Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer cells are among the many types of cells that release exosomes, which are nano-vesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266304636240626055711
2024-07-09
2025-05-08
Loading full text...

Full text loading...

References

  1. TramsE.G. LauterC.J. Norman SalemJ. HeineU. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles.Biochim. Biophys. Acta Biomembr.19816451637010.1016/0005‑2736(81)90512‑5
    [Google Scholar]
  2. JohnstoneR.M. AdamM. HammondJ.R. OrrL. TurbideC. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).J. Biol. Chem.1987262199412942010.1016/S0021‑9258(18)48095‑73597417
    [Google Scholar]
  3. OosthuyzenW. SimeN.E.L. IvyJ.R. TurtleE.J. StreetJ.M. PoundJ. BathL.E. WebbD.J. GregoryC.D. BaileyM.A. DearJ.W. Quantification of human urinary exosomes by nanoparticle tracking analysis.J. Physiol.2013591235833584210.1113/jphysiol.2013.26406924060994
    [Google Scholar]
  4. PisitkunT. ShenR.F. KnepperM.A. Identification and proteomic profiling of exosomes in human urine.Proc. Natl. Acad. Sci. USA200410136133681337310.1073/pnas.040345310115326289
    [Google Scholar]
  5. LässerC. Seyed AlikhaniV. EkströmK. EldhM. Torregrosa ParedesP. BossiosA. SjöstrandM. GabrielssonS. LötvallJ. ValadiH. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages.J. Transl. Med.201191910.1186/1479‑5876‑9‑921235781
    [Google Scholar]
  6. ThéryC. Exosomes: Secreted vesicles and intercellular communications.F1000 Biol. Rep.201131510.3410/B3‑1521876726
    [Google Scholar]
  7. UmezuT. OhyashikiK. KurodaM. OhyashikiJ.H. Leukemia cell to endothelial cell communication via exosomal miRNAs.Oncogene201332222747275510.1038/onc.2012.29522797057
    [Google Scholar]
  8. VlassovA.V. MagdalenoS. SetterquistR. ConradR. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.Biochim. Biophys. Acta, Gen. Subj.20121820794094810.1016/j.bbagen.2012.03.01722503788
    [Google Scholar]
  9. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑12232625288114
    [Google Scholar]
  10. WengJ. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis?Semin Cancer Biol.202174105120
    [Google Scholar]
  11. AilunoG. BaldassariS. LaiF. FlorioT. CaviglioliG. Exosomes and extracellular vesicles as emerging theranostic platforms in cancer research.Cells2020912256910.3390/cells912256933271820
    [Google Scholar]
  12. JayasingheM.K. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies.Semin. Cancer Biol.2021746278
    [Google Scholar]
  13. CocucciE. RacchettiG. MeldolesiJ. Shedding microvesicles: Artefacts no more.Trends Cell Biol.2009192435110.1016/j.tcb.2008.11.00319144520
    [Google Scholar]
  14. HristovM. ErlW. LinderS. WeberP.C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro .Blood200410492761276610.1182/blood‑2003‑10‑361415242875
    [Google Scholar]
  15. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.20121113823420871
    [Google Scholar]
  16. WuP. ZhangB. OcanseyD.K.W. XuW. QianH. Extracellular vesicles: A bright star of nanomedicine.Biomaterials202126912046710.1016/j.biomaterials.2020.12046733189359
    [Google Scholar]
  17. MöllerA. LobbR.J. The evolving translational potential of small extracellular vesicles in cancer.Nat. Rev. Cancer2020201269770910.1038/s41568‑020‑00299‑w32958932
    [Google Scholar]
  18. MathewM. ZadeM. MezghaniN. PatelR. WangY. Momen-HeraviF. Extracellular vesicles as biomarkers in cancer immunotherapy.Cancers20201210282510.3390/cancers1210282533007968
    [Google Scholar]
  19. WeeI. SynN. SethiG. GohB.C. WangL. Role of tumor-derived exosomes in cancer metastasis..Biochim Biophys Acta- Rev. Can.2019187111219
    [Google Scholar]
  20. DenzerK. KleijmeerM.J. HeijnenH.F.G. StoorvogelW. GeuzeH.J. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device.J. Cell Sci.2000113193365337410.1242/jcs.113.19.336510984428
    [Google Scholar]
  21. AshrafizavehS. AshrafizadehM. ZarrabiA. HusmandiK. ZabolianA. ShahinozzamanM. ArefA.R. HamblinM.R. NabaviN. CreaF. WangY. AhnK.S. Long non-coding RNAs in the doxorubicin resistance of cancer cells.Cancer Lett.202150810411410.1016/j.canlet.2021.03.01833766750
    [Google Scholar]
  22. de JongO.G. VerhaarM.C. ChenY. VaderP. GremmelsH. PosthumaG. SchiffelersR.M. GucekM. van BalkomB.W.M. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes.J. Extracell. Vesicles2012111839610.3402/jev.v1i0.1839624009886
    [Google Scholar]
  23. ArscottW.T. TandleA.T. ZhaoS. ShabasonJ.E. GordonI.K. SchlaffC.D. ZhangG. TofilonP.J. CamphausenK.A. Ionizing radiation and glioblastoma exosomes: Implications in tumor biology and cell migration.Transl. Oncol.201366638IN610.1593/tlo.1364024466366
    [Google Scholar]
  24. KucharzewskaP. ChristiansonH.C. WelchJ.E. SvenssonK.J. FredlundE. RingnérM. MörgelinM. Bourseau-GuilmainE. BengzonJ. BeltingM. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development.Proc. Natl. Acad. Sci. USA2013110187312731710.1073/pnas.122099811023589885
    [Google Scholar]
  25. MaheshwariS. SinghA.K. AryaR.K. PandeyD. SinghA. DattaD. Exosomes: Emerging players of intercellular communication in tumor microenvironment.Discoveries201423e2610.15190/d.2014.1832309554
    [Google Scholar]
  26. SiravegnaG. MarsoniS. SienaS. BardelliA. Integrating liquid biopsies into the management of cancer.Nat. Rev. Clin. Oncol.201714953154810.1038/nrclinonc.2017.1428252003
    [Google Scholar]
  27. RizzoA. RicciA.D. TavolariS. BrandiG. Circulating tumor DNA in biliary tract cancer: Current evidence and future perspectives.Cancer Genomics Proteomics202017544145210.21873/cgp.2020332859625
    [Google Scholar]
  28. RizzoA. BrandiG. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma.Cancer Treat. Res. Commun.20212710032810.1016/j.ctarc.2021.10032833549983
    [Google Scholar]
  29. RoselliniM. MarchettiA. MollicaV. RizzoA. SantoniM. MassariF. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma.Nat. Rev. Urol.202320313315710.1038/s41585‑022‑00676‑036414800
    [Google Scholar]
  30. RizzoA. RicciA.D. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond.Expert Opin. Investig. Drugs202231654955510.1080/13543784.2022.200835434793275
    [Google Scholar]
  31. MittelbrunnM. Gutiérrez-VázquezC. Villarroya-BeltriC. GonzálezS. Sánchez-CaboF. GonzálezM.Á. BernadA. Sánchez-MadridF. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells.Nat. Commun.20112128210.1038/ncomms128521505438
    [Google Scholar]
  32. MathivananS. JiH. SimpsonR.J. Exosomes: Extracellular organelles important in intercellular communication.J. Proteomics201073101907192010.1016/j.jprot.2010.06.00620601276
    [Google Scholar]
  33. KobayashiT. GuF. GruenbergJ. Lipids, lipid domains and lipid–protein interactions in endocytic membrane traffic.Semin. Cell Dev. Biol.19989551752610.1006/scdb.1998.02579835639
