacikP. AokiN. TomasiukR. KoziorowskiD. FriedmanA. Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer’s disease.Acta Neurobiol. Exp. (Warsz.)201575439139810.55782/ane‑2015‑204426994418
    [Google Scholar]
  60. RogersJ. LahiriD. Metal and inflammatory targets for Alzheimer’s disease.Curr. Drug Targets20045653555110.2174/138945004334527215270200
    [Google Scholar]
  61. ZhangY. GaoX. BaiX. YaoS. ChangY.Z. GaoG. The emerging role of furin in neurodegenerative and neuropsychiatric diseases.Transl. Neurodegener.20221113910.1186/s40035‑022‑00313‑135996194
    [Google Scholar]
  62. GuillouH. ZadravecD. MartinP.G.P. JacobssonA. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice.Prog. Lipid Res.201049218619910.1016/j.plipres.2009.12.00220018209
    [Google Scholar]
  63. NykjaerA. LeeR. TengK.K. JansenP. MadsenP. NielsenM.S. JacobsenC. KliemannelM. SchwarzE. WillnowT.E. HempsteadB.L. PetersenC.M. Sortilin is essential for proNGF-induced neuronal cell death.Nature2004427697784384810.1038/nature0231914985763
    [Google Scholar]
  64. RowanM.J. KlyubinI. CullenW.K. AnwylR. Synaptic plasticity in animal models of early Alzheimer’s disease.Philos. Trans. R. Soc. Lond. B Biol. Sci.2003358143282182810.1098/rstb.2002.124012740129
    [Google Scholar]
  65. WardR.J. ZuccaF.A. DuynJ.H. CrichtonR.R. ZeccaL. The role of iron in brain ageing and neurodegenerative disorders.Lancet Neurol.201413101045106010.1016/S1474‑4422(14)70117‑625231526
    [Google Scholar]
  66. FengL. SunJ. XiaL. ShiQ. HouY. ZhangL. LiM. FanC. SunB. Ferroptosis mechanism and Alzheimer’s disease.Neural Regen. Res.20241981741175010.4103/1673‑5374.38936238103240
    [Google Scholar]
  67. NewcombeE.A. Camats-PernaJ. SilvaM.L. ValmasN. HuatT.J. MedeirosR. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease.J. Neuroinflammation201815127610.1186/s12974‑018‑1313‑330249283
    [Google Scholar]
  68. SferaA. ThomasK.G. AndronescuC.V. JafriN. SferaD.O. SasanniaS. Zapata-Martín del CampoC.M. MaldonadoJ.C. Bromodomains in human-immunodeficiency virus-associated neurocognitive disorders: A model of ferroptosis-induced neurodegeneration.Front. Neurosci.20221690481610.3389/fnins.2022.90481635645713
    [Google Scholar]
  69. FengZ. MinL. ChenH. DengW. TanM. LiuH. HouJ. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury.Redox Biol.20214310198410.1016/j.redox.2021.10198433933882
    [Google Scholar]
  70. LongH.Z. ZhouZ.W. ChengY. LuoH.Y. LiF.J. XuS.G. GaoL.C. The role of microglia in Alzheimer’s disease from the perspective of immune inflammation and iron metabolism.Front. Aging Neurosci.20221488898910.3389/fnagi.2022.88898935847685
    [Google Scholar]
  71. ЛитвиненкоИ.В. ЛобзинВ.Ю. A new paradigm for the development of neurodegenerative diseases on the example of Alzheimer’s disease and Parkinson’s disease.Usp. Gerontol.202235226327310.34922/AE.2022.35.2.01035727933
    [Google Scholar]
  72. MorrisG. BerkM. CarvalhoA.F. MaesM. WalkerA.J. PuriB.K. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases.Behav. Brain Res.201834115417510.1016/j.bbr.2017.12.03629289598
    [Google Scholar]
  73. KenkhuisB. SomarakisA. de HaanL. DzyubachykO. IJsselsteijnM.E. de MirandaN.F.C.C. LelieveldtB.P.F. DijkstraJ. van Roon-MomW.M.C. HölltT. van der WeerdL. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients.Acta Neuropathol. Commun.2021912710.1186/s40478‑021‑01126‑533597025
    [Google Scholar]
  74. BaikS.H. KangS. LeeW. ChoiH. ChungS. KimJ.I. Mook-JungI. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease.Cell Metab.2019303493507.e610.1016/j.cmet.2019.06.00531257151
    [Google Scholar]
