Skip to content
2000
Volume 24, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Oxidative response is a risk factor in the progression of arterial atherosclerosis.

Objective

This research study aimed to examine the effects of oxidative response on atherosclerotic susceptibility as well as the development of arteriosclerosis occlusions of the tibial artery through pro-inflammatory mediator genes in elderly patients with occlusion of coronary arteries.

Methods

We determined that oxidative stress biomarkers (Malondialdehyde-modified Low-density Lipoprotein (MDA-LDL), Oxidized Low-density Lipoprotein (Ox-LDL) as well as Heme Oxygenase-1 (HO-1)] and the expressions of pro-inflammatory mediator genes [Toll-like Receptor 4 (TLR4), Nuclear Factor kappa-B (NF-κB), Myeloid Differentiating factor 88 (MyD88) and Growth Arrest-specific gene 6 (GAS6)] have an impact on the severity of arteriosclerosis occlusions of tibial artery in elderly patients suffering from occlusion of coronary arteries.

Results

Levels of MDA-LDL, Ox-LDL, HO-1, TLR4, NF-κB, MyD88, and GAS6 were increased in the occlusion of tibial arteries + two-vessel coronary occlusion group compared to the CON group and occlusion of tibial arteries + one-vessel coronary occlusion group, respectively ( < 0.001); they were also elevated in occlusion of tibial arteries + multiple-vessel coronary occlusion group compared to occlusion of tibial arteries + one-vessel coronary occlusion group and occlusion of tibial arteries + two-vessel coronary occlusion group, respectively ( < 0.001). This has indicated the key roles of oxidative stress and pro-inflammatory mediator genes in arteriosclerosis occlusions of tibial artery in elderly patients with occlusion of coronary arteries.

Conclusion

Oxidative response may promote the expressions of inflammatory genes and enhance susceptibility to arteriosclerosis occlusions of the tibial artery in elderly patients with chronic total coronary occlusions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266306301240821073416
2024-10-01
2025-06-24
Loading full text...

Full text loading...