    [Google Scholar]
  34. HurleyJ.H. ESCRT s are everywhere.EMBO J.201534192398240710.15252/embj.20159248426311197
    [Google Scholar]
  35. HenneW.M. BuchkovichN.J. EmrS.D. The ESCRT pathway.Dev. Cell2011211779110.1016/j.devcel.2011.05.01521763610
    [Google Scholar]
  36. BaiettiM.F. ZhangZ. MortierE. MelchiorA. DegeestG. GeeraertsA. IvarssonY. DepoortereF. CoomansC. VermeirenE. ZimmermannP. DavidG. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes.Nat. Cell Biol.201214767768510.1038/ncb250222660413
    [Google Scholar]
  37. Villarroya-BeltriC. BaixauliF. Gutiérrez-VázquezC. Sánchez-MadridF. MittelbrunnM. Sorting it out: Regulation of exosome loading.Semin. Cancer Biol.20142831310.1016/j.semcancer.2014.04.00924769058
    [Google Scholar]
  38. SahuR. KaushikS. ClementC.C. CannizzoE.S. ScharfB. FollenziA. PotolicchioI. NievesE. CuervoA.M. SantambrogioL. Microautophagy of cytosolic proteins by late endosomes.Dev. Cell201120113113910.1016/j.devcel.2010.12.00321238931
    [Google Scholar]
  39. SuchorskaW.M. LachM.S. The role of exosomes in tumor progression and metastasis (Review).Oncol. Rep.20163531237124410.3892/or.2015.450726707854
    [Google Scholar]
  40. GiordanoC. La CameraG. GelsominoL. BaroneI. BonofiglioD. AndòS. CatalanoS. The biology of exosomes in breast cancer progression: Dissemination, immune evasion and metastatic colonization.Cancers2020128217910.3390/cancers1208217932764376
    [Google Scholar]
  41. KhanS. BennitH.F. TurayD. PerezM. MirshahidiS. YuanY. WallN.R. Early diagnostic value of survivin and its alternative splice variants in breast cancer.BMC Cancer201414117610.1186/1471‑2407‑14‑17624620748
    [Google Scholar]
  42. RichesA. CampbellE. BorgerE. PowisS. Regulation of exosome release from mammary epithelial and breast cancer cells – A new regulatory pathway.Eur. J. Cancer20145051025103410.1016/j.ejca.2013.12.01924462375
    [Google Scholar]
  43. KingH.W. MichaelM.Z. GleadleJ.M. Hypoxic enhancement of exosome release by breast cancer cells.BMC Cancer201212142110.1186/1471‑2407‑12‑42122998595
    [Google Scholar]
  44. MessengerS.W. WooS.S. SunZ. MartinT.F.J. CaA. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4.J. Cell Biol.201821782877289010.1083/jcb.20171013229930202
    [Google Scholar]
  45. GiordanoC. GelsominoL. BaroneI. PanzaS. AugimeriG. BonofiglioD. RovitoD. NaimoG. LeggioA. CatalanoS. AndòS. Leptin modulates exosome biogenesis in breast cancer cells: An additional mechanism in cell-to-cell communication.J. Clin. Med.201987102710.3390/jcm807102731336913
    [Google Scholar]
  46. MulcahyL.A. PinkR.C. CarterD.R.F. Routes and mechanisms of extracellular vesicle uptake.J. Extracell. Vesicles2014312464110.3402/jev.v3.2464125143819
    [Google Scholar]
  47. ValleeR.B. HerskovitsJ.S. AghajanianJ.G. BurgessC.C. ShpetnerH.S. Dynamin, a GTPase involved in the initial stages of endocytosis.Ciba Foundation Symposium 176 - The GTPase SuperfamilyWiley Online Library18519710.1002/9780470514450.ch12
    [Google Scholar]
  48. RamachandranR. PucadyilT.J. LiuY.W. AcharyaS. LeonardM. LukiyanchukV. SchmidS.L. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission.Mol. Biol. Cell200920224630463910.1091/mbc.e09‑08‑068319776347
    [Google Scholar]
  49. MathieuM. Martin-JaularL. LavieuG. ThéryC. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.Nat. Cell Biol.201921191710.1038/s41556‑018‑0250‑930602770
    [Google Scholar]
  50. RecordM. CarayonK. PoirotM. Silvente-PoirotS. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20141841110812010.1016/j.bbalip.2013.10.00424140720
    [Google Scholar]
  51. CamuzardO. Santucci-DarmaninS. CarleG.F. Pierrefite-CarleV. Autophagy in the crosstalk between tumor and microenvironment.Cancer Lett.202049014315310.1016/j.canlet.2020.06.01532634449
    [Google Scholar]
  52. MaZ. WangL.Z. ChengJ.T. LamW.S.T. MaX. XiangX. WongA.L.A. GohB.C. GongQ. SethiG. WangL. Targeting hypoxia-inducible factor-1-mediated metastasis for cancer therapy.Antioxid. Redox Signal.202134181484149710.1089/ars.2019.793533198508
    [Google Scholar]
  53. ShanmugamM.K. WarrierS. KumarA.P. SethiG. ArfusoF. Potential role of natural compounds as anti-angiogenic agents in cancer.Curr. Vasc. Pharmacol.201715650351928707601
    [Google Scholar]
  54. YeJ. WuD. WuP. ChenZ. HuangJ. The cancer stem cell niche: Cross talk between cancer stem cells and their microenvironment.Tumour Biol.20143553945395110.1007/s13277‑013‑1561‑x24420150
    [Google Scholar]
  55. KalluriR. ZeisbergM. Fibroblasts in cancer.Nat. Rev. Cancer20066539240110.1038/nrc187716572188
    [Google Scholar]
  56. QianL.W. MizumotoK. MaeharaN. OhuchidaK. InadomeN. SaimuraM. NagaiE. MatsumotoK. NakamuraT. TanakaM. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: Fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production.Cancer Lett.2003190110511210.1016/S0304‑3835(02)00517‑712536083
    [Google Scholar]
  57. MoraesL.A. KarS. FooS.L. GuT. TohY.Q. AmpomahP.B. SachaphibulkijK. YapG. ZharkovaO. LukmanH.M. FairhurstA.M. KumarA.P. LimL.H.K. Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment.Sci. Rep.2017711792510.1038/s41598‑017‑17622‑529263330
    [Google Scholar]
  58. YangY. GuoZ. ChenW. WangX. CaoM. HanX. ZhangK. TengB. CaoJ. WuW. CaoP. HuangC. QiuZ. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2.Mol. Ther.20212931226123810.1016/j.ymthe.2020.11.02433221435
    [Google Scholar]
  59. DongF. RuanS. WangJ. XiaY. LeK. XiaoX. HuT. WangQ. M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2.Cell Death Dis.202011972810.1038/s41419‑020‑02926‑832908134
    [Google Scholar]
  60. JungY.Y. UmJ.Y. NasifO. AlharbiS.A. SethiG. AhnK.S. Blockage of the JAK/STAT3 signaling pathway in multiple myeloma by leelamine.Phytomedicine20218715357410.1016/j.phymed.2021.15357434006448
    [Google Scholar]
  61. MohanC.D. RangappaS. NayakS.C. SethiG. RangappaK.S. Paradoxical functions of long noncoding RNAs in modulating STAT3 signaling pathway in hepatocellular carcinoma.Biochim. Biophys. Acta Rev. Cancer20211876118857410.1016/j.bbcan.2021.18857434062154
    [Google Scholar]
  62. GargM. ShanmugamM.K. BhardwajV. GoelA. GuptaR. SharmaA. BaligarP. KumarA.P. GohB.C. WangL. SethiG. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy.Med. Res. Rev.20214131291133610.1002/med.2176133289118
    [Google Scholar]
  63. JungY.Y. HaI.J. UmJ.Y. SethiG. AhnK.S. Fangchinoline diminishes STAT3 activation by stimulating oxidative stress and targeting SHP-1 protein in multiple myeloma model.J. Adv. Res.20223524525710.1016/j.jare.2021.03.00835024200
    [Google Scholar]
  64. LeeJ.H. MohanC.D. DeivasigamaniA. JungY.Y. RangappaS. BasappaS. ChinnathambiA. AlahmadiT.A. AlharbiS.A. GargM. LinZ.X. RangappaK.S. SethiG. HuiK.M. AhnK.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma.J. Adv. Res.202026839410.1016/j.jare.2020.07.00433133685