  75. LiuP.P. XieY. MengX.Y. KangJ.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease.Signal Transduct. Target. Ther.2019412910.1038/s41392‑019‑0063‑831637009
    [Google Scholar]
  76. LeiserS.C. BowlbyM.R. ComeryT.A. DunlopJ. A cog in cognition: How the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits.Pharmacol. Ther.2009122330231110.1016/j.pharmthera.2009.03.00919351547
    [Google Scholar]
  77. PicciottoM.R. CaldaroneB.J. BrunzellD.H. ZachariouV. StevensT.R. KingS.L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications.Pharmacol. Ther.2001922-38910810.1016/S0163‑7258(01)00161‑911916531
    [Google Scholar]
  78. NarlaS. KlejborI. BirkayaB. LeeY.W. MorysJ. StachowiakE.K. TerranovaC. BencherifM. StachowiakM.K. α7 Nicotinic receptor agonist reactivates neurogenesis in adult brain.Biochem. Pharmacol.20138681099110410.1016/j.bcp.2013.07.02823933384
    [Google Scholar]
  79. BeaulieuJ.M. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health.J. Psychiatry Neurosci.201237171610.1503/jpn.11001121711983
    [Google Scholar]
  80. KalkmanH.O. FeuerbachD. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.Cell. Mol. Life Sci.201673132511253010.1007/s00018‑016‑2175‑426979166
    [Google Scholar]
  81. RandákováA. JakubíkJ. Functionally selective and biased agonists of muscarinic receptors.Pharmacol. Res.202116910564110.1016/j.phrs.2021.10564133951507
    [Google Scholar]
  82. MahmoudiR. NovellaJ.L. Laurent-BadrS. BoulahrouzS. TranD. MorroneI. JaïdiY. Cholinergic antagonists and behavioral disturbances in neurodegenerative diseases.Int. J. Mol. Sci.2023248692110.3390/ijms2408692137108085
    [Google Scholar]
  83. VolpicelliL.A. LeveyA.I. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus.Prog. Brain Res.2004145596610.1016/S0079‑6123(03)45003‑614650906
    [Google Scholar]
  84. MontaniC. CanellaC. SchwarzA.J. LiJ. GilmourG. GalbuseraA. WaffordK. Gutierrez-BarraganD. McCarthyA. ShawD. KnitowskiK. McKinzieD. GozziA. FelderC. The M1/M4 preferring muscarinic agonist xanomeline modulates functional connectivity and NMDAR antagonist-induced changes in the mouse brain.Neuropsychopharmacology20214661194120610.1038/s41386‑020‑00916‑0
    [Google Scholar]
  85. WessJ. EglenR.M. GautamD. Muscarinic acetylcholine receptors: Mutant mice provide new insights for drug development.Nat. Rev. Drug Discov.20076972173310.1038/nrd237917762886
    [Google Scholar]
  86. GautamD. HanS.J. HamdanF.F. JeonJ. LiB. LiJ.H. CuiY. MearsD. LuH. DengC. HeardT. WessJ. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.Cell Metab.20063644946110.1016/j.cmet.2006.04.00916753580
    [Google Scholar]
  87. CampanariM.L. García-AyllónM.S. BelbinO. GalceránJ. LleóA. Sáez-ValeroJ. Acetylcholinesterase modulates presenilin-1 levels and γ-secretase activity.J. Alzheimers Dis.201441391192410.3233/JAD‑14042624699279
    [Google Scholar]
  88. Ramos-RodriguezJ.J. Pacheco-HerreroM. ThyssenD. Murillo-CarreteroM.I. BerrocosoE. Spires-JonesT.L. BacskaiB.J. Garcia-AllozaM. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice.J. Neuropathol. Exp. Neurol.201372427228510.1097/NEN.0b013e318288a8dd23481704
    [Google Scholar]
  89. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  90. VarshneyV. GarabaduD. Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats.Neuropeptides20218610212210.1016/j.npep.2021.10212233508525
    [Google Scholar]
  91. KwonY.J. SonD.H. ChungT.H. LeeY.J. A review of the pharmacological efficacy and safety of licorice root from corroborative clinical trial findings.J. Med. Food2020231122010.1089/jmf.2019.445931874059
    [Google Scholar]