References

  1. GusevE. SarapultsevA. Atherosclerosis and inflammation: Insights from the theory of general pathological processes.Int. J. Mol. Sci.2023249791010.3390/ijms2409791037175617
    [Google Scholar]
  2. BattyM. BennettM.R. YuE. The role of oxidative stress in atherosclerosis.Cells20221123384310.3390/cells1123384336497101
    [Google Scholar]
  3. TanH.K. YatesE. LillyK. DhandaA.D. Oxidative stress in alcohol-related liver disease.World J. Hepatol.202012733234910.4254/wjh.v12.i7.33232821333
    [Google Scholar]
  4. BocchiaM. GalimbertiS. AprileL. SicuranzaA. GozziniA. SantilliF. AbruzzeseE. BaratèC. ScappiniB. FontanelliG. TrawinskaM.M. DefinaM. GozzettiA. BosiA. PetriniM. PuccettiL. Genetic predisposition and induced pro-inflammatory/pro-oxidative status may play a role in increased atherothrombotic events in nilotinib treated chronic myeloid leukemia patients.Oncotarget2016744723117232110.18632/oncotarget.1110027527867
    [Google Scholar]
  5. HouJ.S. WangC.H. LaiY.H. KuoC.H. LinY.L. HsuB.G. TsaiJ.P. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients.Nutrients2020127216010.3390/nu1207216032708072
    [Google Scholar]
  6. MatsuoT. IwadeK. HirataN. YamashitaM. IkegamiH. TanakaN. AosakiM. KasanukiH. Improvement of arterial stiffness by the antioxidant and anti-inflammatory effects of short-term statin therapy in patients with hypercholesterolemia.Heart Vessels200520181210.1007/s00380‑004‑0793‑515700196
    [Google Scholar]
  7. KattoorA.J. GoelA. MehtaJ.L. LOX-1: Regulation, signaling and its role in atherosclerosis.Antioxidants20198721810.3390/antiox807021831336709
    [Google Scholar]
  8. PangJ.L. WangJ.W. HuP.Y. JiangJ.S. YuC. HOTAIR alleviates ox-LDL-induced inflammatory response in Raw264.7 cells via inhibiting NF-κB pathway.Eur. Rev. Med. Pharmacol. Sci.201822206991699810.26355/eurrev_201810_1617030402866
    [Google Scholar]
  9. LiZ. WuF. XuD. ZhiZ. XuG. Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions.Biomed. Pharmacother.20191092014202110.1016/j.biopha.2018.08.15930551457
    [Google Scholar]
  10. MalfaG.A. TomaselloB. AcquavivaR. GenoveseC. La MantiaA. CammarataF.P. RagusaM. RenisM. Di GiacomoC. Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and derroptosis cell death in human colon cancer cells.Int. J. Mol. Sci.20192011272310.3390/ijms2011272331163602
    [Google Scholar]
  11. BaiT. LiM. LiuY. QiaoZ. WangZ. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell.Free Radic. Biol. Med.20201609210210.1016/j.freeradbiomed.2020.07.02632768568
    [Google Scholar]
  12. YangK. LiuX. LiuY. WangX. CaoL. ZhangX. XuC. ShenW. ZhouT. DC-SIGN and Toll-like receptor 4 mediate oxidized low-density lipoprotein-induced inflammatory responses in macrophages.Sci. Rep.201771329610.1038/s41598‑017‑03740‑728607410
    [Google Scholar]
  13. Kanigur SultuybekG. SoydasT. YenmisG. NF ‐κB as the mediator of metformin’s effect on ageing and ageing‐related diseases.Clin. Exp. Pharmacol. Physiol.201946541342210.1111/1440‑1681.1307330754072
    [Google Scholar]
  14. ChenT. LuoW. WuG. WuL. HuangS. LiJ. WangJ. HuX. HuangW. LiangG. A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages.Toxicol. Appl. Pharmacol.2019370445510.1016/j.taap.2019.03.01230880215
    [Google Scholar]
  15. SunbulM. CagmanZ. GerinF. OzgenZ. DurmusE. SeckinD. AhmadS. UrasF. AgirbasliM. Growth arrest-specific 6 and cardiometabolic risk factors in patients with psoriasis.Cardiovasc. Ther.2015332566110.1111/1755‑5922.1211225752901
    [Google Scholar]
  16. TjwaM. MoonsL. LutgensE. Pleiotropic role of growth arrest-specific gene 6 in atherosclerosis.Curr. Opin. Lipidol.200920538639210.1097/MOL.0b013e328330982e19644365