    [Google Scholar]
  65. XuJ. ZhangJ. ZhangZ. GaoZ. QiY. QiuW. PanZ. GuoQ. LiB. ZhaoS. GuoX. QianM. ChenZ. WangS. GaoX. ZhangS. WangH. GuoX. ZhangP. ZhaoR. XueH. LiG. Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction.Cell Death Dis.202112437310.1038/s41419‑021‑03664‑133828078
    [Google Scholar]
  66. GeL. ZhouF. NieJ. WangX. ZhaoQ. Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect.Exp. Biol. Med.2021246171895190610.1177/1535370221101157633969722
    [Google Scholar]
  67. WuJ. GaoW. TangQ. YuY. YouW. WuZ. FanY. ZhangL. WuC. HanG. ZuoX. ZhangY. ChenZ. DingW. LiX. LinF. ShenH. TangJ. ZhangY. WangX. Retracted: M2 macrophage–derived exosomes facilitate HCC metastasis by transferring αMβ2 integrin to tumor cells.Hepatology20217341365138010.1002/hep.3143232594528
    [Google Scholar]
  68. ZhouW. ZhouY. ChenX. NingT. ChenH. GuoQ. ZhangY. LiuP. ZhangY. LiC. ChuY. SunT. JiangC. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment.Biomaterials202126812054610.1016/j.biomaterials.2020.12054633253966
    [Google Scholar]
  69. ZhuD. LiuZ. LiY. HuangQ. XiaL. LiK. Delivery of manganese carbonyl to the tumor microenvironment using Tumor-Derived exosomes for cancer gas therapy and low dose radiotherapy.Biomaterials202127412089410.1016/j.biomaterials.2021.12089434029916
    [Google Scholar]
  70. WangJ. TangW. YangM. YinY. LiH. HuF. TangL. MaX. ZhangY. WangY. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy.Biomaterials202127312078410.1016/j.biomaterials.2021.12078433848731
    [Google Scholar]
  71. Ferguson BennitH.R. GondaA. KabagwiraJ. OppegardL. ChiD. Licero CampbellJ. De LeonM. WallN.R. Natural killer cell phenotype and functionality affected by exposure to extracellular survivin and lymphoma-derived exosomes.Int. J. Mol. Sci.2021223125510.3390/ijms2203125533513976
    [Google Scholar]
  72. BuderT. DeutschA. KlinkB. Voss-BöhmeA. Patterns of tumor progression predict small and tissue-specific tumor-originating niches.Front. Oncol.2019866810.3389/fonc.2018.0066830687642
    [Google Scholar]
  73. PitotH.C. The molecular biology of carcinogenesis.Cancer199372S3Suppl.96297010.1002/1097‑0142(19930801)72:3+<962::AID‑CNCR2820721303>3.0.CO;2‑H8334671
    [Google Scholar]
  74. VogelsteinB. PapadopoulosN. VelculescuV.E. ZhouS. DiazL.A.Jr KinzlerK.W. Cancer genome landscapes.Science201333961271546155810.1126/science.123512223539594
    [Google Scholar]
  75. LevineA.J. JenkinsN.A. CopelandN.G. The roles of initiating truncal mutations in human cancers: The order of mutations and tumor cell type matters.Cancer Cell2019351101510.1016/j.ccell.2018.11.00930645969
    [Google Scholar]
  76. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.02520303878
    [Google Scholar]
  77. StefaniusK. ServageK. de Souza SantosM. GrayH.F. ToombsJ.E. ChimalapatiS. KimM.S. MalladiV.S. BrekkenR. OrthK. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation.eLife20198e4022610.7554/eLife.4022631134894
    [Google Scholar]
  78. ChanB.D. WongW.Y. LeeM.M.L. ChoW.C.S. YeeB.K. KwanY.W. TaiW.C.S. Exosomes in inflammation and inflammatory disease.Proteomics2019198180014910.1002/pmic.20180014930758141
    [Google Scholar]
  79. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  80. PiotrowskiI. KulcentyK. SuchorskaW. Interplay between inflammation and cancer.Rep. Pract. Oncol. Radiother.202025342242710.1016/j.rpor.2020.04.00432372882
    [Google Scholar]
  81. Butin-IsraeliV. BuiT.M. WiesolekH.L. MascarenhasL. LeeJ.J. MehlL.C. KnutsonK.R. AdamS.A. GoldmanR.D. BeyderA. WiesmullerL. HanauerS.B. SumaginR. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing.J. Clin. Invest.2019129271272610.1172/JCI12208530640176
    [Google Scholar]
  82. GranofszkyN. LangM. KhareV. SchmidG. ScharlT. FerkF. JimenezK. KnasmüllerS. CampregherC. GascheC. Identification of PMN-released mutagenic factors in a co-culture model for colitis-associated cancer.Carcinogenesis201839214615710.1093/carcin/bgx11829106440
    [Google Scholar]
  83. ZhangX. DeekeS.A. NingZ. StarrA.E. ButcherJ. LiJ. MayneJ. ChengK. LiaoB. LiL. SingletonR. MackD. StintziA. FigeysD. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.Nat. Commun.201891287310.1038/s41467‑018‑05357‑430030445
    [Google Scholar]
  84. O’RourkeJ.M. SagarV.M. ShahT. ShettyS. Carcinogenesis on the background of liver fibrosis: Implications for the management of hepatocellular cancer.World J. Gastroenterol.201824394436444710.3748/wjg.v24.i39.443630357021
    [Google Scholar]
  85. HerveraA. De VirgiliisF. PalmisanoI. ZhouL. TantardiniE. KongG. HutsonT. DanziM.C. PerryR.B.T. SantosC.X.C. KapustinA.N. FleckR.A. Del RíoJ.A. CarrollT. LemmonV. BixbyJ.L. ShahA.M. FainzilberM. Di GiovanniS. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons.Nat. Cell Biol.201820330731910.1038/s41556‑018‑0039‑x29434374
    [Google Scholar]
  86. KumarS. SinhaN. GerthK.A. RahmanM.A. YallapuM.M. MiddeN.M. Specific packaging and circulation of cytochromes P450, especially 2E1 isozyme, in human plasma exosomes and their implications in cellular communications.Biochem. Biophys. Res. Commun.2017491367568010.1016/j.bbrc.2017.07.14528756226
    [Google Scholar]
  87. BodegaG. AliqueM. PueblaL. CarracedoJ. RamírezR.M. Microvesicles: ROS scavengers and ROS producers.J. Extracell. Vesicles201981162665410.1080/20013078.2019.162665431258880
    [Google Scholar]
  88. WanL. XiaT. DuY. LiuJ. XieY. ZhangY. GuanF. WuJ. WangX. ShiC. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: A role for exosomes in metabolic switch of liver nonparenchymal cells.FASEB J.20193378530854210.1096/fj.201802675R30970216
    [Google Scholar]
  89. LiX. LiuR. HuangZ. GurleyE.C. WangX. WangJ. HeH. YangH. LaiG. ZhangL. BajajJ.S. WhiteM. PandakW.M. HylemonP.B. ZhouH. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans.Hepatology201868259961510.1002/hep.2983829425397
    [Google Scholar]
  90. FeoF. Preneoplastic lesions.Encyclopedia of Cancer. SchwabM. Berlin, HeidelbergSpringer Berlin Heidelberg20112977298410.1007/978‑3‑642‑16483‑5_4724
    [Google Scholar]
  91. KimJ.H. LeeC.H. LeeS.W. Exosomal transmission of MicroRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells.Mol. Ther. Nucleic Acids20191448349710.1016/j.omtn.2019.01.00630753992
    [Google Scholar]
  92. PolakovicovaI. JerezS. WichmannI.A. Sandoval-BórquezA. Carrasco-VélizN. CorvalánA.H. Role of microRNAs and exosomes in Helicobacter pylori and epstein-barr virus associated gastric cancers.Front. Microbiol.2018963610.3389/fmicb.2018.0063629675003
    [Google Scholar]
  93. ChenY. WangX. YuY. XiaoY. HuangJ. YaoZ. ChenX. ZhouT. LiP. XuC. Serum exosomes of chronic gastritis patients infected with Helicobacter pylori mediate IL-1α expression via IL-6 trans-signalling in gastric epithelial cells.Clin. Exp. Immunol.2018194333934910.1111/cei.1320030105789