  92. YangR. LiW. YuanB. RenG. WangL. ChengT. LiuY. The genetic and chemical diversity in three original plants of licorice, Glycyrriza uralensis Fisch., Glycyrrhiza inflata Bat. and Glycyrrhiza glabra L.Pak. J. Pharm. Sci.201831252553529618444
    [Google Scholar]
  93. LiW. AsadaY. YoshikawaT. Flavonoid constituents from Glycyrrhiza glabra hairy root cultures.Phytochemistry200055544745610.1016/S0031‑9422(00)00337‑X11140606
    [Google Scholar]
  94. WangD. LiangJ. ZhangJ. WangY. ChaiX. Natural Chalcones in Chinese Materia Medica: Licorice.Evid Based Complement Alternat Med20202020382124810.1155/2020/3821248
    [Google Scholar]
  95. LourencoM.V. Preface: Special issue “Brain Proteostasis in Health and Disease”.J. Neurochem.202316613610.1111/jnc.1587937414435
    [Google Scholar]
  96. VieiraM.N.N. Lyra e SilvaN.M. FerreiraS.T. De FeliceF.G. Protein Tyrosine Phosphatase 1B (PTP1B): A potential target for Alzheimer’s therapy?Front. Aging Neurosci.20179710.3389/fnagi.2017.0000728197094
    [Google Scholar]
  97. MersereauJ.E. LevyN. StaubR.E. BaggettS. ZogricT. ChowS. RickeW.A. TagliaferriM. CohenI. BjeldanesL.F. LeitmanD.C. Liquiritigenin is a plant-derived highly selective estrogen receptor β agonist.Mol. Cell. Endocrinol.20082831-2495710.1016/j.mce.2007.11.02018177995
    [Google Scholar]
  98. BrasilF.B. de AlmeidaF.J.S. LuckachakiM.D. Dall’OglioE.L. de OliveiraM.R. Pinocembrin pretreatment counteracts the chlorpyrifos-induced HO-1 downregulation, mitochondrial dysfunction, and inflammation in the SH-SY5Y cells.Metab. Brain Dis.20213682377239110.1007/s11011‑021‑00803‑734338973
    [Google Scholar]
  99. GorinaR. Font-NievesM. Márquez-KisinouskyL. SantaluciaT. PlanasA.M. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88‐dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways.Glia201159224225510.1002/glia.2109421125645
    [Google Scholar]
  100. ParkS.H. Park-MinK.H. ChenJ. HuX. IvashkivL.B. Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages.Nat. Immunol.201112760761510.1038/ni.204321602809
    [Google Scholar]
  101. LiuG.H. QuJ. ShenX. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK.Biochim. Biophys. Acta Mol. Cell Res.20081783571372710.1016/j.bbamcr.2008.01.00218241676
    [Google Scholar]
  102. JinJ.J. KimH.D. MaxwellJ.A. LiL. FukuchiK. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease.J. Neuroinflammation2008512310.1186/1742‑2094‑5‑2318510752
    [Google Scholar]
  103. PaudelY.N. AngelopoulouE. SempleB. PiperiC. OthmanI. ShaikhM.F. Potential neuroprotective effect of the HMGB1 inhibitor glycyrrhizin in neurological disorders.ACS Chem. Neurosci.202011448550010.1021/acschemneuro.9b0064031972087
    [Google Scholar]
  104. LiuW. HuangS. LiY. ZhangK. ZhengX. Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway.Food Nutr. Res.20196306310.29219/fnr.v63.151631073286
    [Google Scholar]
  105. BalducciC. FrascaA. ZottiM. La VitolaP. MhillajE. GrigoliE. IacobellisM. GrandiF. MessaM. ColomboL. MolteniM. TrabaceL. RossettiC. SalmonaM. ForloniG. Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease.Brain Behav. Immun.20176018819710.1016/j.bbi.2016.10.01227751869
    [Google Scholar]
  106. ChoM.J. KimJ.H. ParkC.H. LeeA.Y. ShinY.S. LeeJ.H. ParkC.G. ChoE.J. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice.Nutr. Res. Pract.201812319119810.4162/nrp.2018.12.3.19129854324
    [Google Scholar]
  107. LanX. HanX. LiQ. LiQ. GaoY. ChengT. WanJ. ZhuW. WangJ. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia.Brain Behav. Immun.20176132633910.1016/j.bbi.2016.12.01228007523
    [Google Scholar]
