Skip to content
2000
Volume 24, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Acute respiratory distress syndrome in the elderly with COVID-19 complicated by airway obstruction with sputum and mucus, and cases of asphyxia with blood, serous fluid, pus, or meconium in newborns and people of different ages can sometimes cause hypoxemia and death from hypoxic damage to brain cells, because the medical standard does not include intrapulmonary injections of oxygen-producing solutions. The physical-chemical repurposing of hydrogen peroxide from an antiseptic to an oxygen-producing antihypoxant offers hope for the development of new drugs.

Methods

This manuscript is a meta-analysis performed according to PRISMA guidelines.

Results

It is shown that replacement of the traditional acidic activity of hydrogen peroxide solutions by alkaline activity with pH 8.4 and heating the solutions to the temperature of +37 - +42 ℃ allows to repurpose hydrogen peroxide from antiseptics into inhalation and intrapulmonary mucolytics, pyolytics and antihypoxants releasing oxygen. The fact is that warm alkaline hydrogen peroxide solution (WAHPS) in local interaction with sputum, mucus, pus, blood and meconium provides optimal conditions for the metabolism of hydrogen peroxide to oxygen gas under the action of the enzyme catalase, always present in these tissues. It was established that WAHPS liquefies these biological masses due to alkaline saponification of lipid and protein-lipid complexes and simultaneously transforms dense masses into soft oxygen foam due to active enzymatic metabolism of hydrogen peroxide to oxygen gas, the rapidly appearing bubbles of which are formed by the type of “cold boiling” and literally explode these masses. The results of the first experiments showed that inhalation and intrapulmonary injections of WAHPS can significantly optimize the treatment of suffocation and hypoxemia.

Discussion

The results showed that catalase, which is found in sputum, mucus, pus, and blood, may be a target for localized WAHPS because this enzyme provides an intensive metabolism of hydrogen peroxide to oxygen gas up to the formation of the cold boiling process.

Conclusion

These data provide a new perspective way for intrapulmonary drugs and new technologies for the emergency increase of blood oxygenation through the lungs in asphyxia with thick sputum, mucus, pus, meconium and blood.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322046240819053909
2024-10-01
2025-02-23
Loading full text...

Full text loading...

References

  1. MuellerA.L. McNamaraM.S. SinclairD.A. Why does COVID-19 disproportionately affect older people?Aging (Albany NY)202012109959998110.18632/aging.10334432470948
    [Google Scholar]
  2. DadrasO. SeyedAlinaghiS. KarimiA. ShamsabadiA. QaderiK. RamezaniM. MirghaderiS.P. MahdiabadiS. VahediF. SaeidiS. ShojaeiA. MehrtakM. AzarS.A. MehraeenE. VoltarelliF.A. Retracted : COVID‐19 mortality and its predictors in the elderly: A systematic review.Health Sci. Rep.202253e65710.1002/hsr2.65735620541
    [Google Scholar]
  3. TrecarichiE.M. MazzitelliM. SerapideF. PelleM.C. TassoneB. ArrighiE. PerriG. FuscoP. ScaglioneV. DavoliC. LionelloR. La GambaV. MarrazzoG. BuscetiM.T. GiudiceA. RicchioM. CancelliereA. LioE. ProcopioG. CostanzoF.S. FotiD.P. MateraG. TortiC. LaganàD. PetullàM. BertucciB. QuirinoA. BarrecaG.S. GiancottiA. GalloL. LambertiA. LibertoM.C. MarascioN. De FrancescoA.E. Clinical characteristics and predictors of mortality associated with COVID-19 in elderly patients from a long-term care facility.Sci. Rep.20201012083410.1038/s41598‑020‑77641‑733257703
    [Google Scholar]
  4. YuZ. KeY. XieJ. YuH. ZhuW. HeL. ZhengQ. LiC. LuJ. LiS. WenS. WeiS. LiuN. WeiL. BaiR. Clinical characteristics on admission predict in-hospital fatal outcome in patients aged ≥75 years with novel coronavirus disease (COVID-19): A retrospective cohort study.BMC Geriatr.202020151410.1186/s12877‑020‑01921‑033256640
    [Google Scholar]
  5. DamayanthiH.D.W.T. PrabaniK.I.P. WeerasekaraI. Factors associated for mortality of older people with COVID 19: A systematic review and meta-analysis.Gerontol. Geriatr. Med.2021710.1177/2333721421105739234888405
    [Google Scholar]
  6. Zubieta-CallejaG. Zubieta-DeUriosteN. EpsteinM. de Jesús MontelongoF. SanchezM.G.R. Pneumolysis: A fundamental concept in COVID-19 lung disease.Available From: file:///C:/Users/Amber-web/Downloads/Pneumolysis%20final.pdf 2021
  7. DhontS. DeromE. Van BraeckelE. DepuydtP. LambrechtB.N. The pathophysiology of ‘happy’ hypoxemia in COVID-19.Respir. Res.202021119810.1186/s12931‑020‑01462‑532723327
    [Google Scholar]
  8. FerrariM. QuaresimaV. Hypoxemia in COVID-19: Cerebral oximetry should be explored as a warning indicator for mechanically ventilated adults with COVID-19.Respir. Res.202021126110.1186/s12931‑020‑01530‑w33036611
    [Google Scholar]
  9. HerrmannJ. MoriV. BatesJ.H.T. SukiB. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia.Nat. Commun.2020111488310.1038/s41467‑020‑18672‑632985528
    [Google Scholar]
  10. FisherH.K. Hypoxemia in COVID-19 patients: An hypothesis.Med. Hypotheses202014311002210.1016/j.mehy.2020.11002232634734