    [Google Scholar]
  94. MinciacchiV.R. Extracellular vesicles in cancer: Exosomes, Microvesicles and the emerging role of large oncosomes.Semin. Cell Dev. Biol.2015404151
    [Google Scholar]
  95. VagnerT. SpinelliC. MinciacchiV.R. BalajL. ZandianM. ConleyA. ZijlstraA. FreemanM.R. DemichelisF. DeS. PosadasE.M. TanakaH. Di VizioD. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma.J. Extracell. Vesicles201871150540310.1080/20013078.2018.150540330108686
    [Google Scholar]
  96. Di VizioD. KimJ. HagerM.H. MorelloM. YangW. LafargueC.J. TrueL.D. RubinM.A. AdamR.M. BeroukhimR. DemichelisF. FreemanM.R. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease.Cancer Res.200969135601560910.1158/0008‑5472.CAN‑08‑386019549916
    [Google Scholar]
  97. MinciacchiV.R. YouS. SpinelliC. MorleyS. ZandianM. AspuriaP.J. CavalliniL. CiardielloC. SobreiroM.R. MorelloM. KharmateG. JangS.C. KimD.K. Hosseini-BeheshtiE. GunsE.T. GleaveM. GhoY.S. MathivananS. YangW. FreemanM.R. Di VizioD. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles.Oncotarget2015613113271134110.18632/oncotarget.359825857301
    [Google Scholar]
  98. KawamuraY. YamamotoY. SatoT.A. OchiyaT. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution.Cancer Sci.2017108582483010.1111/cas.1322228256033
    [Google Scholar]
  99. SilvaJ. GarciaV. RodriguezM. CompteM. CisnerosE. VeguillasP. GarciaJ.M. DominguezG. Campos-MartinY. CuevasJ. PeñaC. HerreraM. DiazR. MohammedN. BonillaF. Analysis of exosome release and its prognostic value in human colorectal cancer.Genes Chromosomes Cancer201251440941810.1002/gcc.2192622420032
    [Google Scholar]
  100. ThakurB.K. ZhangH. BeckerA. MateiI. HuangY. Costa-SilvaB. ZhengY. HoshinoA. BrazierH. XiangJ. WilliamsC. Rodriguez-BarruecoR. SilvaJ.M. ZhangW. HearnS. ElementoO. PaknejadN. Manova-TodorovaK. WelteK. BrombergJ. PeinadoH. LydenD. Double-stranded DNA in exosomes: A novel biomarker in cancer detection.Cell Res.201424676676910.1038/cr.2014.4424710597
    [Google Scholar]
  101. PanL. LiangW. FuM. HuangZ. LiX. ZhangW. ZhangP. QianH. JiangP. XuW. ZhangX. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression.J. Cancer Res. Clin. Oncol.20171436991100410.1007/s00432‑017‑2361‑228285404
    [Google Scholar]
  102. BellinghamS. A. ShambrookM. HillA. F. Quantitative analysis of exosomal miRNA via qPCR and digital PCR.Methods Mol Biol.20171545557010.1007/978‑1‑4939‑6728‑5_527943207
    [Google Scholar]
  103. LunavatT.R. ChengL. KimD.K. BhaduryJ. JangS.C. LässerC. SharplesR.A. LópezM.D. NilssonJ. GhoY.S. HillA.F. LötvallJ. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – Evidence of unique microRNA cargos.RNA Biol.201512881082310.1080/15476286.2015.105697526176991
    [Google Scholar]
  104. MjelleR. DimaS.O. BacalbasaN. ChawlaK. SoropA. CucuD. HerleaV. SætromP. PopescuI. Comprehensive transcriptomic analyses of tissue, serum, and serum exosomes from hepatocellular carcinoma patients.BMC Cancer2019191100710.1186/s12885‑019‑6249‑131660891
    [Google Scholar]
  105. MaiaJ. CajaS. Strano MoraesM.C. CoutoN. Costa-SilvaB. Exosome-based cell-cell communication in the tumor microenvironment.Front. Cell Dev. Biol.201861810.3389/fcell.2018.0001829515996
    [Google Scholar]
  106. Al-NedawiK. MeehanB. MicallefJ. LhotakV. MayL. GuhaA. RakJ. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells.Nat. Cell Biol.200810561962410.1038/ncb172518425114
    [Google Scholar]
  107. WebberJ. SteadmanR. MasonM.D. TabiZ. ClaytonA. Cancer exosomes trigger fibroblast to myofibroblast differentiation.Cancer Res.201070239621963010.1158/0008‑5472.CAN‑10‑172221098712
    [Google Scholar]
  108. ZhaoH. YangL. BaddourJ. AchrejaA. BernardV. MossT. MariniJ. C. TudaweT. SeviourE. G. San LucasF. A. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.eLife20165e10250
    [Google Scholar]
  109. GutkinA. UzielO. BeeryE. NordenbergJ. PinchasiM. GoldvaserH. HenickS. GoldbergM. LahavM. Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells.Oncotarget2016737591735918810.18632/oncotarget.1038427385095
    [Google Scholar]
  110. Costa-SilvaB. AielloN.M. OceanA.J. SinghS. ZhangH. ThakurB.K. BeckerA. HoshinoA. MarkM.T. MolinaH. XiangJ. ZhangT. TheilenT.M. García-SantosG. WilliamsC. ArarsoY. HuangY. RodriguesG. ShenT.L. LaboriK.J. LotheI.M.B. KureE.H. HernandezJ. DoussotA. EbbesenS.H. GrandgenettP.M. HollingsworthM.A. JainM. MallyaK. BatraS.K. JarnaginW.R. SchwartzR.E. MateiI. PeinadoH. StangerB.Z. BrombergJ. LydenD. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.Nat. Cell Biol.201517681682610.1038/ncb316925985394
    [Google Scholar]
  111. RivoltiniL. ChiodoniC. SquarcinaP. TortoretoM. VillaA. VerganiB. BürdekM. BottiL. ArioliI. CovaA. MauriG. VerganiE. BianchiB. Della MinaP. CantoneL. BollatiV. ZaffaroniN. GianniA.M. ColomboM.P. HuberV. TNF-related apoptosis-inducing ligand (TRAIL)–armed exosomes deliver proapoptotic signals to tumor site.Clin. Cancer Res.201622143499351210.1158/1078‑0432.CCR‑15‑217026944067
    [Google Scholar]
  112. KoliopanosA. FriessH. KleeffJ. ShiX. LiaoQ. PeckerI. VlodavskyI. ZimmermannA. BüchlerM.W. Heparanase expression in primary and metastatic pancreatic cancer.Cancer Res.200161124655465911406531
    [Google Scholar]
  113. KooT.H. LeeJ.J. KimE.M. KimK.W. KimH.D. LeeJ.H. Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines.Oncogene200221264080408810.1038/sj.onc.120551412037664
    [Google Scholar]
  114. LiuR.T. HuangC.C. YouH.L. ChouF.F. HuC.C.A. ChaoF.P. ChenC.M. ChengJ.T. Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas.Oncogene200221314830483710.1038/sj.onc.120561212101421
    [Google Scholar]
  115. OhK.B. StantonM.J. WestW.W. ToddG.L. WagnerK-U. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation.Oncogene200726405950595910.1038/sj.onc.121040117369844
    [Google Scholar]
  116. ToyoshimaM. TanakaN. AokiJ. TanakaY. MurataK. KyuumaM. KobayashiH. IshiiN. YaegashiN. SugamuraK. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: Its regulatory role on E-cadherin and β-catenin.Cancer Res.200767115162517110.1158/0008‑5472.CAN‑06‑275617545595
    [Google Scholar]
  117. Morgan-FisherM. WewerU.M. YonedaA. Regulation of ROCK activity in cancer.J. Histochem. Cytochem.201361318519810.1369/002215541247083423204112
    [Google Scholar]
  118. Ruiz-MartinezM. NavarroA. MarradesR.M. ViñolasN. SantasusagnaS. MuñozC. RamírezJ. MolinsL. MonzoM. YKT6 expression, exosome release, and survival in non-small cell lung cancer.Oncotarget2016732515155152410.18632/oncotarget.986227285987
    [Google Scholar]
  119. TakasugiM. OkadaR. TakahashiA. Virya ChenD. WatanabeS. HaraE. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2.Nat. Commun.2017811572910.1038/ncomms1572828585531
    [Google Scholar]