  108. LiQ. ZhangP. CaiY. Genkwanin suppresses MPP+-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinson’s disease.Neurotoxicology202187626910.1016/j.neuro.2021.08.01834481870
    [Google Scholar]
  109. ZhuW. WangM. JinL. YangB. BaiB. MutsinzeR.N. ZuoW. ChattipakornN. HuhJ.Y. LiangG. WangY. Licochalcone A protects against LPS‐induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2).Br. J. Pharmacol.202318081114113110.1111/bph.1599936480410
    [Google Scholar]
  110. ChiariniA. ArmatoU. HuP. Dal PràI. Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s disease.Int. J. Mol. Sci.20202123903610.3390/ijms2123903633261147
    [Google Scholar]
  111. ThawkarB.S. KaurG. Inhibitors of NF-κB and P2X7/NLRP3/] Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease.J. Neuroimmunol.2019326627410.1016/j.jneuroim.2018.11.01030502599
    [Google Scholar]
  112. ChenC.H. ZhouW. LiuS. DengY. CaiF. ToneM. ToneY. TongY. SongW. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease.Int. J. Neuropsychopharmacol.2012151779010.1017/S146114571100014921329555
    [Google Scholar]
  113. ShahH. PatelA. ParikhV. NaganiA. BhimaniB. ShahU. BambharoliyaT. The β-Secretase enzyme BACE1: A biochemical enigma for Alzheimer’s disease.CNS Neurol. Disord. Drug Targets202019318419410.2174/187152731966620052614414132452328
    [Google Scholar]
  114. WagleA. SeongS.H. ZhaoB.T. WooM.H. JungH.A. ChoiJ.S. Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis.Arch. Pharm. Res.201841440941810.1007/s12272‑018‑1018‑229532412
    [Google Scholar]
  115. FurusawaJ. Funakoshi-TagoM. MashinoT. TagoK. InoueH. SonodaY. KasaharaT. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway.Int. Immunopharmacol.20099449950710.1016/j.intimp.2009.01.03119291859
    [Google Scholar]
  116. LinkP. WetterauerB. FuY. WinkM. Extracts of Glycyrrhiza uralensis and isoliquiritigenin counteract amyloid-β toxicity in Caenorhabditis elegans.Planta Med.201581535736210.1055/s‑0035‑154572425782036
    [Google Scholar]
  117. GuM.Y. ChunY.S. YongR.S. YangH.O. Licoflavonol reduces Aβ secretion by increasing BACE1 phosphorylation to facilitate BACE1 degradation.Mol. Nutr. Food Res.2019633180047410.1002/mnfr.20180047430365228
    [Google Scholar]
  118. MattsonM.P. ChengB. DavisD. BryantK. LieberburgI. RydelR.E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.J. Neurosci.199212237638910.1523/JNEUROSCI.12‑02‑00376.19921346802
    [Google Scholar]
  119. CherngJ.M. LinH.J. HungM.S. LinY.R. ChanM.H. LinJ.C. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons.Eur. J. Pharmacol.20065471-3102110.1016/j.ejphar.2006.06.08016952351
    [Google Scholar]
  120. ParkS.H. KangJ.S. YoonY.D. LeeK. KimK.J. LeeK.H. LeeC.W. MoonE.Y. HanS.B. KimB.H. KimH.M. ParkS.K. Glabridin inhibits lipopolysaccharide‐induced activation of a microglial cell line, BV‐2, by blocking NF‐κB and AP‐1.Phytother. Res.201024S1S29S3410.1002/ptr.287219455572
    [Google Scholar]
  121. ZhuX. RainaA.K. RottkampC.A. AlievG. PerryG. BouxH. SmithM.A. Activation and redistribution of c‐Jun N‐terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease.J. Neurochem.200176243544110.1046/j.1471‑4159.2001.00046.x11208906
    [Google Scholar]
  122. NogueirasR. SabioG. Brain JNK and metabolic disease.Diabetologia202164226527410.1007/s00125‑020‑05327‑w33200240
    [Google Scholar]
  123. ManieriE. SabioG. Stress kinases in the modulation of metabolism and energy balance.J. Mol. Endocrinol.2015552R11R2210.1530/JME‑15‑014626363062
    [Google Scholar]
  124. SabioG. DavisR.J. cJun NH2-terminal kinase 1 (JNK1): Roles in metabolic regulation of insulin resistance.Trends Biochem. Sci.201035949049610.1016/j.tibs.2010.04.00420452774