    [Google Scholar]
  11. UrakovA. MuhutdinovN. YagudinI. SuntsovaD. SvetovaM. Brain hypoxia caused by respiratory obstruction which should not be forgotten in COVID-19 disease.Turk. J. Med. Sci.20225251504150510.55730/1300‑0144.548936422499
    [Google Scholar]
  12. VinesB.L. AgnihotriS.P. Delayed post-hypoxic leukoencephalopathy in an adult with COVID-19.J. Neurovirol.202127351451810.1007/s13365‑021‑00982‑033977501
    [Google Scholar]
  13. VahediA. Apap MangionS. SilberE. SibtainN. ChandraJ. COVID-19 leukoencephalopathy with subacute magnetic resonance imaging findings of vasculitis and demyelination.J. Neurovirol.202127465666110.1007/s13365‑021‑00990‑034101087
    [Google Scholar]
  14. RapalinoO. PourvaziriA. MaherM. Jaramillo-CardosoA. EdlowB.L. ConklinJ. HuangS. WestoverB. RomeroJ.M. HalpernE. GuptaR. PomerantzS. SchaeferP. GonzalezR.G. MukerjiS.S. LevM.H. Clinical, imaging, and lab correlates of severe COVID-19 leukoencephalopathy.AJNR Am. J. Neuroradiol.202142463263810.3174/ajnr.A696633414226
    [Google Scholar]
  15. KotzalidisG.D. FerraraO.M. MargoniS. IeritanoV. RestainoA. BernardiE. FischettiA. CatinariA. MontiL. ChieffoD.P.R. SimonettiA. SaniG. Are the post-COVID-19 posttraumatic stress disorder (PTSD) symptoms justified by the effects of COVID-19 on brain structure? A systematic review.J. Pers. Med.2023137114010.3390/jpm1307114037511753
    [Google Scholar]
  16. KommossF.K.F. SchwabC. TavernarL. SchreckJ. WagnerW.L. MerleU. JonigkD. SchirmacherP. LongerichT. The pathology of severe COVID-19-related lung damage.Dtsch. Arztebl. Int.202011729-3050050610.3238/arztebl.2020.050032865490
    [Google Scholar]
  17. JohnstonJ. DorrianD. LindenD. StanelS.C. Rivera-OrtegaP. ChaudhuriN. Pulmonary sequelae of COVID-19: Focus on interstitial lung disease.Cells20231218223810.3390/cells1218223837759460
    [Google Scholar]
  18. StoianM. RomanA. BoeriuA. OnișorD. BandilaS.R. BabăD.F. CocuzI. NiculescuR. CostanA. LaszloS.Ș. CorăuD. StoianA. Long-term radiological pulmonary changes in mechanically ventilated patients with respiratory failure due to SARS-CoV-2 infection.Biomedicines20231110263710.3390/biomedicines1110263737893011
    [Google Scholar]
  19. GuarneraA. PoddaP. SantiniE. PaolantonioP. LaghiA. Differential diagnoses of COVID-19 pneumonia: The current challenge for the radiologist—a pictorial essay.Insights Imaging20211213410.1186/s13244‑021‑00967‑x33704615
    [Google Scholar]
  20. MenezesM.C.S. PestanaD.V.S. GameiroG.R. da SilvaL.F.F. BaronĖ. RoubyJ.J. AulerJ.O.C.Jr SARS-CoV-2 pneumonia—receptor binding and lung immunopathology: A narrative review.Crit. Care20212515310.1186/s13054‑020‑03399‑z33557908
    [Google Scholar]
  21. VeeratiP.C. MitchelJ.A. ReidA.T. KnightD.A. BartlettN.W. ParkJ.A. GraingeC.L. Airway mechanical compression: Its role in asthma pathogenesis and progression.Eur. Respir. Rev.20202915719012310.1183/16000617.0123‑201932759373
    [Google Scholar]
  22. BiscevicTokicJ. TokicN. MusanovicA. Pneumonia as the most common lower respiratory tract infection.Med. Arh.201367644244510.5455/medarh.2013.67.442‑44525568518
    [Google Scholar]
  23. PhungT.K.N. MitchelJ.A. O’SullivanM.J. ParkJ.A. Quantification of basal stem cell elongation and stress fiber accumulation in the pseudostratified airway epithelium during the unjamming transition.Biol. Open2023124bio05972710.1242/bio.05972737014330
    [Google Scholar]
  24. O’SullivanM.J. MitchelJ.A. DasA. KoehlerS. LevineH. BiD. NagelZ.D. ParkJ.A. Irradiation induces epithelial cell unjamming.Front. Cell Dev. Biol.202082110.3389/fcell.2020.0002132117962
    [Google Scholar]
  25. BelliS. PrinceI. SavioG. ParacchiniE. CattaneoD. BianchiM. MasoccoF. BellantiM.T. BalbiB. Airway clearance techniques: The right choice for the right patient.Front. Med. (Lausanne)2021854482610.3389/fmed.2021.54482633634144
    [Google Scholar]
  26. MaJ. RubinB.K. VoynowJ.A. Mucins, mucus, and goblet cells.Chest2018154116917610.1016/j.chest.2017.11.00829170036
    [Google Scholar]
  27. UrakovA.L. UrakovaN.A. YagudinI.I. SvetovaM.D. SuntsovaD.O. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs.Bioimpacts202212439339410.34172/bi.2022.2387735975207
    [Google Scholar]
  28. ChiW. PangP. LuoZ. LiuX. CaiW. LiW. HaoJ. Risk factors for hypoxaemia following hip fracture surgery in elderly patients who recovered from COVID-19: A multicentre retrospective study.Front. Med. (Lausanne)202310121922210.3389/fmed.2023.121922237497272
    [Google Scholar]
  29. HammondJAB RollandW ShoreTHG CantabMB LondMRCP Purulent bronchitis.: A study of cases occurring amongst the british troops at a base in France.The Lancet19171904898414610.1016/S0140‑6736(01)56229‑7
    [Google Scholar]
  30. GompertzS. O’BrienC. BayleyD.L. HillS.L. StockleyR.A. Changes in bronchial inflammation during acute exacerbations of chronic bronchitis.Eur. Respir. J.20011761112111910.1183/09031936.01.9911490111491152
    [Google Scholar]
  31. VoynowJ.A. RubinB.K. Mucins, mucus, and sputum.Chest2009135250551210.1378/chest.08‑041219201713
    [Google Scholar]