  120. ImjetiN.S. MenckK. Egea-JimenezA.L. LecointreC. LemboF. BougueninaH. BadacheA. GhossoubR. DavidG. RocheS. ZimmermannP. Syntenin mediates SRC function in exosomal cell-to-cell communication.Proc. Natl. Acad. Sci. USA201711447124951250010.1073/pnas.171343311429109268
    [Google Scholar]
  121. ParoliniI. FedericiC. RaggiC. LuginiL. PalleschiS. De MilitoA. CosciaC. IessiE. LogozziM. MolinariA. ColoneM. TattiM. SargiacomoM. FaisS. Microenvironmental pH is a key factor for exosome traffic in tumor cells.J. Biol. Chem.200928449342113422210.1074/jbc.M109.04115219801663
    [Google Scholar]
  122. LiL. LiC. WangS. WangZ. JiangJ. WangW. LiX. ChenJ. LiuK. LiC. ZhuG. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype.Cancer Res.20167671770178010.1158/0008‑5472.CAN‑15‑162526992424
    [Google Scholar]
  123. WangT. GilkesD.M. TakanoN. XiangL. LuoW. BishopC.J. ChaturvediP. GreenJ.J. SemenzaG.L. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis.Proc. Natl. Acad. Sci. USA201411131E3234E324210.1073/pnas.141004111124938788
    [Google Scholar]
  124. RaimondoS. SaievaL. CorradoC. FontanaS. FlugyA. RizzoA. De LeoG. AlessandroR. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism.Cell Commun. Signal.2015131810.1186/s12964‑015‑0086‑x25644060
    [Google Scholar]
  125. YeonJ.H. JeongH.E. SeoH. ChoS. KimK. NaD. ChungS. ParkJ. ChoiN. KangJ.Y. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts.Acta Biomater.20187614615310.1016/j.actbio.2018.07.00130078422
    [Google Scholar]
  126. HoodJ.L. PanH. LanzaG.M. WicklineS.A. Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN) Paracrine induction of endothelium by tumor exosomes.Lab. Invest.200989111317132810.1038/labinvest.2009.9419786948
    [Google Scholar]
  127. BaroniS. Romero-CordobaS. PlantamuraI. DugoM. D’IppolitoE. CataldoA. CosentinoG. AngeloniV. RossiniA. DaidoneM.G. IorioM.V. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts.Cell Death Dis.201677e2312e231210.1038/cddis.2016.22427468688
    [Google Scholar]
  128. ChowdhuryR. WebberJ.P. GurneyM. MasonM.D. TabiZ. ClaytonA. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts.Oncotarget20156271573110.18632/oncotarget.271125596732
    [Google Scholar]
  129. NazarenkoI. RanaS. BaumannA. McAlearJ. HellwigA. TrendelenburgM. LochnitG. PreissnerK.T. ZöllerM. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation.Cancer Res.20107041668167810.1158/0008‑5472.CAN‑09‑247020124479
    [Google Scholar]
  130. TavernaS. FlugyA. SaievaL. KohnE.C. SantoroA. MeravigliaS. De LeoG. AlessandroR. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis.Int. J. Cancer201213092033204310.1002/ijc.2621721630268
    [Google Scholar]
  131. ZhengP. ChenL. YuanX. LuoQ. LiuY. XieG. MaY. ShenL. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells.J. Exp. Clin. Cancer Res.20173615310.1186/s13046‑017‑0528‑y28407783
    [Google Scholar]
  132. ZhouM. ChenJ. ZhouL. ChenW. DingG. CaoL. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203.Cell. Immunol.20142921-2656910.1016/j.cellimm.2014.09.00425290620
    [Google Scholar]
  133. Cerezo-MagañaM. The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment.Semin. Cancer Biol.20206299107
    [Google Scholar]
  134. ZangX. GuJ. ZhangJ. ShiH. HouS. XuX. ChenY. ZhangY. MaoF. QianH. ZhuT. XuW. ZhangX. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression.Cell Death Dis.202011421510.1038/s41419‑020‑2409‑032242003
    [Google Scholar]
  135. DaiX. ChenC. YangQ. XueJ. ChenX. SunB. LuoF. LiuX. XiaoT. XuH. SunQ. ZhangA. LiuQ. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation.Cell Death Dis.20189545410.1038/s41419‑018‑0485‑129674685
    [Google Scholar]
  136. WuC.H. SilversC.R. MessingE.M. LeeY.F. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells.J. Biol. Chem.201929493207321810.1074/jbc.RA118.00668230593508
    [Google Scholar]
  137. AbdouhM. FlorisM. GaoZ.H. ArenaV. ArenaM. ArenaG.O. Colorectal cancer-derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells.J. Exp. Clin. Cancer Res.201938125710.1186/s13046‑019‑1248‑231200749
    [Google Scholar]
  138. SteenbeekS.C. PhamT.V. de LigtJ. ZomerA. KnolJ.C. PiersmaS.R. SchelfhorstT. HuisjesR. SchiffelersR.M. CuppenE. JimenezC.R. van RheenenJ. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles.EMBO J.20183715e9835710.15252/embj.20179835729907695
    [Google Scholar]
  139. QiaoZ. ZhangY. GeM. LiuS. JiangX. ShangZ. LiuH. CaoC. XiaoH. Cancer cell derived small extracellular vesicles contribute to recipient cell metastasis through promoting hgf/c-met pathway.Mol. Cell. Proteomics20191881619162910.1074/mcp.RA119.00150231196968
    [Google Scholar]
  140. PessolanoE. BelvedereR. BizzarroV. FrancoP. MarcoI.D. PortaA. ToscoA. ParenteL. PerrettiM. PetrellaA. Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 model system.Int. J. Mol. Sci.20181912387810.3390/ijms1912387830518142
    [Google Scholar]
  141. DorayappanK.D.P. WannerR. WallbillichJ.J. SainiU. ZingarelliR. SuarezA.A. CohnD.E. SelvendiranK. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins.Oncogene201837283806382110.1038/s41388‑018‑0189‑029636548
    [Google Scholar]
  142. XueX. WangX. ZhaoY. HuR. QinL. Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A.Biochem. Biophys. Res. Commun.2018502451552110.1016/j.bbrc.2018.05.20829859935
    [Google Scholar]
  143. HoshinoA. Costa-SilvaB. ShenT.L. RodriguesG. HashimotoA. Tesic MarkM. MolinaH. KohsakaS. Di GiannataleA. CederS. SinghS. WilliamsC. SoplopN. UryuK. PharmerL. KingT. BojmarL. DaviesA.E. ArarsoY. ZhangT. ZhangH. HernandezJ. WeissJ.M. Dumont-ColeV.D. KramerK. WexlerL.H. NarendranA. SchwartzG.K. HealeyJ.H. SandstromP. Jørgen LaboriK. KureE.H. GrandgenettP.M. HollingsworthM.A. de SousaM. KaurS. JainM. MallyaK. BatraS.K. JarnaginW.R. BradyM.S. FodstadO. MullerV. PantelK. MinnA.J. BissellM.J. GarciaB.A. KangY. RajasekharV.K. GhajarC.M. MateiI. PeinadoH. BrombergJ. LydenD. Tumour exosome integrins determine organotropic metastasis.Nature2015527757832933510.1038/nature1575626524530
    [Google Scholar]
  144. PeinadoH. AlečkovićM. LavotshkinS. MateiI. Costa-SilvaB. Moreno-BuenoG. Hergueta-RedondoM. WilliamsC. García-SantosG. GhajarC.M. Nitadori-HoshinoA. HoffmanC. BadalK. GarciaB.A. CallahanM.K. YuanJ. MartinsV.R. SkogJ. KaplanR.N. BradyM.S. WolchokJ.D. ChapmanP.B. KangY. BrombergJ. LydenD. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.Nat. Med.201218688389110.1038/nm.275322635005
    [Google Scholar]
  145. Ringuette GouletC. BernardG. TremblayS. ChabaudS. BolducS. PouliotF. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through tgfβ signaling.Mol. Cancer Res.20181671196120410.1158/1541‑7786.MCR‑17‑078429636362
    [Google Scholar]
  146. WangH. WeiH. WangJ. LiL. ChenA. LiZ. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer.Mol. Ther. Nucleic Acids20201965466710.1016/j.omtn.2019.11.02431955007