    [Google Scholar]
  125. YaoK. ChenH. LeeM.H. LiH. MaW. PengC. SongN.R. LeeK.W. BodeA.M. DongZ. DongZ. LicochalconeA. Licochalcone A, a natural inhibitor of c-Jun N-terminal kinase 1.Cancer Prev. Res. (Phila.)20147113914910.1158/1940‑6207.CAPR‑13‑011724253317
    [Google Scholar]
  126. BusquetsO. EttchetoM. VerdaguerE. Castro-TorresR.D. AuladellC. Beas-ZarateC. FolchJ. CaminsA. JNK1 inhibition by Licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid.Neuropharmacology201813144045210.1016/j.neuropharm.2017.10.03029111385
    [Google Scholar]
  127. SzeC.I. SuM. PugazhenthiS. JambalP. HsuL.J. HeathJ. SchultzL. ChangN.S. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer’s disease.J. Biol. Chem.200427929304983050610.1074/jbc.M40139920015126504
    [Google Scholar]
  128. LeeS.Y. ChiuY.J. YangS.M. ChenC.M. HuangC.C. Lee-ChenG.J. LinW. ChangK.H. Novel synthetic chalcone‐coumarin hybrid for Aβ aggregation reduction, antioxidation, and neuroprotection.CNS Neurosci. Ther.201824121286129810.1111/cns.1305830596401
    [Google Scholar]
  129. FurusawaJ. Funakoshi-TagoM. TagoK. MashinoT. InoueH. SonodaY. KasaharaT. Licochalcone A significantly suppresses LPS signaling pathway through the inhibition of NF-κB p65 phosphorylation at serine 276.Cell. Signal.200921577878510.1016/j.cellsig.2009.01.02119168128
    [Google Scholar]
  130. LiP. YuC. ZengF.S. FuX. YuanX.J. WangQ. FanC. SunB.L. SunQ.S. LicochalconeA. Licochalcone A attenuates chronic neuropathic pain in rats by inhibiting microglia activation and inflammation.Neurochem. Res.20214651112111810.1007/s11064‑021‑03244‑x33555527
    [Google Scholar]
  131. TaoW. DongY. SuQ. WangH. ChenY. XueW. ChenC. XiaB. DuanJ. ChenG. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway.Behav. Brain Res.201630817718610.1016/j.bbr.2016.04.03927113683
    [Google Scholar]
  132. Tecalco-CruzA.C. Zepeda-CervantesJ. Ortega-DomínguezB. Estrogenic hormones receptors in Alzheimer’s disease.Mol. Biol. Rep.202148117517752610.1007/s11033‑021‑06792‑134657250
    [Google Scholar]
  133. TengL. MengQ. LuJ. XieJ. WangZ. LiuY. WangD. Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells.Mol. Med. Rep.201410281882410.3892/mmr.2014.228924888902
    [Google Scholar]
  134. LiuR. LiJ. SongJ. SunJ. LiY. ZhouS. ZhangT. DuG. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β(1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways.BioMed Res. Int.2014201411410.1155/2014/47039325157358
    [Google Scholar]
  135. DodsonM. de la VegaM.R. CholaniansA.B. SchmidlinC.J. ChapmanE. ZhangD.D. Modulating NRF2 in disease: Timing is everything.Annu. Rev. Pharmacol. Toxicol.201959155557510.1146/annurev‑pharmtox‑010818‑02185630256716
    [Google Scholar]
  136. ReddyP.H. Amyloid precursor protein‐mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer’s disease.J. Neurochem.200696111310.1111/j.1471‑4159.2005.03530.x16305625
    [Google Scholar]
  137. ReddyP.H. BealM.F. Are mitochondria critical in the pathogenesis of Alzheimer’s disease?Brain Res. Brain Res. Rev.200549361863210.1016/j.brainresrev.2005.03.00416269322
    [Google Scholar]
  138. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules2522547433238435
    [Google Scholar]
  139. ChenL. FengP. PengA. QiuX. LaiW. ZhangL. LiW. Protective effects of isoquercitrin on streptozotocin‐induced neurotoxicity.J. Cell. Mol. Med.20202418104581046710.1111/jcmm.1565832738031
    [Google Scholar]
  140. KimJ.H. LeeS. ChoE.J. Acer okamotoanum and isoquercitrin improve cognitive function via attenuation of oxidative stress in high fat diet- and amyloid beta-induced mice.Food Funct.201910106803681410.1039/C9FO01694E31577306
