Skip to content
2000
image of Screening of Herbs with Potential Modulation of NLRP3 Inflammasomes for Acute Liver Failure: A Study Based on the Herb-Compound-Target Network and the ssGSEA Algorithm

Abstract

Objective

NLRP3 inflammasomes are considered to be key factors in the pathogenesis of Acute Liver Failure (ALF). Some Traditional Chinese Medicines (TCMs) have shown protective and therapeutic effects against ALF by inhibiting NLRP3 inflammasomes. However, the inhibitory effects of most TCMs on ALF remain to be further elucidated. This study aimed to screen potential herbs that can treat ALF based on the inhibition of NLRP3 inflammasomes.

Methods

Initially, we constructed the target set for 502 herbs. Subsequently, based on the target set and the gene set related to the NLRP3 inflammasome, using the ssGSEA algorithm, we evaluated herb scores and NLRP3 scores in the ALF expression matrix and performed a preliminary herb screening based on score correlations. Through bioinformatics approaches, we identified the key targets for candidate herbs and determined core herbs based on the herb-compound-target network. Furthermore, molecular docking and molecular biology methods validated the screening results of the herbs.

Results

A total of 18 crucial targets associated with the inhibition of the NLRP3 inflammasome were identified, which included ALDH2, HMOX1, and VEGFA. Subsequently, based on these key targets, a set of 10 primary herbs was chosen, notably Qinghao, Duzhong, and Gouteng. Moreover, the results were verified through molecular docking and molecular dynamic simulation.

Conclusion

Ten key herbs have been identified as potential inhibitors of the NLRP3 inflammasome, offering insights into ALF therapy for drug development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266331775241024064136
2024-11-08
2025-01-18
Loading full text...

Full text loading...

