Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Aims

The aim of the current study was to explore the anti-diabetic potential of Boiss (.

Methods

All the fractions of were evaluated for α-glucosidase inhibition, followed by bioassay-guided isolation which resulted in a new sesquiterpenoid, as a potential α-glucosidase inhibitor.

Results

The preliminary screening showed that all the fractions including -hexane (38.0 ± 1.38 µg/mL), dichloromethane (92.6 ± 6.18 µg/mL), ethyl acetate (29.2 ± 0.51 µg/mL) and -butanol (361.8 ± 5.80 µg/mL) displayed significant α-glucosidase inhibitory activity. The activity-directed fractionation and purification of ethyl acetate fraction led to the isolation of one new sesquiterpenoid, Jardenol (), and two known metabolites: -stitosterol-3--D-glucopyranoside () and -sitosterol (). To the best of our knowledge, these metabolites have not been isolated from this plant previously. The structure of the new metabolite was confirmed through 1D and 2D NMR spectroscopy, and MS analysis. Compound showed significant α-glucosidase inhibition with an IC value of 138.2 ± 2.43 µg/mL as compared to positive control acarbose (IC = 942.0 ± 0.60 µg/mL). Additionally, docking was employed to predict the binding mechanism of compound in the active site of the target enzyme, α-glucosidase. The docking results suggested that the compound forms strong interactions at the catalytic site of α-glucosidase.

Conclusion

The results of the present study indicated that the newly purified secondary metabolite, Jardenol, can be a promising anti-diabetic compound.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266318007240924174634
2024-09-27
2025-06-17
Loading full text...

Full text loading...