    [Google Scholar]
  17. MirT. UllahW. SattarY. Al-KhadraY. DarmochF. PachaH.M. AlraiesM.C. Outcomes of percutaneous intervention in in-stent versus de-novo chronic total occlusion: A meta-analysis.Expert Rev. Cardiovasc. Ther.2020181182783310.1080/14779072.2020.181302632842807
    [Google Scholar]
  18. BulsN. de BruckerY. AerdenD. DevosH. Van GompelG. BoonenP.T. NieboerK. LeinerT. de MeyJ. Improving the diagnosis of peripheral arterial disease in below-the-knee arteries by adding time-resolved CT scan series to conventional run-off CT angiography. First experience with a 256-slice CT scanner.Eur. J. Radiol.201911013614110.1016/j.ejrad.2018.11.03030599850
    [Google Scholar]
  19. KangJ. ChunE.J. ParkH.J. ChoY.S. ParkJ.J. KangS.H. ChoY.J. YoonY.E. OhI.Y. YoonC.H. SuhJ.W. YounT.J. ChaeI.H. ChoiD.J. Clinical and computed tomography angiographic predictors of coronary lesions that later progressed to chronic total occlusion.JACC Cardiovasc. Imaging201912112196220610.1016/j.jcmg.2018.12.02630772219
    [Google Scholar]
  20. ElkanA.C. SjöbergB. KolsrudB. RingertzB. HafströmI. FrostegårdJ. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: A randomized study.Arthritis Res. Ther.2008102R3410.1186/ar238818348715
    [Google Scholar]
  21. KishimotoY. SasakiK. SaitaE. NikiH. OhmoriR. KondoK. MomiyamaY. Plasma heme oxygenase-1 levels and carotid atherosclerosis.Stroke20184992230223210.1161/STROKEAHA.118.02225630354985
    [Google Scholar]
  22. LitangZ. HongW. WeiminZ. XiaohuiT. QianS. Serum NF-κBp65, TLR4 as biomarker for diagnosis of preeclampsia.Open Med. (Wars.)201712139940210.1515/med‑2017‑005729318184
    [Google Scholar]
  23. UysalP. SimsekG. DurmusS. SozerV. AksanH. YurtS. CuhadarogluC. KosarF. GelisgenR. UzunH. Evaluation of plasma antimicrobial peptide LL-37 and nuclear factor-kappaB levels in stable chronic obstructive pulmonary disease.Int. J. Chron. Obstruct. Pulmon. Dis.20191432133010.2147/COPD.S18560230774329
    [Google Scholar]
  24. YangY. HanC. GuoL. GuanQ. High expression of the HMGB1–TLR4 axis and its downstream signaling factors in patients with Parkinson’s disease and the relationship of pathological staging.Brain Behav.201884e0094810.1002/brb3.94829670828
    [Google Scholar]
  25. LiX GuoD HuY ChenY Evaluation of Oxidative Status in Elderly Patients with Multiple Cerebral Infarctions and Multiple Chronic Total Coronary Occlusions.Dis Markers20222022208399010.1155/2022/2083990
    [Google Scholar]
  26. MazziottaC. PellieloG. TognonM. MartiniF. RotondoJ.C. Significantly low levels of IgG antibodies against oncogenic merkel cell polyomavirus in sera from females affected by spontaneous abortion.Front. Microbiol.20211278999110.3389/fmicb.2021.78999134970247
    [Google Scholar]
  27. LeoneA. LandiniL. LeoneA. What is tobacco smoke? Sociocultural dimensions of the association with cardiovascular risk.Curr. Pharm. Des.201016232510251710.2174/13816121079206294820550508
    [Google Scholar]
  28. PriceR.S. KasnerS.E. Hypertension and hypertensive encephalopathy.Handb. Clin. Neurol.201411916116710.1016/B978‑0‑7020‑4086‑3.00012‑624365295
    [Google Scholar]
  29. DanK. ShinodaA. TsuzuraD. Garcia-GarciaH.M. Triple coronary vessel disease including double vessel chronic total occlusion: Quantitative flow ratio minimizes injury of the single vessel that provides collaterals.Cardiol. J.201926440740910.5603/CJ.2019.007531452182
    [Google Scholar]
  30. NakajimaK. TamakiN. KuwabaraY. KawanoM. MatsunariI. TakiJ. NishimuraS. YamashinaA. IshidaY. TomoikeH. Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: A multi-center cohort study in Japan.Eur. J. Nucl. Med. Mol. Imaging200835112038204810.1007/s00259‑008‑0838‑618504576