References

  1. Tujios S. Stravitz R.T. Lee W.M. Management of acute liver failure: Update 2022. Semin. Liver Dis. 2022 42 3 362 378 10.1055/s‑0042‑1755274 36001996
    [Google Scholar]
  2. Maiwall R. Kulkarni A.V. Arab J.P. Piano S. Acute liver failure. Lancet 2024 404 10454 789 802 10.1016/S0140‑6736(24)00693‑7 39098320
    [Google Scholar]
  3. Stravitz R.T. Fontana R.J. Karvellas C. Durkalski V. McGuire B. Rule J.A. Tujios S. Lee W.M. Future directions in acute liver failure. Hepatology 2023 78 4 1266 1289 10.1097/HEP.0000000000000458 37183883
    [Google Scholar]
  4. Ostapowicz G. Fontana R.J. Schiødt F.V. Larson A. Davern T.J. Han S.H. McCashland T.M. Shakil A.O. Hay J.E. Hynan L. Crippin J.S. Blei A.T. Samuel G. Reisch J. Lee W.M. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 2002 137 12 947 954 10.7326/0003‑4819‑137‑12‑200212170‑00007 12484709
    [Google Scholar]
  5. Moreau R. Tonon M. Krag A. Angeli P. Berenguer M. Berzigotti A. Fernandez J. Francoz C. Gustot T. Jalan R. Papp M. Trebicka J. EASL clinical practice guidelines on acute-on-chronic liver failure. J. Hepatol. 2023 79 2 461 491 10.1016/j.jhep.2023.04.021 37364789
    [Google Scholar]
  6. Bernal W. Wendon J. Acute liver failure. N. Engl. J. Med. 2013 369 26 2525 2534 10.1056/NEJMra1208937 24369077
    [Google Scholar]
  7. Leikin J.B. Current and prospective therapies for acute liver failure. Dis. Mon. 2018 64 12 492 10.1016/j.disamonth.2018.10.001 30551743
    [Google Scholar]
  8. Sowa J.P. Gerken G. Canbay A. Acute liver failure - it’s just a matter of cell death. Dig. Dis. 2016 34 4 423 428 10.1159/000444557 27170397
    [Google Scholar]
  9. Sutti S. Tacke F. Liver inflammation and regeneration in drug-induced liver injury: Sex matters! Clin. Sci. 2018 132 5 609 613 10.1042/CS20171313 29545336
    [Google Scholar]
  10. Campo J.A.D. Gallego P. Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J. Hepatol. 2018 10 1 1 7 10.4254/wjh.v10.i1.1 29399273
    [Google Scholar]
  11. Wu X. Dong L. Lin X. Li J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Front. Immunol. 2017 8 1728 10.3389/fimmu.2017.01728 29312290
    [Google Scholar]
  12. Szabo G. Petrasek J. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 2015 12 7 387 400 10.1038/nrgastro.2015.94 26055245
    [Google Scholar]
  13. Zhan C. Lin G. Huang Y. Wang Z. Zeng F. Wu S. A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration. Biomaterials 2021 268 120573 10.1016/j.biomaterials.2020.120573 33260093
    [Google Scholar]
  14. Woolbright B.L. Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J. Hepatol. 2017 66 4 836 848 10.1016/j.jhep.2016.11.017 27913221
    [Google Scholar]
  15. Han M. Li S. Li L. Verapamil inhibits early acute liver failure through suppressing the NLRP3 inflammasome pathway. J. Cell. Mol. Med. 2021 25 13 5963 5975 10.1111/jcmm.16357 34031983
    [Google Scholar]
  16. Lin H. Wang X. Liu M. Huang M. Shen Z. Feng J. Yang H. Li Z. Gao J. Ye X. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology. Phytother. Res. 2021 35 5 2651 2664 10.1002/ptr.7012 33452734
    [Google Scholar]
  17. Su H. Lei H. Cao L. Zhou X. Liu Y. Li Y. Yan L. Lv S. Wang Y. Guan Q. Phase preparation of xiao-chai-hu decoction and its pharmacodynamics of acute liver injury. Curr. Top. Med. Chem. 2024 24 24 2129 2140 10.2174/0115680266299709240722054039 39108107
    [Google Scholar]
  18. Wang X. Lu H. Wen L. Chen H. Wang X. Li L. Lin H.J.N.P.C. Identification of potential active ingredients and mechanisms of cattail pollen for treating infertile patients with endometriosis based on bioinformatics and molecular docking. Nat. Prod. Commun. 2022 17 7 1934578X221114734 10.1177/1934578X221114734
    [Google Scholar]
  19. Zou J. Wang S.P. Wang Y.T. Wan J.B. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol. Res. 2021 164 105388 10.1016/j.phrs.2020.105388 33359314
    [Google Scholar]
  20. de Carvalho Ribeiro M. Szabo G. Role of the inflammasome in liver disease. Annu. Rev. Pathol. 2022 17 345 365 10.1146/annurev‑pathmechdis‑032521‑102529
    [Google Scholar]
  21. Mu W. Xu G. Wang Z. Li Q. Sun S. Qin Q. Li Z. Shi W. Dai W. Zhan X. Wang J. Bai Z. Xiao X. Tricyclic antidepressants induce liver inflammation by targeting NLRP3 inflammasome activation. Cell Commun. Signal. 2023 21 1 123 10.1186/s12964‑023‑01128‑x 37231437
