Skip to content
2000
Volume 24, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Mediterranean diet is frequently associated with longevity and a lower incidence of adverse cardiovascular events because of the biological activities and health effects of olives - its key component. Olive oil, olive leaf extract, fruits and different by-products contain many bioactive components that exert anti-oxidant, anti-inflammatory and anti-apoptotic activities. In this review, we focus on the recent studies exploring molecular mechanisms underlying the cardioprotective properties of different olive oils, olive leave extracts, and specific micro-constituents (such as oleuropein, tyrosol, hydroxytyrosol and others) on rodent models and in clinical trials on human subjects. Particularly, hydroxytyrosol and oleuropein were identified as the major bioactive compounds responsible for the antioxidant, anti-inflammatory, anti-platelet aggregation and anti-atherogenic activities of olive oil. In total, the discussed results demonstrated a positive association between the consumption of olive oil and improvement in outcomes in atherosclerosis, diabetes, myocardial infarction, heart failure, hypertension and obesity.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314560240806101445
2024-10-01
2025-05-23
Loading full text...

Full text loading...

References

  1. WHOCVDs Fact sheets Cardiovascular Diseases (CVDs).Available From: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021
  2. OkothK. CroweF. MarshallT. ThomasG.N. NirantharakumarK. AdderleyN.J. Sex-specific temporal trends in the incidence and prevalence of cardiovascular disease in young adults: A population-based study using UK primary care data.Eur. J. Prev. Cardiol.202229101387139510.1093/eurjpc/zwac02435139185
    [Google Scholar]
  3. SantoroV. MinardiV. ContoliB. GalloR. PossentiV. MasoccoM. Monitoring cardiovascular diseases and associated risk factors in the adult population to better orient prevention strategies in Italy.Ann. Ist. Super. Sanita202258210911710.4415/ANN_22_02_0635722797
    [Google Scholar]
  4. FuY. PriceC. HainingS. GaffneyB. JulienD. WhittyP. NewtonJ.L. Cardiovascular-related conditions and risk factors in primary care for deprived communities before and during the COVID-19 pandemic: An observational study in Northern England.BMJ Open20221211e06686810.1136/bmjopen‑2022‑06686836414311
    [Google Scholar]
  5. KohlW.K. DobosG. CramerH. Conventional and Complementary Healthcare Utilization Among US Adults With Cardiovascular Disease or Cardiovascular Risk Factors: A Nationally Representative Survey.J. Am. Heart Assoc.202099e01475910.1161/JAHA.119.01475932347141
    [Google Scholar]
  6. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.1320235076127
    [Google Scholar]
  7. HedayatniaM. AsadiZ. Zare-FeyzabadiR. Yaghooti-KhorasaniM. GhazizadehH. Ghaffarian-ZirakR. Nosrati-TirkaniA. Mohammadi-BajgiranM. RohbanM. SadabadiF. RahimiH.R. GhalandariM. GhaffariM.S. YousefiA. PouresmaeiliE. BesharatlouM.R. MoohebatiM. FernsG.A. EsmailyH. Ghayour-MobarhanM. Dyslipidemia and cardiovascular disease risk among the MASHAD study population.Lipids Health Dis.20201914210.1186/s12944‑020‑01204‑y32178672
    [Google Scholar]
  8. FerenceB.A. GinsbergH.N. GrahamI. RayK.K. PackardC.J. BruckertE. HegeleR.A. KraussR.M. RaalF.J. SchunkertH. WattsG.F. BorénJ. FazioS. HortonJ.D. MasanaL. NichollsS.J. NordestgaardB.G. van de SluisB. TaskinenM.R. TokgözoğluL. LandmesserU. LaufsU. WiklundO. StockJ.K. ChapmanM.J. CatapanoA.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.Eur. Heart J.201738322459247210.1093/eurheartj/ehx14428444290
    [Google Scholar]
  9. BehbodikhahJ. AhmedS. ElyasiA. KasselmanL.J. De LeonJ. GlassA.D. ReissA.B. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target.Metabolites2021111069010.3390/metabo1110069034677405
    [Google Scholar]
  10. VekicJ. ZeljkovicA. CiceroA.F.G. JanezA. StoianA.P. SonmezA. RizzoM. Atherosclerosis Development and Progression: The Role of Atherogenic Small, Dense LDL.Medicina (Kaunas)202258229910.3390/medicina5802029935208622
    [Google Scholar]
  11. JensenM.K. AronerS.A. MukamalK.J. FurtadoJ.D. PostW.S. TsaiM.Y. TjønnelandA. PolakJ.F. RimmE.B. OvervadK. McClellandR.L. SacksF.M. High-Density Lipoprotein Subspecies Defined by Presence of Apolipoprotein C-III and Incident Coronary Heart Disease in Four Cohorts.Circulation2018137131364137310.1161/CIRCULATIONAHA.117.03127629162611
    [Google Scholar]
  12. LeeH.C. AkhmedovA. ChenC.H. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights.Front. Cardiovasc. Med.2022999363310.3389/fcvm.2022.99363336267630
    [Google Scholar]
  13. PetersenJ. KontsevayaA. McKeeM. RichardsonE. CookS. MalyutinaS. KudryavtsevA.V. LeonD.A. Primary care use and cardiovascular disease risk in Russian 40–69 year olds: A cross-sectional study.J. Epidemiol. Community Health202074969296710.1136/jech‑2019‑21354932366586
    [Google Scholar]
  14. PearsonG.J. ThanassoulisG. AndersonT.J. BarryA.R. CoutureP. DayanN. FrancisG.A. GenestJ. GrégoireJ. GroverS.A. GuptaM. HegeleR.A. LauD. LeiterL.A. LeungA.A. LonnE. ManciniG.B.J. ManjooP. McPhersonR. NguiD. PichéM.E. PoirierP. SievenpiperJ. StoneJ. WardR. WrayW. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults.Can. J. Cardiol.20213781129115010.1016/j.cjca.2021.03.01633781847
    [Google Scholar]
  15. TsaoC.W. AdayA.W. AlmarzooqZ.I. AndersonC.A.M. AroraP. AveryC.L. Baker-SmithC.M. BeatonA.Z. BoehmeA.K. BuxtonA.E. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FugarS. GenerosoG. HeardD.G. HiremathS. HoJ.E. KalaniR. KaziD.S. KoD. LevineD.A. LiuJ. MaJ. MagnaniJ.W. MichosE.D. MussolinoM.E. NavaneethanS.D. ParikhN.I. PoudelR. Rezk-HannaM. RothG.A. ShahN.S. St-OngeM.P. ThackerE.L. ViraniS.S. VoeksJ.H. WangN.Y. WongN.D. WongS.S. YaffeK. MartinS.S. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association.Circulation20231478e93e62110.1161/CIR.000000000000112336695182
    [Google Scholar]
  16. IslamM.A. AminM.N. SiddiquiS.A. HossainM.P. SultanaF. KabirM.R. Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes.Diabetes Metab. Syndr.20191321643164710.1016/j.dsx.2019.03.03331336535
    [Google Scholar]