    [Google Scholar]
  141. BahnG. ParkJ.S. YunU.J. LeeY.J. ChoiY. ParkJ.S. BaekS.H. ChoiB.Y. ChoY.S. KimH.K. HanJ. SulJ.H. BaikS.H. LimJ. WakabayashiN. BaeS.H. HanJ.W. ArumugamT.V. MattsonM.P. JoD.G. NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models.Proc. Natl. Acad. Sci. USA201911625125161252310.1073/pnas.181954111631164420
    [Google Scholar]
  142. HuangX. WangY. RenK. Protective effects of liquiritin on the brain of rats with Alzheimer’s disease.West Indian Med. J.201564546847227399208
    [Google Scholar]
  143. MutoE. OkadaT. YamanakaT. UchinoH. InazuM. LicochalconeE. Licochalcone E, a β-amyloid aggregation inhibitor, regulates microglial M1/M2 polarization via inhibition of CTL1-mediated choline uptake.Biomolecules202313219110.3390/biom1302019136830561
    [Google Scholar]
  144. GuoJ. XueJ. DingZ. LiX. WangX. XueH. Activated phosphoinositide 3-kinase/akt/mammalian target of rapamycin signal and suppressed autophagy participate in protection offered by licochalcone A against amyloid-β peptide fragment 25–35–induced injury in SH-SY5Y cells.World Neurosurg.2022157e390e40010.1016/j.wneu.2021.10.09834662660
    [Google Scholar]
  145. ChenX. LiuZ. MengR. ShiC. GuoN. Antioxidative and anticancer properties of Licochalcone A from licorice.J. Ethnopharmacol.201719833133710.1016/j.jep.2017.01.02828111219
    [Google Scholar]
  146. FuY. JiaJ. Isoliquiritigenin confers neuroprotection and alleviates amyloid-β42-Induced neuroinflammation in microglia by regulating the Nrf2/NF-κB signaling.Front. Neurosci.20211563877210.3389/fnins.2021.63877233642990
    [Google Scholar]
  147. Budziak-WieczorekI. KamińskiD. SkrzypekA. CiołekA. SkrzypekT. Janik-ZabrotowiczE. ArczewskaM. Naturally occurring chalcones with aggregation-induced emission enhancement characteristics.Molecules2023288341210.3390/molecules2808341237110646
    [Google Scholar]
  148. GuanL. PengD. ZhangL. JiaJ. JiangH. Design, synthesis, and cholinesterase inhibition assay of liquiritigenin derivatives as anti-Alzheimer’s activity.Bioorg. Med. Chem. Lett.20215212830610.1016/j.bmcl.2021.12830634371131
    [Google Scholar]
  149. JeongG.S. KangM.G. LeeJ.Y. LeeS.R. ParkD. ChoM. KimH. Inhibition of butyrylcholinesterase and human monoamine oxidase-b by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis.Molecules20202517389610.3390/molecules2517389632859055
    [Google Scholar]
  150. NourH. DaouiO. AbchirO. ElKhattabiS. BelaidiS. ChtitaS. Combined computational approaches for developing new anti-Alzheimer drug candidates: 3D-QSAR, molecular docking and molecular dynamics studies of liquiritigenin derivatives.Heliyon2022812e1199110.1016/j.heliyon.2022.e1199136544815
    [Google Scholar]
  151. Abdel BarF.M. ElimamD.M. MiraA.S. El-SendunyF.F. BadriaF.A. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent.Nat. Prod. Res.201933182591259910.1080/14786419.2018.146217729656653
    [Google Scholar]
  152. KoY.H. KwonS.H. LeeS.Y. JangC.G. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus.Arch. Pharm. Res.201740101209121710.1007/s12272‑017‑0954‑628940173
    [Google Scholar]
  153. CuiY.M. AoM.Z. LiW. YuL.J. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice.Planta Med.200874437738010.1055/s‑2008‑103431918484526
    [Google Scholar]
  154. LiuR. LiJ. SongJ. ZhouD. HuangC. BaiX. XieT. ZhangX. LiY. WuC. ZhangL. LiL. ZhangT. DuG. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits.Neurobiol. Aging20143561275128510.1016/j.neurobiolaging.2013.12.03124468471
    [Google Scholar]