    [Google Scholar]
  22. Ji Y. Si W. Zeng J. Huang L. Huang Z. Zhao L. Liu J. Zhu M. Kuang W. Niujiaodihuang Detoxify Decoction inhibits ferroptosis by enhancing glutathione synthesis in acute liver failure models. J. Ethnopharmacol. 2021 279 114305 10.1016/j.jep.2021.114305 34129898
    [Google Scholar]
  23. Qian A. Zhou L. Shi D. Pang Z. Lu B. Portulaca oleracea alleviates CCl4-induced acute liver injury by regulating hepatic S100A8 and S100A9. Chin. Herb. Med. 2023 15 1 110 116 10.1016/j.chmed.2022.05.004 36875440
    [Google Scholar]
  24. Lin J. Ling Q. Yan L. Chen B. Wang F. Qian Y. Gao Y. Wang Q. Wu H. Sun X. Shi Y. Kong X. Ancient herbal formula mahuang lianqiao chixiaodou decoction protects acute and acute-on-chronic liver failure via inhibiting von willebrand factor signaling. Cells 2022 11 21 3368 10.3390/cells11213368 36359765
    [Google Scholar]
  25. Li W. Yang K. Li B. Wang Y. Liu J. Chen D. Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front. Pharmacol. 2022 13 1060104 10.3389/fphar.2022.1060104 36506567
    [Google Scholar]
  26. Liu H. Zhan X. Xu G. Wang Z. Li R. Wang Y. Qin Q. Shi W. Hou X. Yang R. Wang J. Xiao X. Bai Z. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases. Pharmacol. Res. 2021 164 105384 10.1016/j.phrs.2020.105384 33352229
    [Google Scholar]
  27. Jin X. Fu W. Zhou J. Shuai N. Yang Y. Wang B. Oxymatrine attenuates oxidized low‑density lipoprotein‑induced HUVEC injury by inhibiting NLRP3 inflammasome‑mediated pyroptosis via the activation of the SIRT1/Nrf2 signaling pathway. Int. J. Mol. Med. 2021 48 4 187 10.3892/ijmm.2021.5020 34368883
    [Google Scholar]
  28. Liu T. Xu G. Liang L. Xiao X. Zhao Y. Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front. Pharmacol. 2022 13 967594 10.3389/fphar.2022.967594 36160411
    [Google Scholar]
  29. Ou H. Fan Y. Guo X. Lao Z. Zhu M. Li G. Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front. Cell. Infect. Microbiol. 2023 13 1139998 10.3389/fcimb.2023.1139998 37113134
    [Google Scholar]
  30. Ou H. Ye X. Huang H. Cheng H. Constructing a screening model to obtain the functional herbs for the treatment of active ulcerative colitis based on herb-compound-target network and immuno-infiltration analysis. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 4693 4711 10.1007/s00210‑023‑02900‑z 38117365
    [Google Scholar]
  31. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  32. Nissim O. Melis M. Diaz G. Kleiner D.E. Tice A. Fantola G. Zamboni F. Mishra L. Farci P. Liver regeneration signature in hepatitis B virus (HBV)-associated acute liver failure identified by gene expression profiling. PLoS One 2012 7 11 e49611 10.1371/journal.pone.0049611 23185381
    [Google Scholar]
  33. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  34. Langfelder P. Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  35. Ju M. Bi J. Wei Q. Jiang L. Guan Q. Zhang M. Song X. Chen T. Fan J. Li X. Wei M. Zhao L. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief. Bioinform. 2021 22 4 bbaa345 10.1093/bib/bbaa345 33212483
    [Google Scholar]
  36. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  37. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome BMC Syst Biol. 2014 8 Suppl 4 S11 10.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  38. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  39. Wang X. Lin Q. Shen M. Lin H. Feng J. Peng L. Huang M. Zhan X. Chen Z. Ma T.J.N.P.C. Identification of the ingredients and mechanisms of Curcumae Radix for depression based on network pharmacology and molecular docking. Nat. Prod. Commun. 2021 16 5 1934578X211016643 10.1177/1934578X211016643
    [Google Scholar]
  40. Landrum G. Rdkit documentation Release 1 2013 4 1 79
    [Google Scholar]
  41. Salentin S. Schreiber S. Haupt V.J. Adasme M.F. Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015 43 W1 W443 W447 10.1093/nar/gkv315 25873628
    [Google Scholar]
  42. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  43. Sayaf K. Battistella S. Russo F.P. NLRP3 Inflammasome in Acute and Chronic Liver Diseases. Int. J. Mol. Sci. 2024 25 8 4537 10.3390/ijms25084537 38674122
    [Google Scholar]