  17. AnggadiredjaK. UfamyN. AmaliaL. Fisheri KurniatiN. Bahana Maulida ReyaanI. Ameliorating Effects of Four-Week Fiber-Multivitamin Combination Treatment on Low-Density Lipoprotein Cholesterol, Total Cholesterol, and Apolipoprotein B Profiles in Hypercholesterolemic Participants.J. Diet. Suppl.202017217318310.1080/19390211.2018.149466330380357
    [Google Scholar]
  18. MisraR. BalagopalP. RajS. PatelT.G. Vegetarian Diet and Cardiometabolic Risk among Asian Indians in the United States.J. Diabetes Res.2018201811310.1155/2018/167536929670913
    [Google Scholar]
  19. DinuM. PagliaiG. CasiniA. SofiF. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials.Eur. J. Clin. Nutr.2018721304310.1038/ejcn.2017.5828488692
    [Google Scholar]
  20. Becerra-TomásN. Blanco MejíaS. ViguilioukE. KhanT. KendallC.W.C. KahleovaH. RahelićD. SievenpiperJ.L. Salas-SalvadóJ. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials.Crit. Rev. Food Sci. Nutr.20206071207122710.1080/10408398.2019.156528130676058
    [Google Scholar]
  21. RosatoV. TempleN.J. La VecchiaC. CastellanG. TavaniA. GuercioV. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies.Eur. J. Nutr.201958117319110.1007/s00394‑017‑1582‑029177567
    [Google Scholar]
  22. ArnettD.K. BlumenthalR.S. AlbertM.A. BurokerA.B. GoldbergerZ.D. HahnE.J. HimmelfarbC.D. KheraA. Lloyd-JonesD. McEvoyJ.W. MichosE.D. MiedemaM.D. MuñozD. SmithS.C.Jr ViraniS.S. WilliamsK.A.Sr YeboahJ. ZiaeianB. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation201914011e596e64610.1161/CIR.000000000000067830879355
    [Google Scholar]
  23. DehghanM. MenteA. RangarajanS. SheridanP. MohanV. IqbalR. GuptaR. LearS. Wentzel-ViljoenE. AvezumA. Lopez-JaramilloP. MonyP. VarmaR.P. KumarR. ChifambaJ. AlhabibK.F. MohammadifardN. OguzA. LanasF. RozanskaD. BostromK.B. YusoffK. TsolkileL.P. DansA. YusufaliA. OrlandiniA. PoirierP. KhatibR. HuB. WeiL. YinL. DeerailiA. YeatesK. YusufR. IsmailN. MozaffarianD. TeoK. AnandS.S. YusufS. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study.Lancet2018392101612288229710.1016/S0140‑6736(18)31812‑930217460
    [Google Scholar]
  24. RicciC. BaumgartnerJ. ZecM. KrugerH.S. SmutsC.M. Type of dietary fat intakes in relation to all-cause and cause-specific mortality in US adults: An iso-energetic substitution analysis from the American National Health and Nutrition Examination Survey linked to the US mortality registry.Br. J. Nutr.2018119445646310.1017/S000711451700388929498349
    [Google Scholar]
  25. KeyT.J. ApplebyP.N. BradburyK.E. SweetingM. WoodA. JohanssonI. KühnT. SteurM. WeiderpassE. WennbergM. Lund WürtzA.M. AgudoA. AnderssonJ. ArriolaL. BoeingH. BoerJ.M.A. BonnetF. Boutron-RuaultM.C. CrossA.J. EricsonU. FagherazziG. FerrariP. GunterM. HuertaJ.M. KatzkeV. KhawK.T. KroghV. La VecchiaC. MatulloG. Moreno-IribasC. NaskaA. NilssonL.M. OlsenA. OvervadK. PalliD. PanicoS. Molina-PortilloE. QuirósJ.R. SkeieG. SluijsI. SonestedtE. StepienM. TjønnelandA. TrichopoulouA. TuminoR. TzoulakiI. van der SchouwY.T. VerschurenW.M.M. di AngelantonioE. LangenbergC. ForouhiN. WarehamN. ButterworthA. RiboliE. DaneshJ. Consumption of meat, fish, dairy products, and eggs and risk of ischemic heart disease.Circulation2019139252835284510.1161/CIRCULATIONAHA.118.03881331006335
    [Google Scholar]
  26. NettletonJ.A. BrouwerI.A. GeleijnseJ.M. HornstraG. Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update.Ann. Nutr. Metab.2017701263310.1159/00045568128125802
    [Google Scholar]
  27. ForouhiN.G. KraussR.M. TaubesG. WillettW. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance.BMJ2018361k213910.1136/bmj.k213929898882
    [Google Scholar]
  28. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. John ChapmanM. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. Fontes-CarvalhoR. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. de IslaL.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz45531504418
    [Google Scholar]
  29. KhawK.T. SharpS.J. FinikaridesL. AfzalI. LentjesM. LubenR. ForouhiN.G. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women.BMJ Open201883e02016710.1136/bmjopen‑2017‑02016729511019
    [Google Scholar]
  30. Hadj AhmedS. KharroubiW. KaoubaaN. ZarroukA. BatboutF. GamraH. NajjarM.F. LizardG. Hininger-FavierI. HammamiM. Correlation of trans fatty acids with the severity of coronary artery disease lesions.Lipids Health Dis.20181715210.1186/s12944‑018‑0699‑329544473
    [Google Scholar]
  31. VernequeB.J.F. MachadoA.M. de Abreu SilvaL. LopesA.C.S. DuarteC.K. Ruminant and industrial trans-fatty acids consumption and cardiometabolic risk markers: A systematic review.Crit. Rev. Food Sci. Nutr.20226282050206010.1080/10408398.2020.183647133081490
    [Google Scholar]
  32. MatsumotoS. BeesonW.L. ShavlikD.J. SiapcoG. Jaceldo-SieglK. FraserG. KnutsenS.F. Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2.J. Nutr. Sci.20198e610.1017/jns.2019.130828449
    [Google Scholar]
  33. ViguilioukE. KendallC.W.C. KahleováH. RahelićD. Salas-SalvadóJ. ChooV.L. MejiaS.B. StewartS.E. LeiterL.A. JenkinsD.J.A. SievenpiperJ.L. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr.20193831133114510.1016/j.clnu.2018.05.03229960809
    [Google Scholar]
  34. ZhongV.W. Van HornL. CornelisM.C. WilkinsJ.T. NingH. CarnethonM.R. GreenlandP. MentzR.J. TuckerK.L. ZhaoL. NorwoodA.F. Lloyd-JonesD.M. AllenN.B. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality.JAMA2019321111081109510.1001/jama.2019.157230874756
    [Google Scholar]
  35. ZhangF. LiJ. ChangC. GuL. XiongW. SuY. YangY. The association of dietary cholesterol from egg consumption on cardiovascular diseases risk varies from person to person.J. Agric. Food Chem.20227048149771498810.1021/acs.jafc.2c0463436416372
    [Google Scholar]
  36. AlphonseP.A.S. JonesP.J.H. Revisiting human cholesterol synthesis and absorption: The reciprocity paradigm and its key regulators.Lipids201651551953610.1007/s11745‑015‑4096‑726620375
    [Google Scholar]
  37. FergusonJ.J.A. WolskaA. RemaleyA.T. StojanovskiE. MacDonald-WicksL. GargM.L. Bread enriched with phytosterols with or without curcumin modulates lipoprotein profiles in hypercholesterolaemic individuals. A randomised controlled trial.Food Funct.20191052515252710.1039/C8FO02512F30990213
    [Google Scholar]
  38. FergusonJ.J.A. StojanovskiE. MacDonald-WicksL. GargM.L. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial.Metabolism201882223510.1016/j.metabol.2017.12.00929291429
    [Google Scholar]