    [Google Scholar]
  147. YangX. LiY. ZouL. ZhuZ. Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells.Front. Oncol.2019935610.3389/fonc.2019.0035631131261
    [Google Scholar]
  148. GouletC.R. ChampagneA. BernardG. VandalD. ChabaudS. PouliotF. BolducS. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling.BMC Cancer201919113710.1186/s12885‑019‑5353‑630744595
    [Google Scholar]
  149. FangT. LvH. LvG. LiT. WangC. HanQ. YuL. SuB. GuoL. HuangS. CaoD. TangL. TangS. WuM. YangW. WangH. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer.Nat. Commun.20189119110.1038/s41467‑017‑02583‑029335551
    [Google Scholar]
  150. YouJ. LiM. CaoL.M. GuQ.H. DengP.B. TanY. HuC.P. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes.QJM2019112858159010.1093/qjmed/hcz09331106370
    [Google Scholar]
  151. LiY. TaoY. GaoS. LiP. ZhengJ. ZhangS. LiangJ. ZhangY. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p.EBioMedicine20183620922010.1016/j.ebiom.2018.09.00630243489
    [Google Scholar]
  152. YangY. LiC.W. ChanL.C. WeiY. HsuJ.M. XiaW. ChaJ.H. HouJ. HsuJ.L. SunL. HungM.C. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth.Cell Res.201828886286410.1038/s41422‑018‑0060‑429959401
    [Google Scholar]
  153. YangH. ZhangH. GeS. NingT. BaiM. LiJ. LiS. SunW. DengT. ZhangL. YingG. BaY. RETRACTED: Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells.Mol. Ther.201826102466247510.1016/j.ymthe.2018.07.02330120059
    [Google Scholar]
  154. SatoS. VasaikarS. EskarosA. KimY. LewisJ.S. ZhangB. ZijlstraA. WeaverA.M. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling.JCI Insight2019423e13244710.1172/jci.insight.13244731661464
    [Google Scholar]
  155. MaoY. WangY. DongL. ZhangY. ZhangY. WangC. ZhangQ. YangS. CaoL. ZhangX. LiX. FuZ. Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells.J. Exp. Clin. Cancer Res.201938138910.1186/s13046‑019‑1384‑831488217
    [Google Scholar]
  156. ChenG. HuangA.C. ZhangW. ZhangG. WuM. XuW. YuZ. YangJ. WangB. SunH. XiaH. ManQ. ZhongW. AnteloL.F. WuB. XiongX. LiuX. GuanL. LiT. LiuS. YangR. LuY. DongL. McGettiganS. SomasundaramR. RadhakrishnanR. MillsG. LuY. KimJ. ChenY.H. DongH. ZhaoY. KarakousisG.C. MitchellT.C. SchuchterL.M. HerlynM. WherryE.J. XuX. GuoW. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature2018560771838238610.1038/s41586‑018‑0392‑830089911
    [Google Scholar]
  157. RicklefsF.L. AlayoQ. KrenzlinH. MahmoudA.B. SperanzaM.C. NakashimaH. HayesJ.L. LeeK. BalajL. PassaroC. RoojA.K. KrasemannS. CarterB.S. ChenC.C. SteedT. TreiberJ. RodigS. YangK. NakanoI. LeeH. WeisslederR. BreakefieldX.O. GodlewskiJ. WestphalM. LamszusK. FreemanG.J. BroniszA. LawlerS.E. ChioccaE.A. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles.Sci. Adv.201843eaar276610.1126/sciadv.aar276629532035
    [Google Scholar]
  158. ZhaoJ. SchlößerH.A. WangZ. QinJ. LiJ. PoppF. PoppM.C. AlakusH. ChonS.H. HansenH.P. NeissW.F. JauchK.W. BrunsC.J. ZhaoY. Tumor-derived extracellular vesicles inhibit natural killer cell function in pancreatic cancer.Cancers201911687410.3390/cancers1106087431234517
    [Google Scholar]
  159. ZhangQ. LiuR.X. ChanK.W. HuJ. ZhangJ. WeiL. TanH. YangX. LiuH. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells.J. Exp. Clin. Cancer Res.201938132010.1186/s13046‑019‑1314‑931324203
    [Google Scholar]
  160. BinenbaumY. FridmanE. YaariZ. MilmanN. SchroederA. Ben DavidG. ShlomiT. GilZ. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma.Cancer Res.201878185287529910.1158/0008‑5472.CAN‑18‑012430042153
    [Google Scholar]
  161. SzczepanskiM.J. SzajnikM. WelshA. WhitesideT.L. BoyiadzisM. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor- 1.Haematologica20119691302130910.3324/haematol.2010.03974321606166
    [Google Scholar]
  162. FongM.Y. ZhouW. LiuL. AlontagaA.Y. ChandraM. AshbyJ. ChowA. O’ConnorS.T.F. LiS. ChinA.R. SomloG. PalomaresM. LiZ. TremblayJ.R. TsuyadaA. SunG. ReidM.A. WuX. SwiderskiP. RenX. ShiY. KongM. ZhongW. ChenY. WangS.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis.Nat. Cell Biol.201517218319410.1038/ncb309425621950
    [Google Scholar]
  163. ChalminF. LadoireS. MignotG. VincentJ. BruchardM. Remy-MartinJ.P. BoireauW. RouleauA. SimonB. LanneauD. De ThonelA. MulthoffG. HammanA. MartinF. ChauffertB. SolaryE. ZitvogelL. GarridoC. RyffelB. BorgC. ApetohL. RébéC. GhiringhelliF. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells.J. Clin. Invest.2010120245747110.1172/JCI4048320093776
    [Google Scholar]
  164. KhanS. JutzyJ.M.S. AspeJ.R. McGregorD.W. NeidighJ.W. WallN.R. Survivin is released from cancer cells via exosomes.Apoptosis201116111210.1007/s10495‑010‑0534‑420717727
    [Google Scholar]
  165. KhanS. AspeJ.R. AsumenM.G. AlmaguelF. OdumosuO. Acevedo-MartinezS. De LeonM. LangridgeW.H.R. WallN.R. Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential.Br. J. Cancer200910071073108610.1038/sj.bjc.660497819293795
    [Google Scholar]
  166. AtayS. BanskotaS. CrowJ. SethiG. RinkL. GodwinA.K. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion.Proc. Natl. Acad. Sci. USA2014111271171610.1073/pnas.131050111124379393
    [Google Scholar]
  167. KogureT. LinW.L. YanI.K. BraconiC. PatelT. Intercellular nanovesicle-mediated microRNA transfer: A mechanism of environmental modulation of hepatocellular cancer cell growth.Hepatology20115441237124810.1002/hep.2450421721029
    [Google Scholar]
  168. TaylorD.D. Gerçel-TaylorC. LyonsK.S. StansonJ. WhitesideT.L. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors.Clin. Cancer Res.20039145113511914613988
    [Google Scholar]
  169. Muller-HaegeleS. MullerL. WhitesideT.L. Immunoregulatory activity of adenosine and its role in human cancer progression.Expert Rev. Clin. Immunol.201410789791410.1586/1744666X.2014.91573924871693
    [Google Scholar]
  170. HartI.R. FidlerI.J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma.Cancer Res.1980407228122877388794
    [Google Scholar]
  171. GeR. TanE. Sharghi-NaminiS. AsadaH.H. Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers?Cancer Microenviron.20125332333210.1007/s12307‑012‑0110‑222585423
    [Google Scholar]
  172. MurphyD.A. CourtneidgeS.A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: Characteristics, formation and function.Nat. Rev. Mol. Cell Biol.201112741342610.1038/nrm314121697900
    [Google Scholar]
  173. EddyR.J. WeidmannM.D. SharmaV.P. CondeelisJ.S. Tumor cell invadopodia: Invasive protrusions that orchestrate metastasis.Trends Cell Biol.201727859560710.1016/j.tcb.2017.03.00328412099
    [Google Scholar]
  174. MilaneL. SinghA. MattheolabakisG. SureshM. AmijiM.M. Exosome mediated communication within the tumor microenvironment.J. Control. Release201521927829410.1016/j.jconrel.2015.06.02926143224
    [Google Scholar]