  32. LillehojE.P. KatoK. LuW. KimK.C. Cellular and molecular biology of airway mucins.Int. Rev. Cell Mol. Biol.201330313920210.1016/B978‑0‑12‑407697‑6.00004‑023445810
    [Google Scholar]
  33. ZhengZ. YangK. LiuN. FuX. HeH. ChenH. XuP. WangJ. LiuM. TangY. ZhaoF. XuS. YuX. HanJ. YuanB. JiaB. PangG. ShiY. KuangM. ShaoH. XiongH. HeJ. PanY. ChenR. Evaluation of safety and efficacy of inhaled ambroxol in hospitalized adult patients with mucopurulent sputum and expectoration difficulty.Front. Med. (Lausanne)202310118260210.3389/fmed.2023.118260237305123
    [Google Scholar]
  34. ViolaH.L. VasaniV. WashingtonK. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels.bioRxiv202310.1101/2023.05.24.542177
    [Google Scholar]
  35. EvansC.M. KooJ.S. Airway mucus: The good, the bad, the sticky.Pharmacol. Ther.2009121333234810.1016/j.pharmthera.2008.11.00119059283
    [Google Scholar]
  36. LiuK. ChenY. LinR. HanK. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients.J. Infect.2020806e14e1810.1016/j.jinf.2020.03.00532171866
    [Google Scholar]
  37. MaY. HouL. YangX. HuangZ. YangX. ZhaoN. HeM. ShiY. KangY. YueJ. WuC. The association between frailty and severe disease among COVID-19 patients aged over 60 years in China: A prospective cohort study.BMC Med.202018127410.1186/s12916‑020‑01761‑032892742
    [Google Scholar]
  38. GodaertL. ProyeE. Demoustier-TampereD. CoulibalyP.S. HequetF. DraméM. Clinical characteristics of older patients: The experience of a geriatric short-stay unit dedicated to patients with COVID-19 in France.J. Infect.2020811e93e9410.1016/j.jinf.2020.04.00932305489
    [Google Scholar]
  39. SieberC. COVID-19 aus Sicht der Geriatrie.Dtsch. Med. Wochenschr.2020145151039104310.1055/a‑1164‑426132731276
    [Google Scholar]
  40. UrakovA. UrakovaN. ShabanovP. RozovR. OsipovA. SamorodovA. YagudinI. SuntsovaD. MuhundinovN. StolyarenkoA. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO.Preprints202310.20944/preprints202307.0627.v1
    [Google Scholar]
  41. BadiY. HammadM. TawfikA.G. EshagM.M.E. ElhadyM.M. RagabK.M. NoureldenA.Z. GamalM.H. FathallahA.H. Inhaled corticosteroids’ effect on COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials.Can. J. Respir. Ther.20235915416610.29390/001c.8426037781348
    [Google Scholar]
  42. LiZ. XueY. LiL. LiC. Methylprednisolone or dexamethasone? How should we choose to respond to COVID-19?: A systematic review and meta-analysis of randomized controlled trials.Medicine (Baltimore)202310236e3473810.1097/MD.000000000003473837682199
    [Google Scholar]
  43. ChoH.J. HeinsarS. JeongI.S. ShekarK. Li BassiG. JungJ.S. SuenJ.Y. FraserJ.F. ECMO use in COVID-19: Lessons from past respiratory virus outbreaks—a narrative review.Crit. Care202024130110.1186/s13054‑020‑02979‑332505217
    [Google Scholar]
  44. PaoloneS. Extracorporeal membrane oxygenation (ECMO) for lung injury in severe acute respiratory distress syndrome (ARDS): Review of the literature.Clin. Nurs. Res.201726674776210.1177/105477381667780827836935
    [Google Scholar]
  45. SulakshanaS. ChatterjeeD. ChakrabortyA. Extracorporeal membrane oxygenation for severe COVID-19 in Indian scenario: A single center retrospective study.Indian J. Crit. Care Med.202327638138510.5005/jp‑journals‑10071‑2446937378373
    [Google Scholar]
  46. RemuzziG. SchiaffinoS. SantoroM.G. FitzGeraldG.A. MelinoG. PatronoC. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years.Front. Pharmacol.20221398781610.3389/fphar.2022.98781636304162
    [Google Scholar]
  47. BasuD. ChavdaV.P. MehtaA.A. Therapeutics for COVID-19 and post COVID-19 complications: An update.Current Research in Pharmacology and Drug Discovery2022310008610.1016/j.crphar.2022.10008635136858
    [Google Scholar]
  48. BarrotL. AsfarP. MaunyF. WiniszewskiH. MontiniF. BadieJ. QuenotJ.P. Pili-FlouryS. BouhemadB. LouisG. SouweineB. CollangeO. PottecherJ. LevyB. PuyraveauM. VettorettiL. ConstantinJ.M. CapellierG. Liberal or conservative oxygen therapy for acute respiratory distress syndrome.N. Engl. J. Med.202038211999100810.1056/NEJMoa191643132160661
    [Google Scholar]
  49. McGuireW.C. PearceA.K. ElliottA.R. FineJ.M. WestJ.B. CrouchD.R. PriskG.K. MalhotraA. Noninvasive assessment of impaired gas exchange with the alveolar gas monitor predicts clinical deterioration in COVID-19 patients.J. Clin. Med.20231219620310.3390/jcm1219620337834847
    [Google Scholar]
  50. FisherE. UrakovA. SvetovaM. SuntsovaD. YagudinI. Covid-19: Intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation.Medicinski casopis202155413513810.5937/mckg55‑35424
    [Google Scholar]
  51. UrakovA.L. UrakovaN.A. FisherE.L. YagudinI.I. SuntsovaD.O. SvetovaM.D. ShubinaZ.V. MuhutdinovN.M. Inhalation of an aerosol solution of hydrogen peroxide and sodium bicarbonate for the urgent recanalization of the respiratory tract after blockage by mucus and pus.J Modern Biol Drug Disc20221210.53964/jmbdd.2022002
    [Google Scholar]
  52. GrasselliG. CattaneoE. FlorioG. IppolitoM. ZanellaA. CortegianiA. HuangJ. PesentiA. EinavS. Mechanical ventilation parameters in critically ill COVID-19 patients: A scoping review.Crit. Care202125111510.1186/s13054‑021‑03536‑233743812
    [Google Scholar]