  39. QuintãoE.C.R. Plasma Non-cholesterol Sterols as Markers of Cholesterol Synthesis and Intestinal Absorption: A Critical Review.Curr. Pharm. Des.202026405152516210.2174/138161282666620073022023032744960
    [Google Scholar]
  40. ReaverA. HewlingsS. WestermanK. BlanderG. SchmellerT. HeerM. ReinD. A Randomized, Placebo-Controlled, Double-Blind Crossover Study to Assess a Unique Phytosterol Ester Formulation in Lowering LDL Cholesterol Utilizing a Novel Virtual Tracking Tool.Nutrients2019119210810.3390/nu1109210831491873
    [Google Scholar]
  41. WitkowskaA.M. WaśkiewiczA. ZujkoM.E. Cicha-MikołajczykA. Mirończuk-ChodakowskaI. DrygasW. Dietary Plant Sterols and Phytosterol-Enriched Margarines and Their Relationship with Cardiovascular Disease among Polish Men and Women: The WOBASZ II Cross-Sectional Study.Nutrients20221413266510.3390/nu1413266535807845
    [Google Scholar]
  42. YingJ. ZhangY. YuK. Phytosterol compositions of enriched products influence their cholesterol-lowering efficacy: A meta-analysis of randomized controlled trials.Eur. J. Clin. Nutr.201973121579159310.1038/s41430‑019‑0504‑z31562385
    [Google Scholar]
  43. KaurR. MyrieS.B. Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans.Lipids202055656958410.1002/lipd.1226232557606
    [Google Scholar]
  44. Delgado-ListaJ. Alcala-DiazJ.F. Torres-PeñaJ.D. Quintana-NavarroG.M. FuentesF. Garcia-RiosA. Ortiz-MoralesA.M. Gonzalez-RequeroA.I. Perez-CaballeroA.I. Yubero-SerranoE.M. Rangel-ZuñigaO.A. CamargoA. Rodriguez-CantalejoF. Lopez-SeguraF. BadimonL. OrdovasJ.M. Perez-JimenezF. Perez-MartinezP. Lopez-MirandaJ. Alcala-DiazJ.F. Almaden PeñaY. ArandaE. Arenas de LarrivaA.P. BadimonL. BadimonJ.J. Blanco-MolinaA. Blanco-RojoR. Bolivar-MuñozJ. Caballero-VillarrasoJ. CamargoA. ChicaJ. CorinaA. Criado-GarciaJ. Cruz-TenoC. Daponte-CodinaA. de Teresa GalvanE. Delgado-CasadoN. Delgado-ListaJ. EstruchR. FernandezJ.M. Fernandez-GandaraC. Fuentes-JimenezF. Garcia-Carpintero Fernandez-PachecoS. Garcia-RiosA. Gomez-DelgadoF. Gomez-GarduñoA. Gomez-LunaP. Gomez-LunaM.J. Gonzalez-GuardiaL. Gonzalez-RequeroA.I. Gutierrez-MariscalF.M. Haro-MariscalC.M. Jimenez-LucenaR. Jimenez-MoralesA.I. Leon-AcuñaA. Lopez-MirandaJ. Lopez-SeguraF. Marin-HinojosaC. Meneses AlvarezM.E. Mesa-LunaD. Moya-GarridoM.N. Muñoz-CarvajalI. Navarro-MartosV. OchoaJ.J. OrdovasJ.M. Ortiz-MinuesaJ.A. Ortiz-MoralesA.M. PanM. Peña-OrihuelaP. Perez-CaballeroA.I. Perez-CorralI. Perez-JimenezF. Perez-MartinezP. Pi-SunyerF.X. Quintana-NavarroG.M. Ramirez-LaraI. Rangel-ZuñigaO.A. Rodriguez-ArtalejoF. Rodriguez-CantalejoF. RomeroM.A. Roncero-RamosI. Ruano-RuizJ.A. Ruiz de CastroviejoJ. Sanchez-VillegasP. Suarez de LezoJ. Suarez de LezoJ. Torres-PeñaJ.D. Vals-DelgadoC. ValverdeR. VisioliF. Yubero-SerranoE.M. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial.Lancet2022399103381876188510.1016/S0140‑6736(22)00122‑235525255
    [Google Scholar]
  45. RioloR. De RosaR. SimonettaI. TuttolomondoA. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics.Int. J. Mol. Sci.202223241600210.3390/ijms23241600236555645
    [Google Scholar]
  46. KatsikiN. Pérez-MartínezP. Lopez-MirandaJ. Olive Oil Intake and Cardiovascular Disease Prevention: “Seek and You Shall Find”.Curr. Cardiol. Rep.20212366410.1007/s11886‑021‑01496‑133961163
    [Google Scholar]
  47. GaforioJ.J. Virgin Olive Oil and Health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018.Nutrients2019119203910.3390/nu11092039
    [Google Scholar]
  48. KabbashE.M. AyoubI.M. GadH.A. Abdel-ShakourZ.T. El-AhmadyS.H. Quality assessment of leaf extracts of 12 olive cultivars and impact of seasonal variation based on UV spectroscopy and phytochemcial content using multivariate analyses.Phytochem. Anal.202132693294110.1002/pca.303633619785
    [Google Scholar]
  49. ÖzcanM.M. JuhaimiF.A. UsluN. GhafoorK. AhmedI.A.M. BabikerE.E. The effect of olive varieties on fatty acid composition and tocopherol contents of cold pressed virgin olive oils.J. Oleo Sci.201968430731010.5650/jos.ess1825130930370
    [Google Scholar]
  50. AngelisA. HamzaouiM. AligiannisN. NikouT. MichailidisD. GerolimatosP. TermentziA. HubertJ. HalabalakiM. RenaultJ.H. SkaltsounisA.L. An integrated process for the recovery of high added-value compounds from olive oil using solid support free liquid-liquid extraction and chromatography techniques.J. Chromatogr. A2017149112613610.1016/j.chroma.2017.02.04628256253
    [Google Scholar]
  51. AlvesE. DominguesM.R.M. DominguesP. Polar Lipids from Olives and Olive Oil: A Review on Their Identification, Significance and Potential Biotechnological Applications.Foods20187710910.3390/foods707010929996479
    [Google Scholar]
  52. Olmo-GarcíaL. BajoubA. MonasterioR.P. Fernández-GutiérrezA. Carrasco-PancorboA. Development and validation of LC-MS-based alternative methodologies to GC–MS for the simultaneous determination of triterpenic acids and dialcohols in virgin olive oil.Food Chem.201823963163910.1016/j.foodchem.2017.06.14228873615
    [Google Scholar]
  53. GorassiniA. VerardoG. BortolomeazziR. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID.Food Chem.201928317718210.1016/j.foodchem.2018.12.12030722858
    [Google Scholar]
  54. TsimidouM.Z. SotiroglouM. MastralexiA. NenadisN. García-GonzálezD.L. Gallina ToschiT. In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for “Olive Oil Polyphenols”.Molecules2019246104410.3390/molecules2406104430884804
    [Google Scholar]
  55. BartellaL. MazzottiF. NapoliA. SindonaG. Di DonnaL. A comprehensive evaluation of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil by microwave-assisted hydrolysis and HPLC-MS/MS.Anal. Bioanal. Chem.201841082193220110.1007/s00216‑018‑0885‑129372274
    [Google Scholar]
  56. RicciutelliM. MarconiS. BoarelliM.C. CaprioliG. SagratiniG. BalliniR. FioriniD. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim.J. Chromatogr. A20171481536310.1016/j.chroma.2016.12.02028024731
    [Google Scholar]
  57. GattL. LiaF. Zammit-MangionM. ThorpeS.J. Schembri-WismayerP. First profile of phenolic compounds from maltese extra virgin olive oils using liquid-liquid extraction and liquid chromatography-mass spectrometry.J. Oleo Sci.202170214515310.5650/jos.ess2013033456000
    [Google Scholar]
  58. Luque-MuñozA. TapiaR. HaidourA. JusticiaJ. CuervaJ.M. Quantification of oleacein and oleuropein aglycone in olive oil using deuterated surrogates by normal‐phase ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry.J. Sep. Sci.201841234272428010.1002/jssc.20180067730298978