    [Google Scholar]
  31. ChoiJ.K. LymY.L. MoonJ.W. ShinH.J. ChoB. Diabetes mellitus and early age-related macular degeneration.Arch. Ophthalmol.2011129219619910.1001/archophthalmol.2010.35521320966
    [Google Scholar]
  32. KlonerR.A. ChaitmanB. Angina and its management.J. Cardiovasc. Pharmacol. Ther.201722319920910.1177/107424841667973328196437
    [Google Scholar]
  33. PatelM.R. PetersonE.D. DaiD. BrennanJ.M. RedbergR.F. AndersonH.V. BrindisR.G. DouglasP.S. Low diagnostic yield of elective coronary angiography.N. Engl. J. Med.20103621088689510.1056/NEJMoa090727220220183
    [Google Scholar]
  34. MundyL.M. LeetT.L. DarstK. SchnitzlerM.A. DunaganW.C. Early mobilization of patients hospitalized with community-acquired pneumonia.Chest2003124388388910.1378/chest.124.3.88312970012
    [Google Scholar]
  35. RostronB. Alcohol consumption and mortality risks in the USA.Alcohol Alcohol.201247333433910.1093/alcalc/agr17122278318
    [Google Scholar]
  36. VlaeyenE. CoussementJ. LeysensG. Van der ElstE. DelbaereK. CambierD. DenhaerynckK. GoemaereS. WertelaersA. DobbelsF. DejaegerE. MilisenK. Characteristics and effectiveness of fall prevention programs in nursing homes: A systematic review and meta-analysis of randomized controlled trials.J. Am. Geriatr. Soc.201563221122110.1111/jgs.1325425641225
    [Google Scholar]
  37. FrancisN. RaoS. BlanchardC. SanthakumarA. Black sorghum phenolic extract regulates expression of genes associated with oxidative stress and inflammation in human endothelial cells.Molecules20192418332110.3390/molecules2418332131547324
    [Google Scholar]
  38. KaidaH. TaharaN. TaharaA. HondaA. NittaY. IgataS. IshibashiM. YamagishiS. FukumotoY. Positive correlation between malondialdehyde-modified low-density lipoprotein cholesterol and vascular inflammation evaluated by 18F-FDG PET/CT.Atherosclerosis2014237240440910.1016/j.atherosclerosis.2014.10.00125463065
    [Google Scholar]
  39. Lopes-VirellaM.F. VirellaG. Modified LDL immune complexes and cardiovascular disease.Curr. Med. Chem.20192691680169210.2174/092986732566618052411442929792135
    [Google Scholar]
  40. WangY. CheJ. ZhaoH. TangJ. ShiG. Osthole alleviates oxidized low-density lipoprotein-induced vascular endothelial injury through suppression of transforming growth factor-β1/Smad pathway.Int. Immunopharmacol.20186537338110.1016/j.intimp.2018.10.03130380512
    [Google Scholar]
  41. TsiantoulasD. GruberS. BinderC.J. B-1 cell immunoglobulin directed against oxidation-specific epitopes.Front. Immunol.2013341510.3389/fimmu.2012.0041523316200
    [Google Scholar]
  42. WazaA.A. HamidZ. AliS. BhatS.A. BhatM.A. A review on heme oxygenase-1 induction: Is it a necessary evil.Inflamm. Res.201867757958810.1007/s00011‑018‑1151‑x29693710
    [Google Scholar]
  43. LiongS. LappasM. The stress-responsive heme oxygenase (HO)-1 isoenzyme is increased in labouring myometrium where it regulates contraction-associated proteins.Am. J. Reprod. Immunol.2015741627610.1111/aji.1236625656973
    [Google Scholar]
  44. YangQ. YuX.J. SuQ. YiQ.Y. SongX.A. ShiX.L. LiH.B. QiJ. ZhuG.Q. KangY.M. Blockade of c-Src within the paraventricular nucleus attenuates inflammatory cytokines and oxidative stress in the mechanism of the TLR4 signal pathway in salt-induced hypertension.Neurosci. Bull.202036438539510.1007/s12264‑019‑00435‑z31641986
    [Google Scholar]
  45. BinderC.J. Papac-MilicevicN. WitztumJ.L. Innate sensing of oxidation-specific epitopes in health and disease.Nat. Rev. Immunol.201616848549710.1038/nri.2016.6327346802
    [Google Scholar]