  53. DragoiL. SiubaM.T. FanE. Lessons learned in mechanical ventilation/oxygen support in coronavirus disease 2019.Clin. Chest Med.202344232133310.1016/j.ccm.2022.11.01037085222
    [Google Scholar]
  54. HickJL HanflingD WyniaMK PaviaAT Duty to Plan: Health Care, Crisis Standards of Care, and Novel Coronavirus SARS-CoV-2.NAM Perspect2020202010.31478/202003b10.31478/202003b
    [Google Scholar]
  55. GoetzR.L. VijaykumarK. SolomonG.M. Mucus clearance strategies in mechanically ventilated patients.Front. Physiol.20221383471610.3389/fphys.2022.83471635399263
    [Google Scholar]
  56. WarnockL. GatesA. Airway clearance techniques compared to no airway clearance techniques for cystic fibrosis.Cochrane Libr.202320234CD00140110.1002/14651858.CD001401.pub437042825
    [Google Scholar]
  57. OhshimoS. Oxygen administration for patients with ARDS.J. Intensive Care2021911710.1186/s40560‑021‑00532‑033549131
    [Google Scholar]
  58. GriecoD.L. MaggioreS.M. RocaO. SpinelliE. PatelB.K. ThilleA.W. BarbasC.S.V. de AciluM.G. CutuliS.L. BongiovanniF. AmatoM. FratJ.P. MauriT. KressJ.P. ManceboJ. AntonelliM. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS.Intensive Care Med.202147885186610.1007/s00134‑021‑06459‑234232336
    [Google Scholar]
  59. ChiuL.C. KaoK.C. Mechanical ventilation during extracorporeal membrane oxygenation in acute respiratory distress syndrome: A narrative review.J. Clin. Med.20211021495310.3390/jcm1021495334768478
    [Google Scholar]
  60. BittnerE. SheridanR. Acute respiratory distress syndrome, mechanical ventilation, and inhalation injury in burn patients.Surg. Clin. North Am.2023103343945110.1016/j.suc.2023.01.00637149380
    [Google Scholar]
  61. DengQ. ZhangB. LiW. LiangH. JiangZ. ZhangJ. XuY. HeW. LiuX. SangL. ZengH. XuY. Changes of blood gas analysis in moderate-to-severe acute respiratory distress syndrome patients during long-term prone position ventilation: A retrospective cohort study.Ann. Transl. Med.20231128610.21037/atm‑22‑590736819546
    [Google Scholar]
  62. RamanathanK. ShekarK. LingR.R. BarbaroR.P. WongS.N. TanC.S. RochwergB. FernandoS.M. TakedaS. MacLarenG. FanE. BrodieD. Extracorporeal membrane oxygenation for COVID-19: A systematic review and meta-analysis.Crit. Care202125121110.1186/s13054‑021‑03634‑134127027
    [Google Scholar]
  63. TranA. FernandoS.M. RochwergB. BarbaroR.P. HodgsonC.L. MunshiL. MacLarenG. RamanathanK. HoughC.L. BrochardL.J. RowanK.M. FergusonN.D. CombesA. SlutskyA.S. FanE. BrodieD. Prognostic factors associated with mortality among patients receiving venovenous extracorporeal membrane oxygenation for COVID-19: A systematic review and meta-analysis.Lancet Respir. Med.202311323524410.1016/S2213‑2600(22)00296‑X36228638
    [Google Scholar]
  64. GianiM. RezoagliE. Respiratory support before venovenous ECMO for COVID-19: What is the price?Lancet Respir. Med.202311321421510.1016/S2213‑2600(22)00306‑X36228637
    [Google Scholar]
  65. GharibK.E. NarasimhanM. Venovenous extracorporeal membrane oxygenation in COVID-19-related acute respiratory distress syndrome : What’s the catch?Clin. Med. (Lond.)202323442742810.7861/clinmed.2023‑014937399283
    [Google Scholar]
  66. FlinspachA.N. BobykD. ZacharowskiK. NeefV. RaimannF.J. Bleeding complications in COVID-19 critically Ill ARDS patients ecreiving VV-ECMO therapy.J. Clin. Med.20231219641510.3390/jcm1219641537835059
    [Google Scholar]
  67. OrthmannT. LtaiefZ. BonnemainJ. KirschM. PiquilloudL. LiaudetL. Retrospective analysis of factors associated with outcome in veno-venous extra-corporeal membrane oxygenation.BMC Pulm. Med.202323130110.1186/s12890‑023‑02591‑537587413
    [Google Scholar]
  68. ParekhM. AbramsD. AgerstrandC. BadulakJ. DzierbaA. AlexanderP.M.A. PriceS. FanE. MullinD. DiazR. HodgsonC. BrodieD. The use of extracorporeal membrane oxygenation for COVID-19: Lessons learned.Clin. Chest Med.202344233534610.1016/j.ccm.2022.11.01637085223
    [Google Scholar]
  69. SupadyA. CombesA. BarbaroR.P. CamporotaL. DiazR. FanE. GianiM. HodgsonC. HoughC.L. KaragiannidisC. KochanekM. RabieA.A. RieraJ. SlutskyA.S. BrodieD. Respiratory indications for ECMO: Focus on COVID-19.Intensive Care Med.202248101326133710.1007/s00134‑022‑06815‑w35945343
    [Google Scholar]
  70. TangS. XuL. LiH. WuZ. WenQ. Anticoagulants in adult extracorporeal membrane oxygenation: Alternatives to standardized anticoagulation with unfractionated heparin.Eur. J. Clin. Pharmacol.202379121583159410.1007/s00228‑023‑03568‑337740749
    [Google Scholar]
  71. Oude Lansink-HartgringA. van MinnenO. VermeulenK.M. van den BerghW.M. Oude Lansink-HartgringA. van den BerghW.M. VermeulenK.M. Dos Reis MirandaD. DelnoijT.S.R. Elzo KraemerC.V. MaasJ.J. VlaarA.P.J. DonkerD.W. ScholtenE. BalzereitA. van den BruleJ. KuijpersM. Hospital costs of extracorporeal membrane oxygenation in adults: A systematic review.PharmacoEconom. Open20215461362310.1007/s41669‑021‑00272‑934060061
    [Google Scholar]
  72. LoesausS. ZahnP.K. BechtelM. StrauchJ.T. BuchwaldD. BaumannA. BerresD.M. Nucleated red blood cells are a predictor of mortality in patients under extracorporeal membrane oxygenation.Eur. J. Med. Res.202328127010.1186/s40001‑023‑01243‑y37550743