    [Google Scholar]
  59. Sánchez de MedinaV. MihoH. MelliouE. MagiatisP. Priego-CapoteF. Luque de CastroM.D. Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography–tandem mass spectrometry.Talanta2017162243110.1016/j.talanta.2016.09.05627837824
    [Google Scholar]
  60. JuH. KimB. KimJ. BaekS.Y. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards.Food Chem.202030912563910.1016/j.foodchem.2019.12563931670126
    [Google Scholar]
  61. AntonelliM. BenedettiB. CavaliereC. CerratoA. MontoneC.M. PiovesanaS. LaganaA. CapriottiA.L. Phospholipidome of extra virgin olive oil: Development of a solid phase extraction protocol followed by liquid chromatography–high resolution mass spectrometry for its software-assisted identification.Food Chem.202031012586010.1016/j.foodchem.2019.12586031735462
    [Google Scholar]
  62. AlvesE. ReyF. MeloT. BarrosM.P. DominguesP. DominguesR. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison.Foods202211795110.3390/foods1107095135407039
    [Google Scholar]
  63. Criado-NavarroI. Mena-BravoA. Calderón-SantiagoM. Priego-CapoteF. Determination of glycerophospholipids in vegetable edible oils: Proof of concept to discriminate olive oil categories.Food Chem.201929912513610.1016/j.foodchem.2019.12513631302429
    [Google Scholar]
  64. MirónC. SánchezR. PratsS. TodolíJ.L. Total polyphenol content and metals determination in Spanish virgin olive oils by means of a dispersive liquid-liquid aerosol phase extraction method and ICP-MS.Anal. Chim. Acta20201094344610.1016/j.aca.2019.10.00931761046
    [Google Scholar]
  65. KatsaM.E. NomikosT. Olive Oil Phenolics and Platelets—From Molecular Mechanisms to Human Studies.Rev. Cardiovasc. Med.202223825510.31083/j.rcm2308255
    [Google Scholar]
  66. AthanasiadisV. ChatzimitakosT. BozinouE. MakrisD.P. DourtoglouV.G. LalasS.I. Olive Oil Produced from Olives Stored under CO2 Atmosphere: Volatile and Physicochemical Characterization.Antioxidants20221213010.3390/antiox1201003036670892
    [Google Scholar]
  67. LanzaB. CelliniM. Di MarcoS. D’AmicoE. SimoneN. GiansanteL. PompilioA. Di LoretoG. BacceliM. Del ReP. Di BonaventuraG. Di GiacintoL. AcetoG.M. Olive Pâté by Multi-Phase Decanter as Potential Source of Bioactive Compounds of Both Nutraceutical and Anticancer Effects.Molecules20202524596710.3390/molecules2524596733339392
    [Google Scholar]
  68. SueishiY. NiiR. A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free‐radical scavenging method.J. Food Sci.20208592737274410.1111/1750‑3841.1538832844426
    [Google Scholar]
  69. De la OssaJ.G. FeliceF. AzimiB. Esposito SalsanoJ. DigiacomoM. MacchiaM. DantiS. Di StefanoR. Waste Autochthonous Tuscan Olive Leaves (Olea europaea var. Olivastra seggianese) as Antioxidant Source for Biomedicine.Int. J. Mol. Sci.20192023591810.3390/ijms2023591831775339
    [Google Scholar]
  70. KoukaP. ChatzieffraimidiG.A. RaftisG. StagosD. AngelisA. StathopoulosP. XynosN. SkaltsounisA.L. TsatsakisA.M. KouretasD. Antioxidant effects of an olive oil total polyphenolic fraction from a Greek Olea europaea variety in different cell cultures.Phytomedicine20184713514210.1016/j.phymed.2018.04.05430166098
    [Google Scholar]
  71. KoukaP. PriftisA. StagosD. AngelisA. StathopoulosP. XinosN. SkaltsounisA.L. MamoulakisC. TsatsakisA.M. SpandidosD.A. KouretasD. Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts.Int. J. Mol. Med.201740370371210.3892/ijmm.2017.307828731131
    [Google Scholar]
  72. CarnevaleR. NocellaC. CammisottoV. BartimocciaS. MonticoloR. D’AmicoA. StefaniniL. PaganoF. PastoriD. CangemiR. VioliF. Antioxidant activity from extra virgin olive oil via inhibition of hydrogen peroxide–mediated NADPH-oxidase 2 activation.Nutrition201855-56364010.1016/j.nut.2018.03.04529960154
    [Google Scholar]
  73. SerreliG. Le SayecM. DiotalleviC. TeissierA. DeianaM. CoronaG. Conjugated Metabolites of Hydroxytyrosol and Tyrosol Contribute to the Maintenance of Nitric Oxide Balance in Human Aortic Endothelial Cells at Physiologically Relevant Concentrations.Molecules20212624748010.3390/molecules2624748034946563
    [Google Scholar]
  74. ChildersK.C. GarcinE.D. Structure/function of the soluble guanylyl cyclase catalytic domain.Nitric Oxide201877536410.1016/j.niox.2018.04.00829702251
    [Google Scholar]
  75. SerreliG. Le SayecM. ThouE. LacourC. DiotalleviC. DhunnaM.A. DeianaM. SpencerJ.P.E. CoronaG. Ferulic Acid Derivatives and Avenanthramides Modulate Endothelial Function through Maintenance of Nitric Oxide Balance in HUVEC Cells.Nutrients2021136202610.3390/nu1306202634204635
    [Google Scholar]
  76. KoukaP. TsakiriG. TzortziD. DimopoulouS. SarikakiG. StathopoulosP. VeskoukisA.S. HalabalakiM. SkaltsounisA.L. KouretasD. The Polyphenolic Composition of Extracts Derived from Different Greek Extra Virgin Olive Oils Is Correlated with Their Antioxidant Potency.Oxid. Med. Cell. Longev.2019201911310.1155/2019/187096531015888
    [Google Scholar]
  77. ZhuL. ZhouQ. HeL. ChenL. Mitochondrial unfolded protein response: An emerging pathway in human diseases.Free Radic. Biol. Med.202116312513410.1016/j.freeradbiomed.2020.12.01333347985
    [Google Scholar]
  78. MaiuoloJ. BavaI. CarresiC. GliozziM. MusolinoV. ScaranoF. NuceraS. ScicchitanoM. BoscoF. RugaS. Caterina ZitoM. OppedisanoF. MacriR. TaverneseA. MollaceR. MollaceV. The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity.Nutrients2021137215810.3390/nu1307215834201904
    [Google Scholar]
  79. MárquezK. MárquezN. ÁvilaF. CruzN. Burgos-EdwardsA. PardoX. CarrascoB. Oleuropein-Enriched Extract From Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities.Front. Nutr.2022989507010.3389/fnut.2022.89507035832049
    [Google Scholar]
  80. AlnusaireT.S. Olive Leaves (Olea europaea L) Extract Loaded Lipid Nanoparticles: Optimization of Processing Parameters by Box-Behnken Statistical Design, in-vitro Characterization, and Evaluation of Anti-oxidant and Anti-microbial Activity.J. Oleo Sci.202170101403141610.5650/jos.ess2114934615828
    [Google Scholar]
  81. Huguet-CasqueroA. Moreno-SastreM. López-MéndezT.B. GainzaE. PedrazJ.L. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells.Pharmaceutics202012542910.3390/pharmaceutics1205042932384817
    [Google Scholar]