References

  1. Diabetes Atlas committeeIDF Diabetes AtlasInternational Diabetes FederationBrussels, Belgium4th ed.2009
    [Google Scholar]
  2. Diabetes Atlas committeeIDF Diabetes AtlasInternational Diabetes FederationBrussels, Belgium5th ed.2011
    [Google Scholar]
  3. Diabetes Atlas committeeIDF Diabetes AtlasInternational Diabetes FederationBrussels, Belgium6th ed.2013
    [Google Scholar]
  4. Diabetes Atlas committeeIDF Diabetes AtlasInternational Diabetes FederationBrussels, Belgium7th ed.2015
    [Google Scholar]
  5. Diabetes Atlas committeeIDF Diabetes AtlasInternational Diabetes FederationBrussels, Belgium7th ed.2015
    [Google Scholar]
  6. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  7. BonoraE. MuggeoM. Postprandial blood glucose as a risk factor for cardiovascular disease in Type II diabetes: The epidemiological evidence.Diabetologia200144122107211410.1007/s00125010002011793012
    [Google Scholar]
  8. American Diabetes AssociationPostprandial blood glucose.Diabetes Care200124477577810.2337/diacare.24.4.77511315848
    [Google Scholar]
  9. MartinA.E. MontgomeryP.A. Acarbose: An α-glucosidase inhibitor.Am. J. Health Syst. Pharm.199653192277229010.1093/ajhp/53.19.22778893066
    [Google Scholar]
  10. ChougaleA.D. GhadyaleV.A. PanaskarS.N. ArvindekarA.U. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia.J. Enzyme Inhib. Med. Chem.2009244998100110.1080/1475636080256534619555164
    [Google Scholar]
  11. MillerA. Revision of Ochradenus.Notes-Royal Botanic Garden Edinburgh1984491594
    [Google Scholar]
  12. PerveenA. QaiserM. Pollen flora of Pakistan - XXVIII: Resedaceae.Turk. J. Bot.2000253942
    [Google Scholar]
  13. Martín-BravoS. MeimbergH. LuceñoM. MärklW. ValcárcelV. BräuchlerC. VargasP. HeublG. Molecular systematics and biogeography of Resedaceae based on ITS and trnL-F sequences.Mol. Phylogenet. Evol.20074431105112010.1016/j.ympev.2006.12.01617300965
    [Google Scholar]
  14. CraggG.M. NewmanD.J. WeissR.B. Coral reefs, forests, and thermal vents: The worldwide exploration of nature for novel antitumor agents.Semin. Oncol.19972421561639129686
    [Google Scholar]
  15. HussainJ. RehmanN.U. KhanA.L. AliL. KimJ-S. ZakarovaA. Al-HarrasiA. ShinwariZ.K. Phytochemical and biological assessment of medicinally important plant Ochradenus arabicus.Pak. J. Bot.20144620272034
    [Google Scholar]
  16. AlqasoumiS.I. SolimanG. AwaadA.S. DoniaA. Anti-inflammatory activity, safety and protective effects of Leptadenia pyrotechnica, Haloxylon salicornicum and Ochradenus baccatus in ulcerative colitis.Phytopharmacology201225871
    [Google Scholar]
  17. BarakatH.H. El-MousallamyA.M.D. SoulemanA.M.A. AwadallaS. Flavonoids of Ochradenus baccatus.Phytochemistry199130113777377910.1016/0031‑9422(91)80109‑E1367842
    [Google Scholar]
  18. ShabanaM.M. MirhomY.W. GenenahA.A. AboutablE.A. AmerH.A. Study into wild Egyptian plants of potential medicinal activity. Ninth communication: Hypoglycaemic activity of some selected plants in normal fasting and alloxanised rats.Arch. Exp. Veterinarmed.19904433893942241476
    [Google Scholar]
  19. PinentS.M.J. MascaroF. BottonM. RedaelliL.R. Thrips (Thysanoptera: Thripidae, Phlaeothripidae) damaging peach in Paranapanema, São Paulo State, Brazil.Neotrop. Entomol.200837448648810.1590/S1519‑566X200800040001918813753
    [Google Scholar]
  20. AliL. AhmadR. Ur RehmanN. Latif KhanA. HassanZ. Shamim RizviT. Al-HarrasiA. Khan ShinwariZ. HussainJ. A new cyclopropyl‐triterpenoid from Ochradenus arabicus.Helv. Chim. Acta20159891240124410.1002/hlca.201500052
    [Google Scholar]
  21. BulamaJ. DangoggoS. HaliluM. TsafA. HassanS. Isolation and characterization of palmitic acid from ethyl acetate extract of root bark of Terminalia glaucescens.Chem. Mater. Res.20146140143
    [Google Scholar]
  22. PeshinT. KarH. Isolation and characterization of β-sitosterol-3-O-β-D-glucoside from the extract of the flowers of Viola odorata.Br. J. Pharm. Res.20171641810.9734/BJPR/2017/33160
    [Google Scholar]
  23. AvulaS.K. KhanA. HalimS.A. Al-AbriZ. AnwarM.U. Al-RawahiA. CsukR. Al-HarrasiA. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors.Bioorg. Chem.20199110318210.1016/j.bioorg.2019.10318231404793