  175. HoshinoD. KirkbrideK.C. CostelloK. ClarkE.S. SinhaS. Grega-LarsonN. TyskaM.J. WeaverA.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior.Cell Rep.2013551159116810.1016/j.celrep.2013.10.05024290760
    [Google Scholar]
  176. LeM.T.N. HamarP. GuoC. BasarE. Perdigão-HenriquesR. BalajL. LiebermanJ. miR-200–containing extracellular vesicles promote breast cancer cell metastasis.J. Clin. Invest.2014124125109512810.1172/JCI7569525401471
    [Google Scholar]
  177. LinQ. ZhouC-R. BaiM-J. ZhuD. ChenJ-W. WangH-F. LiM-A. WuC. LiZ-R. HuangM-S. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis.Am. J. Transl. Res.20201231080109532269736
    [Google Scholar]
  178. Yamamoto-SugitaniM. KurodaJ. AshiharaE. NagoshiH. KobayashiT. MatsumotoY. SasakiN. ShimuraY. KiyotaM. NakayamaR. AkajiK. TakiT. UoshimaN. KobayashiY. HoriikeS. MaekawaT. TaniwakiM. Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia.Proc. Natl. Acad. Sci. USA201110842174681747310.1073/pnas.111113810821987825
    [Google Scholar]
  179. ZhouW. FongM.Y. MinY. SomloG. LiuL. PalomaresM.R. YuY. ChowA. O’ConnorS.T.F. ChinA.R. YenY. WangY. MarcussonE.G. ChuP. WuJ. WuX. LiA.X. LiZ. GaoH. RenX. BoldinM.P. LinP.C. WangS.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis.Cancer Cell201425450151510.1016/j.ccr.2014.03.00724735924
    [Google Scholar]
  180. TominagaN. KosakaN. OnoM. KatsudaT. YoshiokaY. TamuraK. LötvallJ. NakagamaH. OchiyaT. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier.Nat. Commun.201561671610.1038/ncomms771625828099
    [Google Scholar]
  181. ScavoM.P. DepaloN. RizziF. IngrossoC. FanizzaE. ChietiA. MessaC. DenoraN. LaquintanaV. StriccoliM. CurriM.L. GiannelliG. FZD10 carried by exosomes sustains cancer cell proliferation.Cells20198877710.3390/cells808077731349740
    [Google Scholar]
  182. PaolilloM. SerraM. SchinelliS. Integrins in glioblastoma: Still an attractive target?Pharmacol. Res.2016113Pt A556110.1016/j.phrs.2016.08.00427498157
    [Google Scholar]
  183. GangulyK.K. PalS. MoulikS. ChatterjeeA. Integrins and metastasis.Cell Adhes. Migr.20137325126110.4161/cam.2384023563505
    [Google Scholar]
  184. PopperH.H. Progression and metastasis of lung cancer.Cancer Metastasis Rev.2016351759110.1007/s10555‑016‑9618‑027018053
    [Google Scholar]
  185. SutherlandM. GordonA. ShnyderS. PattersonL. SheldrakeH. RGD-binding integrins in prostate cancer: Expression patterns and therapeutic prospects against bone metastasis.Cancers2012441106114510.3390/cancers404110624213501
    [Google Scholar]
  186. KrakhmalN.V. ZavyalovaM.V. DenisovE.V. VtorushinS.V. PerelmuterV.M. Cancer invasion: Patterns and mechanisms.Acta Nat.201572172810.32607/20758251‑2015‑7‑2‑17‑2826085941
    [Google Scholar]
  187. MelzerC. von der OheJ. LehnertH. UngefrorenH. HassR. Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells.Mol. Cancer20171612810.1186/s12943‑017‑0595‑x28148265
    [Google Scholar]
  188. FeldkorenB. HutchinsonR. RapoportY. MahajanA. MargulisV. Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression – Important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma.Exp. Cell Res.20173552576610.1016/j.yexcr.2017.03.05128363829
    [Google Scholar]
  189. KawakamiK. FujitaY. KatoT. MizutaniK. KameyamaK. TsumotoH. MiuraY. DeguchiT. ItoM. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance.Int. J. Oncol.201547138439010.3892/ijo.2015.301125997717
    [Google Scholar]
  190. PaolilloM. SchinelliS. Integrins and exosomes, a dangerous liaison in cancer progression.Cancers2017989510.3390/cancers908009528933725
    [Google Scholar]
  191. KellerS. RidingerJ. RuppA.K. JanssenJ.W.G. AltevogtP. Body fluid derived exosomes as a novel template for clinical diagnostics.J. Transl. Med.2011918610.1186/1479‑5876‑9‑8621651777
    [Google Scholar]
  192. NilssonJ. SkogJ. NordstrandA. BaranovV. Mincheva-NilssonL. BreakefieldX.O. WidmarkA. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer.Br. J. Cancer2009100101603160710.1038/sj.bjc.660505819401683
    [Google Scholar]
  193. RolfoC. CastigliaM. HongD. AlessandroR. MertensI. BaggermanG. ZwaenepoelK. Gil-BazoI. PassigliaF. CarrecaA.P. TavernaS. VentoR. SantiniD. PeetersM. RussoA. PauwelsP. Liquid biopsies in lung cancer: The new ambrosia of researchers.Biochim. Biophys. Acta20141846253954625444714
    [Google Scholar]
  194. Del BeneM. OstiD. FalettiS. BeznoussenkoG.V. DiMecoF. PelicciG. Extracellular vesicles: The key for precision medicine in glioblastoma.Neuro-oncol.202224218419610.1093/neuonc/noab22934581817
    [Google Scholar]
  195. AmorimM. FernandesG. OliveiraP. Martins-de-SouzaD. Dias-NetoE. NunesD. The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular vesicles.Proteomics201414121472147910.1002/pmic.20130048524733759
    [Google Scholar]
  196. HongC.S. MullerL. WhitesideT.L. BoyiadzisM. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia.Front. Immunol.2014516010.3389/fimmu.2014.0016024782865
    [Google Scholar]
  197. KalraH. SimpsonR.J. JiH. AikawaE. AltevogtP. AskenaseP. BondV.C. BorràsF.E. BreakefieldX. BudnikV. BuzasE. CamussiG. ClaytonA. CocucciE. Falcon-PerezJ.M. GabrielssonS. GhoY.S. GuptaD. HarshaH.C. HendrixA. HillA.F. InalJ.M. JensterG. Krämer-AlbersE.M. LimS.K. LlorenteA. LötvallJ. MarcillaA. Mincheva-NilssonL. NazarenkoI. NieuwlandR. Nolte-’t HoenE.N.M. PandeyA. PatelT. PiperM.G. PluchinoS. PrasadT.S.K. RajendranL. RaposoG. RecordM. ReidG.E. Sánchez-MadridF. SchiffelersR.M. SiljanderP. StensballeA. StoorvogelW. TaylorD. TheryC. ValadiH. van BalkomB.W.M. VázquezJ. VidalM. WaubenM.H.M. Yáñez-MóM. ZoellerM. MathivananS. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation.PLoS Biol.20121012e100145010.1371/journal.pbio.100145023271954
    [Google Scholar]
  198. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  199. ParkJ.E. TanH.S. DattaA. LaiR.C. ZhangH. MengW. LimS.K. SzeS.K. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes.Mol. Cell. Proteomics2010961085109910.1074/mcp.M900381‑MCP20020124223
    [Google Scholar]
  200. HongB.S. ChoJ.H. KimH. ChoiE.J. RhoS. KimJ. KimJ.H. ChoiD.S. KimY.K. HwangD. GhoY.S. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells.BMC Genomics200910155610.1186/1471‑2164‑10‑55619930720
    [Google Scholar]
  201. BaranJ. Baj-KrzyworzekaM. WeglarczykK. SzatanekR. ZembalaM. BarbaszJ. CzuprynaA. SzczepanikA. ZembalaM. Circulating tumour-derived microvesicles in plasma of gastric cancer patients.Cancer Immunol. Immunother.201059684185010.1007/s00262‑009‑0808‑220043223
    [Google Scholar]
  202. MullerL. Muller-HaegeleS. MitsuhashiM. GoodingW. OkadaH. WhitesideT.L. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival.OncoImmunology201546e100834710.1080/2162402X.2015.100834726155415
    [Google Scholar]
  203. Esquela-KerscherA. SlackF.J. Oncomirs — microRNAs with a role in cancer.Nat. Rev. Cancer20066425926910.1038/nrc184016557279