  82. KesenteM. KavetsouE. RoussakiM. BlidiS. LoupassakiS. ChaniotiS. SiamandouraP. StamatogianniC. PhilippouE. PapaspyridesC. VouyioukaS. DetsiA. Encapsulation of Olive Leaves Extracts in Biodegradable PLA Nanoparticles for Use in Cosmetic Formulation.Bioengineering (Basel)2017437510.3390/bioengineering403007528952554
    [Google Scholar]
  83. WangL. GengC. JiangL. GongD. LiuD. YoshimuraH. ZhongL. The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis.Eur. J. Nutr.200847523524310.1007/s00394‑008‑0717‑818654736
    [Google Scholar]
  84. BurjaB. KuretT. JankoT. TopalovićD. ŽivkovićL. Mrak-PoljšakK. Spremo-PotparevićB. ŽigonP. DistlerO. ČučnikS. Sodin-SemrlS. LakotaK. Frank-BertonceljM. Olive Leaf Extract Attenuates Inflammatory Activation and DNA Damage in Human Arterial Endothelial Cells.Front. Cardiovasc. Med.201965610.3389/fcvm.2019.0005631157238
    [Google Scholar]
  85. SackG.H.Jr Serum amyloid A – a review.Mol. Med.20182414610.1186/s10020‑018‑0047‑030165816
    [Google Scholar]
  86. ThompsonJ.C. JayneC. ThompsonJ. WilsonP.G. YoderM.H. WebbN. TannockL.R. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis.J. Lipid Res.201556228629310.1194/jlr.M05401525429103
    [Google Scholar]
  87. TahamtanA. Teymoori-RadM. NakstadB. SalimiV. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment.Front. Immunol.20189137710.3389/fimmu.2018.0137729988529
    [Google Scholar]
  88. LinZ. GeJ. WangZ. RenJ. WangX. XiongH. GaoJ. ZhangY. ZhangQ. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk.Sci. Rep.2017714249810.1038/srep4249828195197
    [Google Scholar]
  89. De CiccoP. MaistoM. TenoreG.C. IanaroA. Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization.Nutrients20201212366310.3390/nu1212366333260769
    [Google Scholar]
  90. CuffaroD. BertiniS. MacchiaM. DigiacomoM. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment.Nutrients2023155107310.3390/nu1505107336904073
    [Google Scholar]
  91. QabahaK. AL-RimawiF. QasemA. NaserS.A. Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract.J. Med. Food201821330230510.1089/jmf.2017.007029099642
    [Google Scholar]
  92. WuX. LiC. MariyamZ. JiangP. ZhouM. ZebF. HaqI. ChenA. FengQ. Acrolein‐induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol.J. Cell. Physiol.2019234147548510.1002/jcp.2660029953618
    [Google Scholar]
  93. PetrielloM.C. HoffmanJ.B. SunkaraM. WahlangB. PerkinsJ.T. MorrisA.J. HennigB. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.J. Nutr. Biochem.20163314515310.1016/j.jnutbio.2016.03.01627155921
    [Google Scholar]
  94. MarreroA.D. CastillaL. BernalM. ManriqueI. Posligua-GarcíaJ.D. Moya-UtreraF. Porras-AlcaláC. EsparteroJ.L. SarabiaF. QuesadaA.R. MedinaM.Á. Martínez-PovedaB. Inhibition of Endothelial Inflammatory Response by HT-C6, a Hydroxytyrosol Alkyl Ether Derivative.Antioxidants2023128151310.3390/antiox1208151337627508
    [Google Scholar]
  95. ZhaoQ. BaiY. LiC. YangK. WeiW. LiZ. PanL. LiX. ZhangX. Oleuropein protects cardiomyocyte against apoptosis via activating the reperfusion injury salvage kinase pathway in vitro.Evid. Based Complement. Alternat. Med.201720171910.1155/2017/210901828491103
    [Google Scholar]
  96. Janus-BellE. ManginP.H. The relative importance of platelet integrins in hemostasis, thrombosis and beyond.Haematologica202310871734174710.3324/haematol.2022.282136
    [Google Scholar]
  97. MizutaniD. OnumaT. TanabeK. KojimaA. UematsuK. NakashimaD. DoiT. EnomotoY. Matsushima-NishiwakiR. TokudaH. OguraS. IidaH. KozawaO. IwamaT. Olive polyphenol reduces the collagen-elicited release of phosphorylated HSP27 from human platelets.Biosci. Biotechnol. Biochem.202084353654310.1080/09168451.2019.169719631760852
    [Google Scholar]
  98. LuG. WangY. ShiY. ZhangZ. HuangC. HeW. WangC. ShenH.M. Autophagy in health and disease: From molecular mechanisms to therapeutic target.MedComm202233e15010.1002/mco2.15035845350
    [Google Scholar]
  99. SantinY. SicardP. VigneronF. Guilbeau-FrugierC. DutaurM. LairezO. CoudercB. ManniD. KorolchukV.I. Lezoualc’hF. PariniA. Mialet-PerezJ. Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure.Antioxid. Redox Signal.2016251102710.1089/ars.2015.652226959532
    [Google Scholar]
  100. MiceliC. SantinY. ManzellaN. CoppiniR. BertiA. StefaniM. PariniA. Mialet-PerezJ. NedianiC. Oleuropein Aglycone Protects against MAO-A-Induced Autophagy Impairment and Cardiomyocyte Death through Activation of TFEB.Oxid. Med. Cell. Longev.2018201811310.1155/2018/806759229765503
    [Google Scholar]
  101. WangW. JingT. YangX. HeY. WangB. XiaoY. ShangC. ZhangJ. LinR. Hydroxytyrosol regulates the autophagy of vascular adventitial fibroblasts through the SIRT1-mediated signaling pathway.Can. J. Physiol. Pharmacol.2018961889610.1139/cjpp‑2016‑067628772080
    [Google Scholar]
  102. HaraT. FukudaD. GanbaatarB. PhamP.T. AiniK. RahadianA. SutoK. YagiS. KusunoseK. YamadaH. SoekiT. SataM. Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice.Heart Vessels202338111386139410.1007/s00380‑023‑02290‑537462755
    [Google Scholar]
  103. Luque-SierraA. Alvarez-AmorL. KleemannR. MartínF. VarelaL.M. Extra‐Virgin Olive Oil with Natural Phenolic Content Exerts an Anti‐Inflammatory Effect in Adipose Tissue and Attenuates the Severity of Atherosclerotic Lesions in Ldlr −/−.Leiden Mice.Mol. Nutr. Food Res.20186213180029510.1002/mnfr.20180029529763526
    [Google Scholar]
  104. YaoF. YangG. XianY. WangG. ZhengZ. JinZ. XieY. WangW. GuJ. LinR. The protective effect of hydroxytyrosol acetate against inflammation of vascular endothelial cells partly through the SIRT6-mediated PKM2 signaling pathway.Food Funct.20191095789580310.1039/C9FO00586B31461107
    [Google Scholar]
  105. YaoF. JinZ. LvX. ZhengZ. GaoH. DengY. LiuY. ChenL. WangW. HeJ. GuJ. LinR. Hydroxytyrosol Acetate Inhibits Vascular Endothelial Cell Pyroptosis via the HDAC11 Signaling Pathway in Atherosclerosis.Front. Pharmacol.20211265627210.3389/fphar.2021.65627233967800
    [Google Scholar]
  106. FanX.D. WanL.L. DuanM. LuS. HDAC11 deletion reduces fructose-induced cardiac dyslipidemia, apoptosis and inflammation by attenuating oxidative stress injury.Biochem. Biophys. Res. Commun.2018503244445110.1016/j.bbrc.2018.04.09029655790
    [Google Scholar]
  107. ZhouB. ZengS. LiN. YuL. YangG. YangY. ZhangX. FangM. XiaJ. XuY. Angiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury.Arterioscler. Thromb. Vasc. Biol.201737467568410.1161/ATVBAHA.117.30899228153879