    [Google Scholar]
  73. BurrellA. KimJ. AlliegroP. RomeroL. Serpa NetoA. MariajosephF. HodgsonC. Extracorporeal membrane oxygenation for critically ill adults.Cochrane Libr.202320239CD01038110.1002/14651858.CD010381.pub337750499
    [Google Scholar]
  74. RezapourA. BehrooziZ. NasirzadehM. RezaeianM. BarzegarM. Tashakori-MiyanroudiM. SayyadA. SouresrafilA. Cost-effectiveness of remdesivir for the treatment of hospitalized patients with COVID-19: A systematic review.Infect. Dis. Poverty20231213910.1186/s40249‑023‑01092‑137081575
    [Google Scholar]
  75. HarveyM.J. GaiesM.G. ProsserL.A. US and International In-Hospital Costs of Extracorporeal Membrane Oxygenation: A Systematic Review.Appl. Health Econ. Health Policy201513434135710.1007/s40258‑015‑0170‑925894740
    [Google Scholar]
  76. OliverJC SilvaEN SoaresLM Different drug approaches to COVID-19 treatment worldwide: An update of new drugs and drugs repositioning to fight against the novel coronavirus.Ther Adv Vaccines Immunother2022102515135522114484510.1177/25151355221144845
    [Google Scholar]
  77. SheaB.J. GrimshawJ.M. WellsG.A. BoersM. AnderssonN. HamelC. PorterA.C. TugwellP. MoherD. BouterL.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews.BMC Med. Res. Methodol.2007711010.1186/1471‑2288‑7‑1017302989
    [Google Scholar]
  78. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.PLoS Med.200967e100009710.1371/journal.pmed.100009719621072
    [Google Scholar]
  79. MillerS ForrestJ Enhancing your practice through evidence-based decision making: PICO, learning how to ask good questions.J Evid Based Dental Prac2001113614110.1067/med.2001.118720
    [Google Scholar]
  80. EriksenM.B. FrandsenT.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review.J. Med. Libr. Assoc.2018106442043110.5195/jmla.2018.34530271283
    [Google Scholar]
  81. BoehmB. HansenJ.W. Spiral Development: Experience, Principles, and Refinements Spiral Development Workshop February 9, 2000.Available From: https://insights.sei.cmu.edu/library/spiral-development-experience-principles-and-refinements-spiral-development-workshop-february-9-2000/ 2000
  82. AlshamraniA. BahattabA. A comparison between three SDLC models waterfall model, spiral model, and incremental/iterative model.Int. J. Comput. Sci.201512106111
    [Google Scholar]
  83. SantesmassesD. CastroJ.P. ZeninA.A. ShindyapinaA.V. GerashchenkoM.V. ZhangB. KerepesiC. YimS.H. FedichevP.O. GladyshevV.N. COVID-19 is an emergent disease of aging.medRxiv202010.1101/2020.04.15.20060095
    [Google Scholar]
  84. WilliamsonE.J. WalkerA.J. BhaskaranK. BaconS. BatesC. MortonC.E. CurtisH.J. MehrkarA. EvansD. InglesbyP. CockburnJ. McDonaldH.I. MacKennaB. TomlinsonL. DouglasI.J. RentschC.T. MathurR. WongA.Y.S. GrieveR. HarrisonD. ForbesH. SchultzeA. CrokerR. ParryJ. HesterF. HarperS. PereraR. EvansS.J.W. SmeethL. GoldacreB. Factors associated with COVID-19-related death using OpenSAFELY.Nature2020584782143043610.1038/s41586‑020‑2521‑432640463
    [Google Scholar]
  85. BattagliniD. RobbaC. FedeleA. TrancǎS. SukkarS.G. Di PilatoV. BassettiM. GiacobbeD.R. VenaA. PatronitiN. BallL. BrunettiI. Torres MartíA. RoccoP.R.M. PelosiP. The role of dysbiosis in critically Ill patients with COVID-19 and acute respiratory distress syndrome.Front. Med. (Lausanne)2021867171410.3389/fmed.2021.67171434150807
    [Google Scholar]
  86. WangY. ZhangM. YuY. HanT. ZhouJ. BiL. Sputum characteristics and airway clearance methods in patients with severe COVID-19.Medicine (Baltimore)20209946e2325710.1097/MD.000000000002325733181718
    [Google Scholar]
  87. MatijasicN. Tripalo BatosA. Lenicek KrlezaJ. RoguljM. PavicI. Achromobacter xylosoxidans purulent bronchitis in a previously healthy child: An unexpected consequence of COVID-19 infection.Cureus2022141e2171110.7759/cureus.2171135242477
    [Google Scholar]
  88. BhaskarS SinhaA BanachM Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper.Front Immunol.2020111164810.3389/fimmu.2020.0164832754159
    [Google Scholar]
  89. TangY. LiuJ. ZhangD. XuZ. JiJ. WenC. Cytokine storm in COVID-19: The current evidence and treatment strategies.Front Immunol.2020111010.3389/fimmu.2020.0170832754163
    [Google Scholar]
  90. WakdeG. PatilP. JadhavS. PolenZ. ShamkureP. Physiotherapy management of patients with COVID-19 infection in a tertiary care setup-A case series.Int. J. Health Sci. Res.202111521922510.52403/ijhsr.20210535
    [Google Scholar]
  91. ChristensenE.F. NedergaardT. DahlR. Long-term treatment of chronic bronchitis with positive expiratory pressure mask and chest physiotherapy.Chest199097364565010.1378/chest.97.3.6452106412
    [Google Scholar]
  92. Garagorri-GutiérrezD. Leirós-RodríguezR. Effects of physiotherapy treatment in patients with bronchial asthma: A systematic review.Physiother. Theory Pract.202238449350310.1080/09593985.2020.177242032515632
    [Google Scholar]
  93. YuY. FangB. YangX.D. ZhengY. One stone two birds: Anti-inflammatory bronchodilators as a potential pharmacological strategy for COVID-19.Front. Pharmacol.202314118507610.3389/fphar.2023.118507637214443
    [Google Scholar]