  46. WangN. MaY. LiuZ. LiuL. YangK. WeiY. LiuY. ChenX. SunX. WenD. Hydroxytyrosol prevents PM2.5-induced adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a murine model.Free Radic. Biol. Med.201914139340710.1016/j.freeradbiomed.2019.07.00231279968
    [Google Scholar]
  47. ZussoM. LunardiV. FranceschiniD. PagettaA. LoR. StifaniS. FrigoA.C. GiustiP. MoroS. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway.J. Neuroinflammation201916114810.1186/s12974‑019‑1538‑931319868
    [Google Scholar]
  48. Di PadovaF. QuesniauxV.F.J. RyffelB. MyD88 as a therapeutic target for inflammatory lung diseases.Expert Opin. Ther. Targets201822540140810.1080/14728222.2018.146413929658361
    [Google Scholar]
  49. Geiger-MaorA. LeviI. Even-RamS. SmithY. BowdishD.M. NussbaumG. RachmilewitzJ. Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling.J. Immunol.201218831234124410.4049/jimmunol.110174022219328
    [Google Scholar]
  50. ZhuG. ChengZ. LinC. HoffmanR.M. HuangY. SinghS.R. ZhengW. YangS. YeJ. MyD88 regulates LPS-induced NF-ĸB/MAPK cytokines and promotes inflammation and malignancy in colorectal cancer cells.Cancer Genomics Proteomics201916640941910.21873/cgp.2014531659096
    [Google Scholar]
  51. LeeI.J. Growth arrest-specific gene 6 (Gas6) levels are elevated in patients with chronic renal failure.ephrol Dial Transplant2012271141667210.1093/ndt/gfs337
    [Google Scholar]
  52. SoltaniN. MarandiS.M. KazemiM. EsmaeilN. Combined all-extremity high-intensity interval training regulates immunometabolic responses through toll-like receptor 4 adaptors and A20 downregulation in obese young females.Obes. Facts202013341543110.1159/00050913232615574
    [Google Scholar]
  53. HoekstraK.A. GodinD.V. ChengK.M. Protective role of heme oxygenase in the blood vessel wall during atherogenesis.Biochem. Cell Biol.200482335135910.1139/o04‑00615181468
    [Google Scholar]
  54. VirellaG. WilsonK. ElkesJ. HammadS.M. RajabH.A. LiY. ChassereauC. HuangY. Lopes-VirellaM. Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages.Clin. Immunol.20181871910.1016/j.clim.2017.06.01028689783
    [Google Scholar]
  55. LeiY. XuT. SunW. WangX. GaoM. LinH. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway.Fish Shellfish Immunol.202314010899510.1016/j.fsi.2023.10899537573970
    [Google Scholar]
  56. SpychalowiczA. WilkG. ŚliwaT. LudewD. GuzikT.J. Novel therapeutic approaches in limiting oxidative stress and inflammation.Curr. Pharm. Biotechnol.201213132456246610.2174/138920101120806245622280420
    [Google Scholar]
  57. DavìG. FalcoA. Oxidant stress, inflammation and atherogenesis.Lupus200514976076410.1191/0961203305lu2216oa16218483
    [Google Scholar]
  58. DoniaT. KhamisA. Management of oxidative stress and inflammation in cardiovascular diseases: Mechanisms and challenges.Environ. Sci. Pollut. Res. Int.20212826341213415310.1007/s11356‑021‑14109‑933963999
    [Google Scholar]
  59. OdegaardA.O. JacobsD.R.Jr SanchezO.A. GoffD.C.Jr ReinerA.P. GrossM.D. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes.Cardiovasc. Diabetol.20161515110.1186/s12933‑016‑0369‑627013319
    [Google Scholar]
  60. Dziegielewska-GesiakS. Metabolic syndrome in an aging society-role of oxidant-antioxidant imbalance and inflammation markers in disentangling atherosclerosis.Clin. Interv. Aging2021161057107010.2147/CIA.S30698234135578
    [Google Scholar]
  61. PomacuM. TrașcăM. PădureanuV. BugăA. AndreiA. StănciulescuE. BanițăI. RădulescuD. PisoschiC. Interrelation of inflammation and oxidative stress in liver cirrhosis.Exp. Ther. Med.202121660210.3892/etm.2021.1003433936259
    [Google Scholar]