    [Google Scholar]
  108. ZhouB. PerelP. MensahG.A. EzzatiM. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension.Nat. Rev. Cardiol.2021181178580210.1038/s41569‑021‑00559‑834050340
    [Google Scholar]
  109. Al GhoraniH. GötzingerF. BöhmM. MahfoudF. Arterial hypertension – Clinical trials update 2021.Nutr. Metab. Cardiovasc. Dis.2022321213110.1016/j.numecd.2021.09.00734690044
    [Google Scholar]
  110. FerraraL.A. RaimondiA.S. d’EpiscopoL. GuidaL. Dello RussoA. MarottaT. Olive oil and reduced need for antihypertensive medications.Arch. Intern. Med.2000160683784210.1001/archinte.160.6.83710737284
    [Google Scholar]
  111. KhayyalM. El-GhazalyM. AbdallahD. NassarN. OkpanyiS. KreuterM.H. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats.Arzneimittelforschung2011521179780210.1055/s‑0031‑129997012489249
    [Google Scholar]
  112. Franco-ÁvilaT. Moreno-GonzálezR. JuanM.E. PlanasJ.M. Table olive elicits antihypertensive activity in spontaneously hypertensive rats.J. Sci. Food Agric.20231031647210.1002/jsfa.1211235804485
    [Google Scholar]
  113. VazquezA. Sanchez-RodriguezE. VargasF. Montoro-MolinaS. RomeroM. Espejo-CalvoJ.A. VilchezP. JaramilloS. Olmo-GarcíaL. Carrasco-PancorboA. de la TorreR. FitoM. CovasM.I. Martínez de VictoriaE. MesaM.D. Cardioprotective Effect of a Virgin Olive Oil Enriched with Bioactive Compounds in Spontaneously Hypertensive Rats.Nutrients2019118172810.3390/nu1108172831357464
    [Google Scholar]
  114. IvanovM. VajicU-J. Mihailovic-StanojevicN. MiloradovicZ. JovovicD. Grujic-MilanovicJ. KaranovicD. DekanskiD. Highly potent antioxidant Olea europaea L. leaf extract affects carotid and renal haemodynamics in experimental hypertension: The role of oleuropein.EXCLI J201817294410.17179/EXCLI2017‑1002
    [Google Scholar]
  115. Reyes-GoyaC. Santana-GarridoÁ. Aguilar-EspejoG. Pérez-CaminoM.C. MateA. VázquezC.M. Daily consumption of wild olive (acebuche) oil reduces blood pressure and ameliorates endothelial dysfunction and vascular remodelling in rats with NG-nitro-L-arginine methyl ester-induced hypertension.Br. J. Nutr.202212871206121910.1017/S000711452200003435000635
    [Google Scholar]
  116. GongF.F. VaitenasI. MalaisrieS.C. MagantiK. Mechanical Complications of Acute Myocardial Infarction.JAMA Cardiol.20216334134910.1001/jamacardio.2020.369033295949
    [Google Scholar]
  117. DavidsonS.M. FerdinandyP. AndreadouI. BøtkerH.E. HeuschG. IbáñezB. OvizeM. SchulzR. YellonD.M. HausenloyD.J. Garcia-DoradoD. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury.J. Am. Coll. Cardiol.2019731899910.1016/j.jacc.2018.09.08630621955
    [Google Scholar]
  118. ZhangH. HuH. ZhaiC. JingL. TianH. Cardioprotective Strategies After Ischemia–Reperfusion Injury.Am. J. Cardiovasc. Drugs202310.1007/s40256‑023‑00614‑437815758
    [Google Scholar]
  119. HausenloyD.J. Garcia-DoradoD. BøtkerH.E. DavidsonS.M. DowneyJ. EngelF.B. JenningsR. LecourS. LeorJ. MadonnaR. OvizeM. PerrinoC. PrunierF. SchulzR. SluijterJ.P.G. Van LaakeL.W. Vinten-JohansenJ. YellonD.M. YtrehusK. HeuschG. FerdinandyP. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.Cardiovasc. Res.2017113656458510.1093/cvr/cvx04928453734
    [Google Scholar]
  120. Orellana-UrzúaS. Briones-ValdiviesoC. ChichiarelliS. SasoL. RodrigoR. Potential role of natural antioxidants in countering reperfusion injury in acute myocardial infarction and ischemic stroke.Antioxidants2023129176010.3390/antiox1209176037760064
    [Google Scholar]
  121. JinH.X. ZhangY.H. GuoR.N. ZhaoS.N. Inhibition of MEK/ERK/STAT3 signaling in oleuropein treatment inhibits myocardial ischemia/reperfusion.Int. J. Mol. Med.20184221034104310.3892/ijmm.2018.367329767261
    [Google Scholar]
  122. TsoumaniM. GeorgoulisA. NikolaouP.E. KostopoulosI.V. DermintzoglouT. PapatheodorouI. ZogaA. EfentakisP. KonstantinouM. GikasE. KostomitsopoulosN. PapapetropoulosA. LazouA. SkaltsounisA.L. HausenloyD.J. TsitsilonisO. TsetiI. Di LisaF. IliodromitisE.K. AndreadouI. Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense.Free Radic. Biol. Med.2021166183210.1016/j.freeradbiomed.2021.02.01133582227
    [Google Scholar]
  123. BukhariI.A. MohamedO.Y. AlmotrefiA.A. SheikhB.Y. NayelO. VohraF. AfzalS. Cardioprotective Effect of Olive Oil Against Ischemia Reperfusion-induced Cardiac Arrhythmia in Isolated Diabetic Rat Heart.Cureus2020122e709510.7759/cureus.709532231891
    [Google Scholar]
  124. RihackovaE. RihacekM. VyskocilovaM. ValikD. ElblL. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma—a review and prospects for the future.Front. Cardiovasc. Med.202310124353110.3389/fcvm.2023.124353137711551
    [Google Scholar]
  125. SheibaniM. AziziY. ShayanM. NezamoleslamiS. EslamiF. FarjooM.H. DehpourA.R. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches.Cardiovasc. Toxicol.202222429231010.1007/s12012‑022‑09721‑135061218
    [Google Scholar]
  126. LanzaO. FerreraA. RealeS. SolfanelliG. PetrungaroM. Tini MelatoG. VolpeM. BattistoniA. New insights on the toxicity on heart and vessels of breast cancer therapies.Med. Sci. (Basel)20221022710.3390/medsci1002002735736347
    [Google Scholar]
  127. GoddardK. SampsonC. BedyS.M. GhadbanR. StilleyJ. Effect of Ketamine on Cardiovascular Function During Procedural Sedation of Adults.Cureus2021133e1422810.7759/cureus.1422833948417
    [Google Scholar]
  128. UtariA.U. DjabirY.Y. PalinggiB.P. A combination of virgin coconut oil and extra virgin olive oil elicits superior protection against doxorubicin cardiotoxicity in rats.Turk J Pharm Sci202219213814410.4274/tjps.galenos.2021.37998
    [Google Scholar]
  129. ElghareebM.M. ElshopakeyG.E. HendamB.M. RezkS. LashenS. Synergistic effects of Ficus Carica extract and extra virgin olive oil against oxidative injury, cytokine liberation, and inflammation mediated by 5-Fluorouracil in cardiac and renal tissues of male albino rats.Environ. Sci. Pollut. Res. Int.20212844558457210.1007/s11356‑020‑10778‑032946057
    [Google Scholar]
  130. KarakoçM.D. Effects of oleuropein on epirubicin and cyclophosphamide combination treatment in rats.Turk J Pharm Sci202118442042910.4274/tjps.galenos.2020.69008
    [Google Scholar]
  131. ÇömezM.S. CellatM. ÖzkanH. BorazanY. AydınT. Gökçekİ. TürkE. GüvençM. ÇakırA. ÖzsoyŞ.Y. Protective effect of oleuropein on ketamine-induced cardiotoxicity in rats.Naunyn Schmiedebergs Arch. Pharmacol.202039391691169910.1007/s00210‑020‑01870‑w32383030