  155. WangC. SongL. LiX. BaiX. GaoJ. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer’s disease by activating the protein kinase C pathway.Neural Regen. Res.201712111870187610.4103/1673‑5374.21904929239334
    [Google Scholar]
  156. NejabatiH.R. RoshangarL. Kaempferol as a potential neuroprotector in Alzheimer’s disease.J. Food Biochem.20224612e1437510.1111/jfbc.1437535929364
    [Google Scholar]
  157. WangX. ZhaoL. Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway.Biochem. Biophys. Res. Commun.2016473242843410.1016/j.bbrc.2016.03.02426970304
    [Google Scholar]
  158. YangC.Z. WangS.H. ZhangR.H. LinJ.H. TianY.H. YangY.Q. LiuJ. MaY.X. Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice.Cell Death Discov.2023911510.1038/s41420‑023‑01324‑136681681
    [Google Scholar]
  159. PapaevgeniouN. SakellariM. JhaS. TavernarakisN. HolmbergC.I. GonosE.S. ChondrogianniN. 18α-glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer’s disease progression in Caenorhabditis elegans and neuronal cultures.Antioxid. Redox Signal.2016251685586910.1089/ars.2015.649426886723
    [Google Scholar]
  160. WangY.L. ChenM. HuoT.G. ZhangY.H. FangY. FengC. WangS.Y. JiangH. Effects of glycyrrhetinic acid on GSH synthesis induced by realgar in the mouse hippocampus: involvement of system [Formula: see text], system [Formula: see text], MRP-1, and Nrf2.Mol. Neurobiol.20175443102311610.1007/s12035‑016‑9859‑527039309
    [Google Scholar]
  161. LuoH. ZhangC. HeL. LinZ. ZhangJ. QiQ. ChenJ. YaoW. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype.Psychopharmacology (Berl.)202324091947196110.1007/s00213‑023‑06415‑637436491
    [Google Scholar]
  162. MaX. ChenH. CaoL. ZhaoS. ZhaoC. YinS. FanL. HuH. 18β-glycyrrhetinic acid protects neuronal cells from ferroptosis through inhibiting labile iron accumulation and preventing coenzyme Q10 reduction.Biochemical and biophysical research communications2022635576410.1016/j.bbrc.2022.10.01736257193
    [Google Scholar]
  163. ChiuY.J. LeeC.M. LinT.H. LinH.Y. LeeS.Y. MesriM. ChangK.H. LinJ.Y. Lee-ChenG.J. ChenC.M. Chinese herbal medicine Glycyrrhiza inflata reduces Aβ aggregation and exerts neuroprotection through anti-oxidation and anti-inflammation.Am. J. Chin. Med.201812530284464
    [Google Scholar]
  164. KrishnanN. KrishnanK. ConnorsC.R. ChoyM.S. PageR. PetiW. Van AelstL. SheaS.D. TonksN.K. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome.J. Clin. Invest.201512583163317710.1172/JCI8032326214522
    [Google Scholar]
  165. OzekC. KanoskiS.E. ZhangZ.Y. GrillH.J. BenceK.K. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling.J. Biol. Chem.201428946316823169210.1074/jbc.M114.60362125288805
    [Google Scholar]
  166. WuY. ZhuJ. LiuH. LiuH. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation.Aging (Albany NY)20211368895891510.18632/aging.20270433714945
    [Google Scholar]
  167. CaoY. XuW. HuangY. ZengX. LicochalconeB. Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease.Nat. Prod. Res.202034573673910.1080/14786419.2018.149642930345819
    [Google Scholar]
  168. GuM.Y. ChunY.S. ZhaoD. RyuS.Y. YangH.O. Glycyrrhiza uralensis and semilicoisoflavone B reduce Aβ secretion by increasing PPARγ expression and inhibiting STAT3 phosphorylation to inhibit BACE1 expression.Mol. Nutr. Food Res.2018626170063310.1002/mnfr.20170063329143445
    [Google Scholar]
  169. ZhouL. WangK. LiL. LiH. GengM. Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway.Eur. J. Pharmacol.201576121121610.1016/j.ejphar.2015.06.00326049009
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322320240911194626
Loading
/content/journals/ctmc/10.2174/0115680266322320240911194626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test