  94. GellerC. VarbanovM. DuvalR.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies.Viruses20124113044306810.3390/v411304423202515
    [Google Scholar]
  95. YuX. SunS. ShiY. WangH. ZhaoR. ShengJ. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression.Crit. Care202024117010.1186/s13054‑020‑02893‑832326952
    [Google Scholar]
  96. InfluenzaB.H. Nature20195737774S4910.1038/d41586‑019‑02750‑x31534258
    [Google Scholar]
  97. CaoB. HaydenF.G. Antiviral monotherapy for hospitalised patients with COVID-19 is not enough.Lancet2020396102591310131110.1016/S0140‑6736(20)32078‑X33031761
    [Google Scholar]
  98. LyuM. FanG. XiaoG. WangT. XuD. GaoJ. GeS. LiQ. MaY. ZhangH. WangJ. CuiY. ZhangJ. ZhuY. ZhangB. Traditional Chinese medicine in COVID-19.Acta Pharm. Sin. B202111113337336310.1016/j.apsb.2021.09.00834567957
    [Google Scholar]
  99. ChenP.S. ChiuW.T. HsuP.L. LinS.C. PengI.C. WangC.Y. TsaiS.J. Pathophysiological implications of hypoxia in human diseases.J. Biomed. Sci.20202716310.1186/s12929‑020‑00658‑732389123
    [Google Scholar]
  100. UrakovA.L. Pus solvents as new drugs with unique physical and chemical properti.Rev Clin Pharmacol Drug Ther2020174899510.17816/RCF17489‑95
    [Google Scholar]
  101. RubinB.K. Mucolytics, expectorants, and mucokinetic medications.Respir. Care200752785986517594730
    [Google Scholar]
  102. FujinagaJ. KuriyamaA. OnoderaM. Early administration of mucoactive agents and ventilator-free days: A propensity score-matched study.Ann. Transl. Med.202311519510.21037/atm‑22‑434037007558
    [Google Scholar]
  103. QuirtJ. HildebrandK.J. MazzaJ. NoyaF. KimH. Asthma.Allergy Asthma Clin. Immunol.201814S2Suppl. 25010.1186/s13223‑018‑0279‑030275843
    [Google Scholar]
  104. GrieselM. WagnerC. MikolajewskaA. StegemannM. FichtnerF. MetzendorfM.I. NairA.A. DanielJ. FischerA.L. SkoetzN. Inhaled corticosteroids for the treatment of COVID-19.Cochrane Libr.202220223CD01512510.1002/14651858.CD01512535262185
    [Google Scholar]
  105. WagnerC. GrieselM. MikolajewskaA. MetzendorfM.I. FischerA.L. StegemannM. SpaglM. NairA.A. DanielJ. FichtnerF. SkoetzN. Systemic corticosteroids for the treatment of COVID-19: Equity-related analyses and update on evidence.Cochrane Libr.2022202211CD01496310.1002/14651858.CD014963.pub236385229
    [Google Scholar]
  106. CozzolinoA. HasenmajerV. Newell-PriceJ. IsidoriA.M. COVID-19 pandemic and adrenals: Deep insights and implications in patients with glucocorticoid disorders.Endocrine202382111410.1007/s12020‑023‑03411‑w37338722
    [Google Scholar]
  107. UrakovA. UrakovaN. Recent insights into the management of inflammation in asthma.J. Inflamm. Res.2021144603460410.2147/JIR.S33769034548806
    [Google Scholar]
  108. UrakovA. UrakovaN. Covid-19: Optimization of respiratory biomechanics by aerosol pus solvent.Russian J Biomech2021251869010.15593/RJBiomech/2021.1.07
    [Google Scholar]
  109. UrakovA. UrakovaN. FisherE. ShchemelevaA. StolyarenkoA. MartiushevaV. ZavarzinaM. Antiseptic pyolytics and warming wet compresses improve the prospect of healing chronic wounds.Explorat Med2023474775410.37349/emed.2023.00175
    [Google Scholar]
  110. UrakovAL Method and technology for drug repurposing based on changes in the physicochemical properties of dosage forms: Experience of use in Russia.Psychopharmacol Biol Narcol202314320320810.17816/phbn567970
    [Google Scholar]
  111. UrakovA.L. ShabanovP.D. Physical-chemical repurposing of drugs. History of its formation in Russia.Rev Clin Pharmacol Drug Ther202321323124210.17816/RCF567782
    [Google Scholar]
  112. UrakovA. UrakovaN. NikolenkoV. BelkharoevaR. AchkasovE. KochurovaE. GavryushovaL. SinelnikovM. Current and emerging methods for treatment of hemoglobin related cutaneous discoloration: A literature review.Heliyon202171e0595410.1016/j.heliyon.2021.e0595433506129
    [Google Scholar]
  113. YangS. ZhangJ. YangR. XuX. Small molecule compounds, a novel strategy against Streptococcus mutans.Pathogens20211012154010.3390/pathogens1012154034959495
    [Google Scholar]
  114. KimK. ZilbermintzL. MartchenkoM. Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans.Ann. Clin. Microbiol. Antimicrob.20151413210.1186/s12941‑015‑0090‑426054754
    [Google Scholar]
  115. WilliamsonD.A. CarterG.P. HowdenB.P. Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns.Clin. Microbiol. Rev.201730382786010.1128/CMR.00112‑1628592405
    [Google Scholar]
  116. GeritsE. DefraineV. VandammeK. De CremerK. De BruckerK. ThevissenK. CammueB.P.A. BeullensS. FauvartM. VerstraetenN. MichielsJ. Repurposing toremifene for treatment of oral bacterial infections.Antimicrob. Agents Chemother.2017613e01846-1610.1128/AAC.01846‑1627993858
    [Google Scholar]
  117. UrakovA. UrakovaN. ReshetnikovA. ShchemelevaA. ShabanovP. LovtsovaL. SamorodovA. FisherE. StolyarenkoA. SuntsovaD. YagudinI. MuhutdinovN. Reprofiling hydrogen peroxide from antiseptics to pyolytics: A narrative overview of the history of inventions in Russia.J. Pharm. Res. Int.2023356374810.9734/jpri/2023/v35i67333
    [Google Scholar]
  118. AbedA.R. KhudhairA.M. HusseinI.M. In vitro study of topical antiseptics used to treat mycological gill rot disease in Cyprinus carpio.J. Pure Appl. Microbiol.201913153754410.22207/JPAM.13.1.60