    [Google Scholar]
  132. ZhangL. WenK. ZhangZ. MaC. ZhengN. 3,4-Dihydroxyphenylethanol ameliorates lipopolysaccharide-induced septic cardiac injury in a murine model.Open Life Sci.20211611313132010.1515/biol‑2021‑012535005242
    [Google Scholar]
  133. MogheA. GhareS. LamoreauB. MohammadM. BarveS. McClainC. Joshi-BarveS. Molecular mechanisms of acrolein toxicity: Relevance to human disease.Toxicol. Sci.2015143224225510.1093/toxsci/kfu23325628402
    [Google Scholar]
  134. XuY. WuL. ChenA. XuC. FengQ. Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway.Int. J. Mol. Sci.201819249310.3390/ijms1902049329414845
    [Google Scholar]
  135. Al-ShudiefatA.A.R. LudkeA. MalikA. JassalD.S. BagchiA.K. SingalP.K. Olive oil protects against progression of heart failure by inhibiting remodeling of heart subsequent to myocardial infarction in rats.Physiol. Rep.20221015e1537910.14814/phy2.1537935938295
    [Google Scholar]
  136. JanahmadiZ. NekooeianA.A. MoarefA.R. EmamghoreishiM. Oleuropein attenuates the progression of heart failure in rats by antioxidant and antiinflammatory effects.Naunyn Schmiedebergs Arch. Pharmacol.2017390324525210.1007/s00210‑016‑1323‑627928616
    [Google Scholar]
  137. SchwingshacklL. KrauseM. SchmuckerC. HoffmannG. RückerG. MeerpohlJ.J. Impact of different types of olive oil on cardiovascular risk factors: A systematic review and network meta-analysis.Nutr. Metab. Cardiovasc. Dis.201929101030103910.1016/j.numecd.2019.07.00131378629
    [Google Scholar]
  138. TsartsouE. ProutsosN. CastanasE. KampaM. Network Meta-Analysis of Metabolic Effects of Olive-Oil in Humans Shows the Importance of Olive Oil Consumption With Moderate Polyphenol Levels as Part of the Mediterranean Diet.Front. Nutr.20196610.3389/fnut.2019.0000630809527
    [Google Scholar]
  139. GhobadiS. Hassanzadeh-RostamiZ. MohammadianF. NikfetratA. Ghasemifard Raeisi DehkordiH. FaghihS. Comparison of blood lipid-lowering effects of olive oil and other plant oils: A systematic review and meta‐analysis of 27 randomized placebo‐controlled clinical trials.Crit. Rev. Food Sci. Nutr.201959132110212410.1080/10408398.2018.143834929420053
    [Google Scholar]
  140. KouliG.M. PanagiotakosD.B. KyrouI. MagriplisE. GeorgousopoulouE.N. ChrysohoouC. TsigosC. TousoulisD. PitsavosC. Olive oil consumption and 10-year (2002–2012) cardiovascular disease incidence: The ATTICA study.Eur. J. Nutr.201958113113810.1007/s00394‑017‑1577‑x29124386
    [Google Scholar]
  141. Guasch-FerréM. LiuG. LiY. SampsonL. MansonJ.E. Salas-SalvadóJ. Martínez-GonzálezM.A. StampferM.J. WillettW.C. SunQ. HuF.B. Olive Oil Consumption and Cardiovascular Risk in U.S. Adults.J. Am. Coll. Cardiol.202075151729173910.1016/j.jacc.2020.02.03632147453
    [Google Scholar]
  142. RusA. MolinaF. Martínez-RamírezM.J. Aguilar-FerrándizM.E. CarmonaR. del MoralM.L. Effects of Olive Oil Consumption on Cardiovascular Risk Factors in Patients with Fibromyalgia.Nutrients202012491810.3390/nu1204091832230754
    [Google Scholar]
  143. Donat-VargasC. Sandoval-InsaustiH. PeñalvoJ.L. Moreno IribasM.C. AmianoP. Bes-RastrolloM. Molina-MontesE. Moreno-FrancoB. AgudoA. MayoC.L. LaclaustraM. De La Fuente ArrillagaC. Chirlaque LopezM.D. SánchezM.J. Martínez-GonzalezM.A. Guallar-CastillónP. Olive oil consumption is associated with a lower risk of cardiovascular disease and stroke.Clin. Nutr.202241112213010.1016/j.clnu.2021.11.00234872046
    [Google Scholar]
  144. SalazarH.M. de Deus MendonçaR. LaclaustraM. Moreno-FrancoB. ÅkessonA. Guallar-CastillónP. Donat-VargasC. The intake of flavonoids, stilbenes, and tyrosols, mainly consumed through red wine and virgin olive oil, is associated with lower carotid and femoral subclinical atherosclerosis and coronary calcium.Eur. J. Nutr.20226152697270910.1007/s00394‑022‑02823‑035254491
    [Google Scholar]
  145. Donat-VargasC. Lopez-GarciaE. BanegasJ.R. Martínez-GonzálezM.Á. Rodríguez-ArtalejoF. Guallar-CastillónP. Only virgin type of olive oil consumption reduces the risk of mortality. Results from a Mediterranean population-based cohort.Eur. J. Clin. Nutr.202377222623410.1038/s41430‑022‑01221‑336241725
    [Google Scholar]
  146. PerroneM.A. GualtieriP. GratteriS. AliW. SergiD. MuscoliS. CammaranoA. BernardiniS. Di RenzoL. RomeoF. Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression: A nutrigenomic approach for cardiovascular prevention.J. Cardiovasc. Med. (Hagerstown)201920741942610.2459/JCM.000000000000081631593559
    [Google Scholar]
  147. KhandouziN. ZahedmehrA. NasrollahzadehJ. Effect of polyphenol-rich extra-virgin olive oil on lipid profile and inflammatory biomarkers in patients undergoing coronary angiography: A randomised, controlled, clinical trial.Int. J. Food Sci. Nutr.202172454855810.1080/09637486.2020.184112333121297
    [Google Scholar]
  148. SantosA.S.A.C. RodriguesA.P.S. RosaL.P.S. NollM. SilveiraE.A. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial.Nutrients2020125141310.3390/nu1205141332422956
    [Google Scholar]
  149. Sanchez-RodriguezE. Biel-GlessonS. Fernandez-NavarroJ.R. CallejaM.A. Espejo-CalvoJ.A. Gil-ExtremeraB. de la TorreR. FitoM. CovasM.I. VilchezP. AlcheJ.D. Martinez de VictoriaE. GilA. MesaM.D. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Biomarkers of Oxidative Stress and Inflammation in Healthy Adults: A Randomized Double-Blind Controlled Trial.Nutrients201911356110.3390/nu1103056130845690
    [Google Scholar]
  150. Sanchez-RodriguezE. Lima-CabelloE. Biel-GlessonS. Fernandez-NavarroJ.R. CallejaM.A. RocaM. Espejo-CalvoJ.A. Gil-ExtremeraB. Soria-FloridoM. De la TorreR. FitoM. CovasM.I. AlcheJ.D. Martinez de VictoriaE. GilA. MesaM.D. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial.Nutrients201810562610.3390/nu1005062629772657
    [Google Scholar]
  151. González-RámilaS. MateosR. García-CorderoJ. SeguidoM.A. Bravo-ClementeL. SarriáB. Olive pomace oil versus high oleic sunflower oil and sunflower oil: A comparative study in healthy and cardiovascular risk humans.Foods20221115218610.3390/foods1115218635892771
    [Google Scholar]
  152. González-RámilaS. SarriáB. SeguidoM.A. García-CorderoJ. MateosR. BravoL. Olive pomace oil can improve blood lipid profile: A randomized, blind, crossover, controlled clinical trial in healthy and at-risk volunteers.Eur. J. Nutr.2022•••10.1007/s00394‑022‑03001‑y36153442
    [Google Scholar]