    [Google Scholar]
  24. Molecular Operating Environment (MOE)Chemical Computing Group Inc.Montreal, QC, Canada2021
    [Google Scholar]
  25. HalimS.A. JabeenS. KhanA. Al-HarrasiA. Rational design of novel inhibitors of α-glucosidase: An application of quantitative structure activity relationship and structure-based virtual screening.Pharmaceuticals (Basel)202114548210.3390/ph1405048234069325
    [Google Scholar]
  26. Ur RehmanN. RafiqK. KhanA. Ahsan HalimS. AliL. Al-SaadyN. Hilal Al-BalushiA. Al-BusaidiH.K. Al-HarrasiA. α-Glucosidase inhibition and molecular docking studies of natural brominated metabolites from marine macro brown alga Dictyopteris hoytii.Mar. Drugs2019171266610.3390/md1712066631779132
    [Google Scholar]
  27. RodriguesV.F. CarmoH.M. FilhoR.B. MathiasL. VieiraI.J.C. Two new terpenoids from Trichilia quadrijuga (Meliaceae).Nat. Prod. Commun.2010521934578X100050010.1177/1934578X100050020220334123
    [Google Scholar]
  28. el SayedK.A. A pseudoguaiane sesquiterpene xylopyranoside from Echinops hussoni.Pharmazie200156541541711400560
    [Google Scholar]
  29. IndrianingsihA.W. TachibanaS. Bioactive constituents from the leaves of Quercus phillyraeoides A. Gray for α-glucosidase inhibitor activity with concurrent antioxidant activity.Food Sci. Hum. Wellness201652859410.1016/j.fshw.2016.02.004
    [Google Scholar]
  30. YinZ. ZhangW. FengF. ZhangY. KangW. α-Glucosidase inhibitors isolated from medicinal plants.Food Sci. Hum. Wellness201433-413617410.1016/j.fshw.2014.11.003
    [Google Scholar]
  31. TabussumA. RiazN. SaleemM. AshrafM. AhmadM. AlamU. JabeenB. MalikA. JabbarA. α-Glucosidase inhibitory constituents from Chrozophora plicata.Phytochem. Lett.20136461461910.1016/j.phytol.2013.08.005
    [Google Scholar]
  32. ShengZ. DaiH. PanS. WangH. HuY. MaW. Isolation and characterization of an α-glucosidase inhibitor from Musa spp. (Baxijiao) flowers.Molecules2014197105631057310.3390/molecules19071056325045894
    [Google Scholar]
  33. ZhangB. XingY. WenC. YuX. SunW. XiuZ. DongY. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.Bioorg. Med. Chem. Lett.201727225065507010.1016/j.bmcl.2017.09.02728964635
    [Google Scholar]
  34. RizviT.S. HussainI. AliL. MaboodF. KhanA.L. ShujahS. RehmanN.U. Al-HarrasiA. HussainJ. KhanA. HalimS.A. New gorgonane sesquiterpenoid from Teucrium mascatense Boiss, as α-glucosidase inhibitor.S. Afr. J. Bot.201912421822210.1016/j.sajb.2019.05.008
    [Google Scholar]
  35. MorochoV. ValleA. GarcíaJ. GilardoniG. CartucheL. SuárezA. α-Glucosidase inhibition and antibacterial activity of secondary metabolites from the Ecuadorian species Clinopodium taxifolium (Kunth) govaerts.Molecules201823114610.3390/molecules2301014629324657
    [Google Scholar]
  36. YingY.M. FangC.A. YaoF.Q. YuY. ShenY. HouZ.N. WangZ. ZhangW. ShanW.G. ZhanZ.J. Bergamotane sesquiterpenes with alpha‐glucosidase inhibitory activity from the plant pathogenic fungus Penicillium expansum.Chem. Biodivers.2017141e160018410.1002/cbdv.20160018427582055
    [Google Scholar]
  37. RengasamyK.R.R. SlavětínskáL.P. KulkarniM.G. StirkW.A. Van StadenJ. Cuparane sesquiterpenes from Laurencia natalensis Kylin as inhibitors of alpha-glucosidase, dipeptidyl peptidase IV and xanthine oxidase.Algal Res.20172517818310.1016/j.algal.2017.05.008
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266318007240924174634
Loading
/content/journals/ctmc/10.2174/0115680266318007240924174634
Loading

Data & Media loading...

Supplements

The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Table : 13C (150 MHZ) and 1H (600 MHZ) NMR data of in CDCl, δ in ppm, J in Hz, Fig. (): 1H spectrum of jardenol () in CDCl (600MHz), Fig. (): 13C-NMR spectrum of jardenol () in CDCl (150MHz), Fig. (): The COSY spectrum and its correlations of jardenol () in CDCl, Fig. (): The HMBC spectrum and its main correlations of jardenol () in CDCl, Fig. (): The HSQC spectrum and its correlations of jardenol () in CDCl, Fig. (): The NOESY spectrum and its correlations of jardenol () in CDCl, Fig. (): ESI-MS spectrum of jardenol ()

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test