    [Google Scholar]
  119. HefzyE.M. RadwanT.E.E. HozayenB.M.M. MahmoudE.E. KhalilM.A.F. Antiseptics and mupirocin resistance in clinical, environmental, and colonizing coagulase negative Staphylococcus isolates.Antimicrob. Resist. Infect. Control202312111010.1186/s13756‑023‑01310‑337794413
    [Google Scholar]
  120. UrakovA.L. ShabanovP.D. Acute respiratory syndrome-2 (SARS-CoV-2): A solution of hydrogen peroxide and sodium bicarbonate as an expectorant for recanalization of the respiratory tract and blood oxygenation in respiratory obstruction (review).RevClin Pharmacol Drug Ther202119438339310.17816/RCF194383‑393
    [Google Scholar]
  121. FisherE.L. UrakovA.L. SamorodovA.V. BashirovI.I. ShabanovP.D. Alkaline hydrogen peroxide solutions: Expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects.Rev Clin Pharmacol Drug Ther202321213515010.17816/RCF492316
    [Google Scholar]
  122. UrakovAL Creation of “necessary” mixtures of baking soda, hydrogen peroxide and warm water as a strategy for modernization bleaching cleaners of ceramic.Epitőanyag – J Silicate Based Comp Mater2020721303510.14382/epitoanyag‑jsbcm.2020.6
    [Google Scholar]
  123. UrakovA.L. Hydrogen peroxide can replace gaseous oxygen to keep fish alive in hypoxia.Int Res J.20170559106108
    [Google Scholar]
  124. UrakovA.L. UrakovaN.A. ChernovaL.V. The influence of temperature, atmospheric pressure, antihypoxant and chemical “battery oxygen” on the sustainability of fish in the water without air.Int J Appl Fund Res.201454852
    [Google Scholar]
  125. WhiteD.C. TeasdaleP.R. The oxygenation of blood by hydrogen peroxide: In vitro studies.Br. J. Anaesth.196638533934410.1093/bja/38.5.3395939133
    [Google Scholar]
  126. ShabanovPD FisherEL UrakovAL Hydrogen peroxide formulations and methods of their use for blood oxygen saturation.JMPAS20222022460410.55522/jmpas.V11I6.4604
    [Google Scholar]
  127. KasatkinA. UrakovA. Effect of hydrogen peroxide on erythrocyte temperature in vitro.Chem. Biol. Interact.202235410983710.1016/j.cbi.2022.10983735104488
    [Google Scholar]
  128. UrakovA.L. StolyarenkoA.P. KopitovM.V. BashirovI.I. Dynamics of the local temperature of blood, pus, mucus and catalase solution when they interact with a solution of hydrogen peroxide in vitro.Thermol. Int.202131150152
    [Google Scholar]
  129. UrakovA.L. UrakovaN.A. COVID-19: Application of intra-pulmonary injection of hydrogen peroxide solution eliminates hypoxia and normalizes respiratory biomechanics in respiratory obstruction.Russian J Biomech.202125440641310.15593/RJBiomech/2021.4.06
    [Google Scholar]
  130. BlumenthalJ.A. DuvallM.G. Invasive and noninvasive ventilation strategies for acute respiratory failure in children with coronavirus disease 2019.Curr. Opin. Pediatr.202133331131810.1097/MOP.000000000000102133851935
    [Google Scholar]
  131. PhamT. BrochardL.J. SlutskyA.S. Mechanical ventilation: State of the art.Mayo Clin. Proc.20179291382140010.1016/j.mayocp.2017.05.00428870355
    [Google Scholar]
  132. UrakovA.L. COVID-19: Immediate lung reoxygenation with hydrogen peroxide: Reality or fantasy.Adv. Biores.2021125B359363
    [Google Scholar]
  133. UrakovA.L. UrakovaN.A. ShchemelevaA.A. FisherE.L. Bruising and bleaching cosmetics.Journal of Skin and Stem Cell202291e12286710.5812/jssc.122867
    [Google Scholar]
  134. UrakovA. UrakovaN. ReshetnikovA. Oxygen alkaline dental’s cleaners from tooth plaque, food debris, stains of blood, and pus: A narrative review of the history of inventions.J. Int. Soc. Prev. Community Dent.20199542743310.4103/jispcd.JISPCD_296_1931620374
    [Google Scholar]
  135. RotondoJ.C. MartiniF. MaritatiM. CaselliE. GallengaC.E. GuarinoM. De GiorgioR. MazziottaC. TramarinM.L. BadialeG. TognonM. ContiniC. Advanced molecular and immunological diagnostic methods to detect SARS-CoV-2 infection.Microorganisms2022106119310.3390/microorganisms1006119335744711
    [Google Scholar]
  136. ShiY. WangG. CaiX. DengJ. ZhengL. ZhuH. ZhengM. YangB. ChenZ. An overview of COVID-19.J. Zhejiang Univ. Sci. B202021534336010.1631/jzus.B200008332425000
    [Google Scholar]
  137. ZhuY SharmaL ChangD Pathophysiology and clinical management of coronavirus disease (COVID-19): A mini-review.Front Immunol202314111613110.3389/fimmu.2023.1116131
    [Google Scholar]
  138. RotondoJ.C. MartiniF. MaritatiM. MazziottaC. Di MauroG. LanzillottiC. BarpN. GalleraniA. TognonM. ContiniC. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants.Viruses2021139168710.3390/v1309168734578269
    [Google Scholar]
  139. CascellaM. RajnikM. AleemA. DulebohnS.C. Di NapoliR. Features, Evaluation, and Treatment of Coronavirus (COVID-19).Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  140. ContiniC. RotondoJ.C. PernaB. GuarinoM. De GiorgioR. Special Issue: Advances in SARS-CoV-2 Infection.Microorganisms2023114104810.3390/microorganisms1104104837110471
    [Google Scholar]
  141. TeulierM. ElabbadiA. GerotziafasG. LionnetF. VoiriotG. FartoukhM. Severe COVID-19 with acute respiratory distress syndrome (ARDS) in a sickle cell disease adult patient: Case report.BMC Pulm. Med.20212114610.1186/s12890‑021‑01412‑x33514354