  153. LockyerS. RowlandI. SpencerJ.P.E. YaqoobP. StonehouseW. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial.Eur. J. Nutr.20175641421143210.1007/s00394‑016‑1188‑y26951205
    [Google Scholar]
  154. StornioloC.E. CasillasR. BullóM. CastañerO. RosE. SáezG.T. ToledoE. EstruchR. Ruiz-GutiérrezV. FitóM. Martínez-GonzálezM.A. Salas-SalvadóJ. MitjavilaM.T. MorenoJ.J. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women.Eur. J. Nutr.2017561899710.1007/s00394‑015‑1060‑526450601
    [Google Scholar]
  155. SarapisK. ThomasC.J. HoskinJ. GeorgeE.S. MarxW. MayrH.L. KennedyG. PipingasA. WillcoxJ.C. PrendergastL.A. ItsiopoulosC. MoschonisG. The Effect of High Polyphenol Extra Virgin Olive Oil on Blood Pressure and Arterial Stiffness in Healthy Australian Adults: A Randomized, Controlled, Cross-Over Study.Nutrients2020128227210.3390/nu1208227232751219
    [Google Scholar]
  156. SarapisK. GeorgeE.S. MarxW. MayrH.L. WillcoxJ. EsmailiT. PowellK.L. FolasireO.S. LohningA.E. GargM. ThomasC.J. ItsiopoulosC. MoschonisG. Extra virgin olive oil high in polyphenols improves antioxidant status in adults: A double-blind, randomized, controlled, cross-over study (OLIVAUS).Eur. J. Nutr.20226121073108610.1007/s00394‑021‑02712‑y34716791
    [Google Scholar]
  157. SarapisK. GeorgeE.S. MarxW. MayrH.L. WillcoxJ. PowellK.L. FolasireO.S. LohningA.E. PrendergastL.A. ItsiopoulosC. ThomasC.J. MoschonisG. Extra virgin olive oil improves HDL lipid fraction but not HDL-mediated cholesterol efflux capacity: A double-blind, randomised, controlled, cross-over study (OLIVAUS).Br. J. Nutr.2023130464165010.1017/S000711452200363436377535
    [Google Scholar]
  158. NjikeV.Y. AyetteyR. TreuJ.A. DoughtyK.N. KatzD.L. Post-prandial effects of high-polyphenolic extra virgin olive oil on endothelial function in adults at risk for type 2 diabetes: A randomized controlled crossover trial.Int. J. Cardiol.202133017117610.1016/j.ijcard.2021.01.06233548380
    [Google Scholar]
  159. KarathanasisS.K. FreemanL.A. GordonS.M. RemaleyA.T. The Changing Face of HDL and the Best Way to Measure It.Clin. Chem.201763119621010.1373/clinchem.2016.25772527879324
    [Google Scholar]
  160. LydicT.A. GooY.H. Lipidomics unveils the complexity of the lipidome in metabolic diseases.Clin. Transl. Med.201871e410.1186/s40169‑018‑0182‑929374337
    [Google Scholar]
  161. KhanA.A. MundraP.A. StraznickyN.E. NestelP.J. WongG. TanR. HuynhK. NgT.W. MellettN.A. WeirJ.M. BarlowC.K. AlshehryZ.H. LambertG.W. KingwellB.A. MeikleP.J. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome.Arterioscler. Thromb. Vasc. Biol.201838243844710.1161/ATVBAHA.117.31021229284607
    [Google Scholar]
  162. JovéM. PradasI. NaudíA. Rovira-LlopisS. BañulsC. RochaM. Portero-OtinM. Hernández-MijaresA. VictorV.M. PamplonaR. Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome.Oncotarget2018944522453610.18632/oncotarget.2339329435121
    [Google Scholar]
  163. HoeferI.E. SteffensS. Ala-KorpelaM. BäckM. BadimonL. Bochaton-PiallatM.L. BoulangerC.M. CaligiuriG. DimmelerS. EgidoJ. EvansP.C. GuzikT. KwakB.R. LandmesserU. MayrM. MonacoC. PasterkampG. TuñónJ. WeberC. Novel methodologies for biomarker discovery in atherosclerosis.Eur. Heart J.201536392635264210.1093/eurheartj/ehv23626049157
    [Google Scholar]
  164. Fernández-CastillejoS. PedretA. CatalánÚ. VallsR.M. FarràsM. RubióL. CastañerO. MaciàA. FitóM. MotilvaM.J. CovasM.I. GieraM. RemaleyA.T. SolàR. Virgin Olive Oil Phenolic Compounds Modulate the HDL Lipidome in Hypercholesterolaemic Subjects: A Lipidomic Analysis of the VOHF Study.Mol. Nutr. Food Res.2021659200119210.1002/mnfr.20200119233561904
    [Google Scholar]
  165. HernáezÁ. CastañerO. ElosuaR. PintóX. EstruchR. Salas-SalvadóJ. CorellaD. ArósF. Serra-MajemL. FiolM. Ortega-CalvoM. RosE. Martínez-GonzálezM.Á. de la TorreR. López-SabaterM.C. FitóM. Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals.Circulation2017135763364310.1161/CIRCULATIONAHA.116.02371228193797
    [Google Scholar]
  166. FarràsM. Fernández-CastillejoS. RubióL. ArranzS. CatalánÚ. SubiranaI. RomeroM.P. CastañerO. PedretA. BlanchartG. Muñoz-AguayoD. SchröderH. CovasM.I. de la TorreR. MotilvaM.J. SolàR. FitóM. Phenol-enriched olive oils improve HDL antioxidant content in hypercholesterolemic subjects. A randomized, double-blind, cross-over, controlled trial.J. Nutr. Biochem.2018519910410.1016/j.jnutbio.2017.09.01029125992
    [Google Scholar]
  167. PedretA. Fernández-CastillejoS. VallsR.M. CatalánÚ. RubióL. RomeuM. MaciàA. López de las HazasM.C. FarràsM. GiraltM. MoseleJ.I. Martín-PeláezS. RemaleyA.T. CovasM.I. FitóM. MotilvaM.J. SolàR. Cardiovascular Benefits of Phenol‐Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil and HDL Functionality (VOHF) Study.Mol. Nutr. Food Res.20186216180045610.1002/mnfr.20180045629956886
    [Google Scholar]
  168. FarràsM. ArranzS. CarriónS. SubiranaI. Muñoz-AguayoD. BlanchartG. KoolM. SolàR. MotilvaM.J. Escolà-GilJ.C. RubióL. Fernández-CastillejoS. PedretA. EstruchR. CovasM.I. FitóM. HernáezÁ. CastañerO. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial.Nutrients2019118173210.3390/nu1108173231357534
    [Google Scholar]
  169. KhalilA. FulopT. BerrouguiH. Role of Paraoxonase1 in the Regulation of High-Density Lipoprotein Functionality and in Cardiovascular Protection.Antioxid. Redox Signal.202134319120010.1089/ars.2019.799831969002
    [Google Scholar]
  170. ShenY. DingF.H. SunJ.T. PuL.J. ZhangR.Y. ZhangQ. ChenQ.J. ShenW.F. LuL. Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus.Cardiovasc. Diabetol.20151415210.1186/s12933‑015‑0221‑425964115
    [Google Scholar]
  171. Fernández-CastillejoS. García-HerediaA.I. SolàR. CampsJ. López de la HazasM.C. FarràsM. PedretA. CatalánÚ. RubióL. MotilvaM.J. CastañerO. CovasM.I. VallsR.M. Phenol‐enriched olive oils modify paraoxonase‐related variables: A randomized, crossover, controlled trial.Mol. Nutr. Food Res.20176110160093210.1002/mnfr.20160093228544610
    [Google Scholar]
  172. Tomé-CarneiroJ. CrespoM.C. López de las HazasM.C. VisioliF. DávalosA. Olive oil consumption and its repercussions on lipid metabolism.Nutr. Rev.2020781195296810.1093/nutrit/nuaa01432299100
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314560240806101445
Loading
/content/journals/ctmc/10.2174/0115680266314560240806101445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test