  44. Bai Y. Zhou R. Xie X. Zhu A. Nan Y. Wu T. Hu X. Cao Z. Ju D. Fan J. A Novel Bifunctional Fusion Protein (Anti-IL-17A-sST2) Protects against Acute Liver Failure, Modulating the TLR4/MyD88 Pathway and NLRP3 Inflammasome Activation. Biomedicines 2024 12 5 1118 10.3390/biomedicines12051118 38791080
    [Google Scholar]
  45. Xiao T. Cui Y. Ji H. Yan L. Pei D. Qu S. Baicalein attenuates acute liver injury by blocking NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 2021 534 212 218 10.1016/j.bbrc.2020.11.109 33272570
    [Google Scholar]
  46. Chen F. Liu Y. Li Q. Wang F. Inhibition of hepatic NLRP3 inflammasome ameliorates non-alcoholic steatohepatitis/hepatitis B - induced hepatic injury. Clin. Res. Hepatol. Gastroenterol. 2023 47 1 102056 10.1016/j.clinre.2022.102056 36427780
    [Google Scholar]
  47. Wan P. Yang G. Cheng Q. Zhang X. Yue Z. Li M. Liu C. Yi Q. Jia Y. Liu J. Xing X. Sun B. Li Y. The role of inflammasome in chronic viral hepatitis. Front. Cell. Infect. Microbiol. 2024 14 1382029 10.3389/fcimb.2024.1382029 38817443
    [Google Scholar]
  48. Li Y. Yu P. Kessler A.L. Shu J. Liu X. Liang Z. Liu J. Li Y. Li P. Wang L. Wang Y. Ma Z. Liu A. Wang L. Bruno M.J. de Man R.A. Peppelenbosch M.P. Buschow S.I. Wang L. Wang Y. Pan Q. Hepatitis E virus infection activates NOD‐like receptor family pyrin domain‐containing 3 inflammasome antagonizing interferon response but therapeutically targetable. Hepatology 2022 75 1 196 212 10.1002/hep.32114 34392558
    [Google Scholar]
  49. Xiaoyu H. Si H. Li S. Wang W. Guo J. Li Y. Cao Y. Fu Y. Zhang N. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 2017 52 185 190 10.1016/j.intimp.2017.09.007 28938188
    [Google Scholar]
  50. Kim S.J. Lee S.M. NLRP3 inflammasome activation in d-galactosamine and lipopolysaccharide-induced acute liver failure: Role of heme oxygenase-1. Free Radic. Biol. Med. 2013 65 997 1004 10.1016/j.freeradbiomed.2013.08.178 23994575
    [Google Scholar]
  51. Gao X. Liu S. Tan L. Ding C. Fan W. Gao Z. Li M. Tang Z. Wu Y. Xu L. Yan L. Luo Y. Song S. Estrogen receptor α regulates metabolic-associated fatty liver disease by targeting NLRP3–GSDMD axis-mediated hepatocyte pyroptosis. J. Agric. Food Chem. 2021 69 48 14544 14556 10.1021/acs.jafc.1c05400 34817168
    [Google Scholar]
  52. Xu Y. Yuan Q. Cao S. Cui S. Xue L. Song X. Li Z. Xu R. Yuan Q. Li R. Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress. Biochem. Biophys. Res. Commun. 2020 529 4 998 1004 10.1016/j.bbrc.2020.06.075 32819611
    [Google Scholar]
  53. Li L. Wang H. Zhao S. Zhao Y. Chen Y. Zhang J. Wang C. Sun N. Fan H. Paeoniflorin ameliorates lipopolysaccharide‐induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats. Phytother. Res. 2022 36 6 2558 2571 10.1002/ptr.7471 35570830
    [Google Scholar]
  54. Song J. Li A. Qian Y. Liu B. Lv L. Ye D. Sun X. Mao Y. Genetically Predicted Circulating Levels of Cytokines and the Risk of Cancer. Front. Immunol. 2022 13 886144 10.3389/fimmu.2022.886144 35865545
    [Google Scholar]
  55. Richter J.E. Rubenstein J.H. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterology 2018 154 2 267 276 10.1053/j.gastro.2017.07.045 28780072
    [Google Scholar]
  56. Yadlapati R. Hubscher E. Pelletier C. Jacob R. Brackley A. Shah S. Induction and maintenance of healing in erosive esophagitis in the United States. Expert Rev. Gastroenterol. Hepatol. 2022 16 10 967 980 10.1080/17474124.2022.2134115 36254610
    [Google Scholar]
  57. Xiao Y. Zhao C. Tai Y. Li B. Lan T. Lai E. Dai W. Guo Y. Gan C. Kostallari E. Tang C. Gao J. STING mediates hepatocyte pyroptosis in liver fibrosis by Epigenetically activating the NLRP3 inflammasome. Redox Biol. 2023 62 102691 10.1016/j.redox.2023.102691 37018971
    [Google Scholar]
  58. Ong J.S. An J. Han X. Law M.H. Nandakumar P. Schumacher J. Gockel I. Bohmer A. Jankowski J. Palles C. Olsen C.M. Neale R.E. Fitzgerald R. Thrift A.P. Vaughan T.L. Buas M.F. Hinds D.A. Gharahkhani P. Kendall B.J. MacGregor S. Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett’s oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut 2022 71 6 1053 1061 10.1136/gutjnl‑2020‑323906 34187846
    [Google Scholar]
  59. Georgakis M.K. de Lemos J.A. Ayers C. Wang B. Björkbacka H. Pana T.A. Thorand B. Sun C. Fani L. Malik R. Dupuis J. Engström G. Orho-Melander M. Melander O. Boekholdt S.M. Zierer A. Elhadad M.A. Koenig W. Herder C. Hoogeveen R.C. Kavousi M. Ballantyne C.M. Peters A. Myint P.K. Nilsson J. Benjamin E.J. Dichgans M. Association of circulating monocyte chemoattractant protein–1 levels with cardiovascular mortality. JAMA Cardiol. 2021 6 5 587 592 10.1001/jamacardio.2020.5392 33146689