    [Google Scholar]
  142. PereiraL.R.G. da SilvaM.V.G. GermanoC.M.R. EstevaoI.F. MeloD.G. Impact of the SARS-CoV-2 infection in individuals with sickle cell disease: An integrative review.Front. Med. (Lausanne)202310114422610.3389/fmed.2023.114422637200963
    [Google Scholar]
  143. KassirianS. TanejaR. MehtaS. Diagnosis and management of acute respiratory distress syndrome in a time of COVID-19.Diagnostics (Basel)20201012105310.3390/diagnostics1012105333291238
    [Google Scholar]
  144. DongM. ChenS. LinS. HanF. ZhongM. Insights into COVID-19-associated critical illness: A narrative review.Ann. Transl. Med.202311522010.21037/atm‑22‑254137007577
    [Google Scholar]
  145. HussainM. Khurram SyedS. FatimaM. ShaukatS. SaadullahM. AlqahtaniA.M. AlqahtaniT. EmranT.B. AlamriA.H. BarkatM.Q. WuX. Acute respiratory distress syndrome and COVID-19: A literature review.J. Inflamm. Res.2021147225724210.2147/JIR.S33404334992415
    [Google Scholar]
  146. SelickmanJ. VrettouC.S. MentzelopoulosS.D. MariniJ.J. COVID-19-related ARDS: Key mechanistic features and treatments.J. Clin. Med.20221116489610.3390/jcm1116489636013135
    [Google Scholar]
  147. Khaddage-SobohN TawilS. Navigating the crisis: A review of COVID-19 research and the importance of academic publications - The case of a private university in Lebanon.Heliyon2023912e2291710.1016/j.heliyon.2023.e22917
    [Google Scholar]
  148. CalkovskaA. KolomaznikM. CalkovskyV. Alveolar type II cells and pulmonary surfactant in COVID-19 era.Physiol. Res.202170S2S195S20810.33549/physiolres.93476334913352
    [Google Scholar]
  149. BatahS.S. FabroA.T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians.Respir. Med.202117610623910.1016/j.rmed.2020.10623933246294
    [Google Scholar]
  150. GurevichK. UrakovA. FisherE. ShubinaZ. Alkaline hydrogen peroxide solution is an expectorant, pyolytic, mucolytic, hemolytic, and bleaching drug for treating purulent diseases, hematomas and bruising.J. Pharm. Res. Int.20223430B132010.9734/jpri/2022/v34i30B36073
    [Google Scholar]
  151. RaiS. GuptaT.P. ShakiO. KaleA. Hydrogen peroxide: Its use in an extensive acute wound to promote wound granulation and infection control - Is it better than normal saline?Int. J. Low. Extrem. Wounds202322356357710.1177/1534734621103255534338578
    [Google Scholar]
  152. ZhuG. WangQ. LuS. NiuY. Hydrogen peroxide: A potential wound therapeutic target?Med. Princ. Pract.201726430130810.1159/00047550128384636
    [Google Scholar]
  153. HarrisM.G. Mei GanC. LongD.A. CushingL.A. The pH of over-the-counter hydrogen peroxide in soft lens disinfection systems.Optom. Vis. Sci.1989661283984210.1097/00006324‑198912000‑000072626250
    [Google Scholar]
  154. UrakovA. UrakovaN. SorokinaY. SamorodovA.V. FisherE. Targeted modification of physical-chemical properties of drugs as a universal way to transform “Old” Drugs into “New” Drugs.Drug Repurposing - Advances, Scopes and Opportunities in Drug DiscoveryLondonInTechOpen202310.5772/intechopen.110480
    [Google Scholar]
  155. UrakovA.L. ShabanovP.D. GurevichK.G. LovtsovaL.V. Supplementing traditional drug formulation with the “needed” gases opens the way for the development of a new generation of drugs.Psychopharmacol Biol Narcol202314151410.17816/phbn321616
    [Google Scholar]
  156. UrakovA. ShabanovP. LovtsovaL. Development of new generation drugs by enriching them with gases.J. Pharm. Res. Int.202335371610.9734/jpri/2023/v35i37315
    [Google Scholar]
  157. CarusoA.A. Del PreteA. LazzarinoA.I. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic.Med. Hypotheses202014410991010.1016/j.mehy.2020.10991032505069
    [Google Scholar]
  158. Di DomênicoM.B. CescaH. PoncianoT.H.J. dos SantosR.B. LenzU. AntunesV.P. GodinhoV.W. CollaresK. CorazzaP.H. Effectiveness of hydrogen peroxide as auxiliary treatment for hospitalized COVID-19 patients in Brazil: Preliminary results of a randomized double-blind clinical trial.Epidemiol. Health202143e202103210.4178/epih.e202103233957025
    [Google Scholar]
  159. DomênicoM.B.D. CollaresK. SantosR.B. LenzU. AntunesV.P. GodinhoV.W. CescaH. PoncianoT.H.J. CorazzaP.H. Hydrogen peroxide as an auxiliary treatment for COVID-19 in Brazil: A randomized double-blind clinical trial.Epidemiol. Health202143e202105110.4178/epih.e202105134529913
    [Google Scholar]
  160. AdlA. Sedigh-ShamsM. JamalidoustM. RajabzadehZ. Evaluating the effect of gargling with hydrogen peroxide and povidone-iodine on salivary viral load of SARS-CoV-2: A pilot randomized clinical trial.Niger. J. Clin. Pract.202326439139610.4103/njcp.njcp_320_2237203101
    [Google Scholar]
  161. Pablo-MarcosD. AbascalB. LloretL. Gutiérrez CuadraM. VelascoN. ValeroC. [Utility of mouth rinses with povidone-iodine and hydrogen peroxide in patients with COVID-19].Enferm. Infecc. Microbiol. Clin.202341317317510.1016/j.eimc.2021.10.00534720312
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322046240819053909
Loading
/content/journals/ctmc/10.2174/0115680266322046240819053909
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test