  62. FranzeckF.C. HofD. SpeschaR.D. HasunM. AkhmedovA. SteffelJ. ShiY. CosentinoF. TannerF.C. von EckardsteinA. MaierW. LüscherT.F. WyssC.A. CamiciG.G. Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease.Atherosclerosis2012220128228610.1016/j.atherosclerosis.2011.10.03522100252
    [Google Scholar]
  63. MitreaD.R. MalkeyR. FlorianT.L. FilipA. ClichiciS. BidianC. MoldovanR. HoteiucO.A. ToaderA.M. BaldeaI. Daily oral administration of chlorogenic acid prevents the experimental carrageenan-induced oxidative stress.J. Physiol. Pharmacol.2020711110.26402/jpp.2020.1.0432350149
    [Google Scholar]
  64. HajamY.A. RaniR. GanieS.Y. SheikhT.A. JavaidD. QadriS.S. PramodhS. AlsulimaniA. AlkhananiM.F. HarakehS. HussainA. HaqueS. ReshiM.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives.Cells202211355210.3390/cells1103055235159361
    [Google Scholar]
  65. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/841676328819546
    [Google Scholar]
  66. TönniesE. TrushinaE. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.J. Alzheimers Dis.20175741105112110.3233/JAD‑16108828059794
    [Google Scholar]
  67. van der PolA van GilstWH VoorsAA van der MeerP Treating oxidative stress in heart failure: Past, present and future.Eur J Heart Fail201921442543510.1002/ejhf.1320
    [Google Scholar]
  68. DaenenK. AndriesA. MekahliD. Van SchepdaelA. JouretF. BammensB. Oxidative stress in chronic kidney disease.Pediatr. Nephrol.201934697599110.1007/s00467‑018‑4005‑430105414
    [Google Scholar]
  69. KattoorA.J. PothineniN.V.K. PalagiriD. MehtaJ.L. Oxidative stress in atherosclerosis.Curr. Atheroscler. Rep.201719114210.1007/s11883‑017‑0678‑628921056
    [Google Scholar]
  70. SenonerT. DichtlW. Oxidative stress in cardiovascular diseases: Still a therapeutic target?Nutrients2019119209010.3390/nu1109209031487802
    [Google Scholar]
  71. MingS. TianJ. MaK. PeiC. LiL. WangZ. FangZ. LiuM. DongH. LiW. ZengJ. PengY. GaoX. Oxalate-induced apoptosis through ERS-ROS–NF-κB signalling pathway in renal tubular epithelial cell.Mol. Med.20222818810.1186/s10020‑022‑00494‑535922749
    [Google Scholar]
  72. WangY. WangL. WenX. HaoD. ZhangN. HeG. JiangX. NF-κB signaling in skin aging.Mech. Ageing Dev.201918411116010.1016/j.mad.2019.11116031634486
    [Google Scholar]
  73. KorbeckiJ. BobińskiR. DutkaM. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors.Inflamm. Res.201968644345810.1007/s00011‑019‑01231‑130927048
    [Google Scholar]
  74. XuH. ZengQ. ZouK. HuangH. ChenJ. WangP. YuanW. XiaoL. TongP. JinH. Glucocorticoid-induced activation of NOX/ROS/NF-κB signaling in MSCs contributes to the development of GONFH.Apoptosis2023289-101332134510.1007/s10495‑023‑01860‑237306805
    [Google Scholar]
  75. Marino-MerloF. PapaianniE. FrezzaC. PedatellaS. De NiscoM. MacchiB. GrelliS. MastinoA. NF-kappa B-dependent production of ROS and restriction of HSV-1 infection in U937 monocytic cells.Viruses201911542810.3390/v1105042831083280
    [Google Scholar]
  76. Sá-PessoaJ. López-MontesinoS. PrzybyszewskaK. Rodríguez-EscuderoI. MarshallH. OvaA. SchroederG.N. BarabasP. MolinaM. CurtisT. CidV.J. BengoecheaJ.A. A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection.Nat. Commun.202314187110.1038/s41467‑023‑36629‑336797302
    [Google Scholar]
  77. CaiJ. LiuP. ZhangX. ShiB. JiangY. QiaoS. LiuQ. FangC. ZhangZ. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.).Fish Shellfish Immunol.202313910892910.1016/j.fsi.2023.10892937414307
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266306301240821073416
Loading
/content/journals/ctmc/10.2174/0115680266306301240821073416
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test