    [Google Scholar]
  204. HendersonM.C. AzorsaD.O. The genomic and proteomic content of cancer cell-derived exosomes.Front. Oncol.201223810.3389/fonc.2012.0003822649786
    [Google Scholar]
  205. Nolte-’t HoenE.N.M. BuermansH.P.J. WaasdorpM. StoorvogelW. WaubenM.H.M. ’t HoenP.A.C. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.Nucleic Acids Res.201240189272928510.1093/nar/gks65822821563
    [Google Scholar]
  206. RobersonC.D. AtayS. Gercel-TaylorC. TaylorD.D. Tumor-derived exosomes as mediators of disease and potential diagnostic biomarkers.Cancer Biomark.2011-201184-528129110.3233/CBM‑2011‑021122045359
    [Google Scholar]
  207. TaylorD.D. Gercel-TaylorC. RETRACTED: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer.Gynecol. Oncol.20081101132110.1016/j.ygyno.2008.04.03318589210
    [Google Scholar]
  208. Ogata-KawataH. IzumiyaM. KuriokaD. HonmaY. YamadaY. FurutaK. GunjiT. OhtaH. OkamotoH. SonodaH. WatanabeM. NakagamaH. YokotaJ. KohnoT. TsuchiyaN. Circulating exosomal microRNAs as biomarkers of colon cancer.PLoS One201494e9292110.1371/journal.pone.009292124705249
    [Google Scholar]
  209. CorcoranC. FrielA.M. DuffyM.J. CrownJ. O’DriscollL. Intracellular and extracellular microRNAs in breast cancer.Clin. Chem.2011571183210.1373/clinchem.2010.15073021059829
    [Google Scholar]
  210. CazzoliR. ButtittaF. Di NicolaM. MalatestaS. MarchettiA. RomW.N. PassH.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer.J. Thorac. Oncol.2013891156116210.1097/JTO.0b013e318299ac3223945385
    [Google Scholar]
  211. RothP. WischhusenJ. HappoldC. ChandranP.A. HoferS. EiseleG. WellerM. KellerA. A specific miRNA signature in the peripheral blood of glioblastoma patients.J. Neurochem.2011118344945710.1111/j.1471‑4159.2011.07307.x21561454
    [Google Scholar]
  212. WhitesideT.L. The potential of tumor-derived exosomes for noninvasive cancer monitoring.Expert Rev. Mol. Diagn.201515101293131010.1586/14737159.2015.107166626289602
    [Google Scholar]
  213. SilvaJ. GarcíaV. ZaballosA. ProvencioM. LombardíaL. AlmonacidL. GarcíaJ.M. DomínguezG. PeñaC. DiazR. HerreraM. VarelaA. BonillaF. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival.Eur. Respir. J.201137361762310.1183/09031936.0002961020595154
    [Google Scholar]
  214. FathiM. JosephR. AdolacionJ.R.T. Martinez-PaniaguaM. AnX. GabrusiewiczK. ManiS.A. VaradarajanN. Single-cell cloning of breast cancer cells secreting specific subsets of extracellular vesicles.Cancers20211317439710.3390/cancers1317439734503207
    [Google Scholar]
  215. DingC. YiX. WuX. BuX. WangD. WuZ. ZhangG. GuJ. Dezhi Kang RETRACTED: Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma.Cancer Lett.202047911210.1016/j.canlet.2020.03.00232194140
    [Google Scholar]
  216. GonzalezM.J. KwehM.F. BiavaP.M. OlaldeJ. ToroA.P. Goldschmidt-ClermontP.J. WhiteI.A. Evaluation of exosome derivatives as bio-informational reprogramming therapy for cancer.J. Transl. Med.202119110310.1186/s12967‑021‑02768‑833750417
    [Google Scholar]
  217. LivraghiT. MeloniF. FrosiA. LazzaroniS. BizzarriM. FratiL. BiavaP.M. Treatment with stem cell differentiation stage factors of intermediate-advanced hepatocellular carcinoma: An open randomized clinical trial.Oncol. Res.200515739940810.3727/09650400577644971616491958
    [Google Scholar]
  218. LvF. LiuH. ZhaoG. ZhaoE. YanH. CheR. YangX. ZhouX. ZhangJ. LiangX.J. LiZ. Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment.iScience202225110363910.1016/j.isci.2021.10363935024580
    [Google Scholar]
  219. LiangB. LiS.Y. GongH.Z. WangL.X. LuJ. ZhaoY.X. GuN. Clinicopathological and prognostic roles of stat3 and its phosphorylation in glioma.Dis. Markers2020202011110.1155/2020/883388533299498
    [Google Scholar]
  220. LiJ. KongJ. MaS. LiJ. MaoM. ChenK. ChenZ. ZhangJ. ChangY. YuanH. LiuT. ZhangZ. XingG. exosome-coated 10 B carbon dots for precise boron neutron capture therapy in a mouse model of glioma In situ.Adv. Funct. Mater.20213124210096910.1002/adfm.202100969
    [Google Scholar]
  221. YokoyamaK. MiyatakeS.I. KajimotoY. KawabataS. DoiA. YoshidaT. AsanoT. KirihataM. OnoK. KuroiwaT. Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT.J. Neurooncol.200678322723210.1007/s11060‑005‑9099‑416557351
    [Google Scholar]
  222. ZhangY. LiJ. GaoW. XieN. Exosomes as anticancer drug delivery vehicles: Prospects and challenges.Front Biosci.20222710293
    [Google Scholar]
  223. TangZ. LiD. HouS. ZhuX. The cancer exosomes: Clinical implications, applications and challenges.Int. J. Cancer2020146112946295910.1002/ijc.3276231671207
    [Google Scholar]
  224. MazzoccaA. FerraroG. MisciagnaG. FaisS. Moving the systemic evolutionary approach to cancer forward: Therapeutic implications.Med. Hypotheses2018121808710.1016/j.mehy.2018.09.03330396500
    [Google Scholar]
  225. AlečkovićM. KangY. Welcoming treat: Astrocyte-derived exosomes induce PTEN suppression to foster brain metastasis.Cancer Cell201528555455610.1016/j.ccell.2015.10.01026555172
    [Google Scholar]
  226. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  227. LimC. Broqueres-YouD. BroulandJ.-P. Merkulova-RainonT. FaussatA.-M. HilalR. RouquieD. EvenoC. AudollentR. LevyB. I. Hepatic ischemia-reperfusion increases circulating bone marrow-derived progenitor cells and tumor growth in a mouse model of colorectal liver metastases.J. Surg. Res.20131842888897
    [Google Scholar]
  228. GovaertK.M. EmminkB.L. NijkampM.W. CheungZ.J. StellerE.J.A. FatraiS. de BruijnM.T. KranenburgO. Borel RinkesI.H.M. Hypoxia after liver surgery imposes an aggressive cancer stem cell phenotype on residual tumor cells.Ann. Surg.2014259475075910.1097/SLA.0b013e318295c16024253142
    [Google Scholar]
  229. JiaoS.F. SunK. ChenX.J. ZhaoX. CaiN. LiuY.J. XuL.M. KongX.M. WeiL.X. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.J. Biomed. Sci.20142111910.1186/1423‑0127‑21‑124397824
    [Google Scholar]
  230. van der BiltJ.D.W. KranenburgO. NijkampM.W. SmakmanN. VeenendaalL.M. te VeldeE.A. VoestE.E. van DiestP.J. Borel RinkesI.H.M. Ischemia/reperfusion accelerates the outgrowth of hepatic micrometastases in a highly standardized murine model.Hepatology200542116517510.1002/hep.2073915962318
    [Google Scholar]
  231. NguyenD.X. BosP.D. MassaguéJ. Metastasis: From dissemination to organ-specific colonization.Nat. Rev. Cancer20099427428410.1038/nrc262219308067
    [Google Scholar]
  232. XuR. RaiA. ChenM. SuwakulsiriW. GreeningD.W. SimpsonR.J. Extracellular vesicles in cancer — Implications for future improvements in cancer care.Nat. Rev. Clin. Oncol.2018151061763810.1038/s41571‑018‑0036‑929795272
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266304636240626055711
Loading
/content/journals/ctmc/10.2174/0115680266304636240626055711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test