    [Google Scholar]
  60. Herdiana Y. Functional food in relation to gastroesophageal reflux disease (GERD). Nutrients 2023 15 16 3583 10.3390/nu15163583 37630773
    [Google Scholar]
  61. Feng X. Cao S. Qiu F. Zhang B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020 216 107650 10.1016/j.pharmthera.2020.107650 32758647
    [Google Scholar]
  62. Park C.Y. Choi E. Yang H.J. Ho S.H. Park S.J. Park K.M. Kim S.H. Efficacy of Artemisia annua L. extract for recovery of acute liver failure. Food Sci. Nutr. 2020 8 7 3738 3749 10.1002/fsn3.1662 32724636
    [Google Scholar]
  63. Li T. Chen Y. Tan P. Shi H. Huang Z. Cai T. Cheng Y. Du Y. Fu W. Dihydroartemisinin alleviates steatosis and inflammation in nonalcoholic steatohepatitis by decreasing endoplasmic reticulum stress and oxidative stress. Bioorg. Chem. 2022 122 105737 10.1016/j.bioorg.2022.105737 35338970
    [Google Scholar]
  64. Bai L. Li J. Li H. Song J. Zhou Y. Lu R. Liu B. Pang Y. Zhang P. Chen J. Liu X. Wu J. Liang C. Zhou J. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem. Pharmacol. 2019 169 113619 10.1016/j.bcp.2019.08.021 31465776
    [Google Scholar]
  65. Jiang Y. Du H. Liu X. Fu X. Li X. Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J. Drug Target. 2020 28 1 70 79 10.1080/1061186X.2019.1616296 31094238
    [Google Scholar]
  66. Hong F. Zhao M. Xue L.L. Ma X. Liu L. Cai X.Y. Zhang R.J. Li N. Wang L. Ni H.F. Wu W.S. Ye H.Y. Chen L.J. The ethanolic extract of Artemisia anomala exerts anti-inflammatory effects via inhibition of NLRP3 inflammasome. Phytomedicine 2022 102 154163 10.1016/j.phymed.2022.154163 35597027
    [Google Scholar]
  67. Han X. Xu T. Fang Q. Zhang H. Yue L. Hu G. Sun L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021 44 102010 10.1016/j.redox.2021.102010 34082381
    [Google Scholar]
  68. Wang X. Wang L. Dong R. Huang K. Wang C. Gu J. Luo H. Liu K. Wu J. Sun H. Meng Q. Luteolin ameliorates LPS-induced acute liver injury by inhibiting TXNIP-NLRP3 inflammasome in mice. Phytomedicine 2021 87 153586 10.1016/j.phymed.2021.153586 34044253
    [Google Scholar]
  69. Hung M.Y. Fu T.Y. Shih P.H. Lee C.P. Yen G.C. Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats, Food and chemical toxicology. Int. J. Briti. Indus. Biolog. Rese. Assoc. 2006 44 8 1424 1431 10.1016/j.fct.2006.03.009
    [Google Scholar]
  70. Zou J. Li W. Wang G. Fang S. Cai J. Wang T. Zhang H. Liu P. Wu J. Ma Y. Hepatoprotective effects of Huangqi decoction (Astragali Radix and Glycyrrhizae Radix et Rhizoma) on cholestatic liver injury in mice: Involvement of alleviating intestinal microbiota dysbiosis. J. Ethnopharmacol. 2021 267 113544 10.1016/j.jep.2020.113544 33152436
    [Google Scholar]
  71. Zhong M. Yan Y. Yuan H. A R. Xu G. Cai F. Yang Y. Wang Y. Zhang W. Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats. Food Funct. 2022 13 13 7287 7301 10.1039/D2FO01009G 35726797
    [Google Scholar]
  72. Li Q. Feng H. Wang H. Wang Y. Mou W. Xu G. Zhang P. Li R. Shi W. Wang Z. Fang Z. Ren L. Wang Y. Lin L. Hou X. Dai W. Li Z. Wei Z. Liu T. Wang J. Guo Y. Li P. Zhao X. Zhan X. Xiao X. Bai Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction. EMBO Rep. 2022 23 2 e53499 10.15252/embr.202153499 34882936
    [Google Scholar]
  73. Ai G. Wu X. Dou Y. Huang R. Zhong L. Liu Y. Xian Y. Lin Z. Li Y. Su Z. Chen J. Qu C. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway, Food and chemical toxicology. Int. J. Briti. Indus. Biolog. Rese. Assoc. 2022 166 113215 10.1016/j.fct.2022.113215
    [Google Scholar]
  74. Ahn H. Lee G.S. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 2017 24 77 86 10.1016/j.phymed.2016.11.019 28160865
    [Google Scholar]
  75. Ganbold M. Owada Y. Ozawa Y. Shimamoto Y. Ferdousi F. Tominaga K. Zheng Y.W. Ohkohchi N. Isoda H. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis. Sci. Rep. 2019 9 1 16210 10.1038/s41598‑019‑52736‑y 31700054
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266331775241024064136
Loading
/content/journals/ctmc/10.2174/0115680266331775241024064136
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test