Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Objective

NLRP3 inflammasomes are considered to be key factors in the pathogenesis of Acute Liver Failure (ALF). Some Traditional Chinese Medicines (TCMs) have shown protective and therapeutic effects against ALF by inhibiting NLRP3 inflammasomes. However, the inhibitory effects of most TCMs on ALF remain to be further elucidated. This study aimed to screen potential herbs that can treat ALF based on the inhibition of NLRP3 inflammasomes.

Methods

Initially, we constructed the target set for 502 herbs. Subsequently, based on the target set and the gene set related to the NLRP3 inflammasome, using the ssGSEA algorithm, we evaluated herb scores and NLRP3 scores in the ALF expression matrix and performed a preliminary herb screening based on score correlations. Through bioinformatics approaches, we identified the key targets for candidate herbs and determined core herbs based on the herb-compound-target network. Furthermore, molecular docking and molecular biology methods validated the screening results of the herbs.

Results

A total of 18 crucial targets associated with the inhibition of the NLRP3 inflammasome were identified, which included ALDH2, HMOX1, and VEGFA. Subsequently, based on these key targets, a set of 10 primary herbs was chosen, notably Qinghao, Duzhong, and Gouteng. Moreover, the results were verified through molecular docking and molecular dynamic simulation.

Conclusion

Ten key herbs have been identified as potential inhibitors of the NLRP3 inflammasome, offering insights into ALF therapy for drug development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266331775241024064136
2024-11-08
2025-04-06
Loading full text...

Full text loading...

References

  1. TujiosS. StravitzR.T. LeeW.M. Management of acute liver failure: Update 2022.Semin. Liver Dis.202242336237810.1055/s‑0042‑175527436001996
    [Google Scholar]
  2. MaiwallR. KulkarniA.V. ArabJ.P. PianoS. Acute liver failure.Lancet20244041045478980210.1016/S0140‑6736(24)00693‑739098320
    [Google Scholar]
  3. StravitzR.T. FontanaR.J. KarvellasC. DurkalskiV. McGuireB. RuleJ.A. TujiosS. LeeW.M. Future directions in acute liver failure.Hepatology20237841266128910.1097/HEP.000000000000045837183883
    [Google Scholar]
  4. OstapowiczG. FontanaR.J. SchiødtF.V. LarsonA. DavernT.J. HanS.H. McCashlandT.M. ShakilA.O. HayJ.E. HynanL. CrippinJ.S. BleiA.T. SamuelG. ReischJ. LeeW.M. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States.Ann. Intern. Med.20021371294795410.7326/0003‑4819‑137‑12‑200212170‑0000712484709
    [Google Scholar]
  5. MoreauR. TononM. KragA. AngeliP. BerenguerM. BerzigottiA. FernandezJ. FrancozC. GustotT. JalanR. PappM. TrebickaJ. EASL clinical practice guidelines on acute-on-chronic liver failure.J. Hepatol.202379246149110.1016/j.jhep.2023.04.02137364789
    [Google Scholar]
  6. BernalW. WendonJ. Acute liver failure.N. Engl. J. Med.2013369262525253410.1056/NEJMra120893724369077
    [Google Scholar]
  7. LeikinJ.B. Current and prospective therapies for acute liver failure.Dis. Mon.2018641249210.1016/j.disamonth.2018.10.00130551743
    [Google Scholar]
  8. SowaJ.P. GerkenG. CanbayA. Acute liver failure - it’s just a matter of cell death.Dig. Dis.201634442342810.1159/00044455727170397
    [Google Scholar]
  9. SuttiS. TackeF. Liver inflammation and regeneration in drug-induced liver injury: Sex matters!Clin. Sci.2018132560961310.1042/CS2017131329545336
    [Google Scholar]
  10. CampoJ.A.D. GallegoP. GrandeL. Role of inflammatory response in liver diseases: Therapeutic strategies.World J. Hepatol.20181011710.4254/wjh.v10.i1.129399273
    [Google Scholar]
  11. WuX. DongL. LinX. LiJ. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease.Front. Immunol.20178172810.3389/fimmu.2017.0172829312290
    [Google Scholar]
  12. SzaboG. PetrasekJ. Inflammasome activation and function in liver disease.Nat. Rev. Gastroenterol. Hepatol.201512738740010.1038/nrgastro.2015.9426055245
    [Google Scholar]
  13. ZhanC. LinG. HuangY. WangZ. ZengF. WuS. A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration.Biomaterials202126812057310.1016/j.biomaterials.2020.12057333260093
    [Google Scholar]
  14. WoolbrightB.L. JaeschkeH. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.J. Hepatol.201766483684810.1016/j.jhep.2016.11.01727913221
    [Google Scholar]
  15. HanM. LiS. LiL. Verapamil inhibits early acute liver failure through suppressing the NLRP3 inflammasome pathway.J. Cell. Mol. Med.202125135963597510.1111/jcmm.1635734031983
    [Google Scholar]
  16. LinH. WangX. LiuM. HuangM. ShenZ. FengJ. YangH. LiZ. GaoJ. YeX. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology.Phytother. Res.20213552651266410.1002/ptr.701233452734
    [Google Scholar]
  17. SuH. LeiH. CaoL. ZhouX. LiuY. LiY. YanL. LvS. WangY. GuanQ. Phase preparation of xiao-chai-hu decoction and its pharmacodynamics of acute liver injury.Curr. Top. Med. Chem.202424242129214010.2174/011568026629970924072205403939108107
    [Google Scholar]
  18. WangX. LuH. WenL. ChenH. WangX. LiL. LinH.J.N.P.C. Identification of potential active ingredients and mechanisms of cattail pollen for treating infertile patients with endometriosis based on bioinformatics and molecular docking.Nat. Prod. Commun.20221771934578X22111473410.1177/1934578X221114734
    [Google Scholar]
  19. ZouJ. WangS.P. WangY.T. WanJ.B. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury.Pharmacol. Res.202116410538810.1016/j.phrs.2020.10538833359314
    [Google Scholar]
  20. de Carvalho RibeiroM. SzaboG. Role of the inflammasome in liver disease.Annu. Rev. Pathol.20221734536510.1146/annurev‑pathmechdis‑032521‑102529
    [Google Scholar]
  21. MuW. XuG. WangZ. LiQ. SunS. QinQ. LiZ. ShiW. DaiW. ZhanX. WangJ. BaiZ. XiaoX. Tricyclic antidepressants induce liver inflammation by targeting NLRP3 inflammasome activation.Cell Commun. Signal.202321112310.1186/s12964‑023‑01128‑x37231437
    [Google Scholar]
  22. JiY. SiW. ZengJ. HuangL. HuangZ. ZhaoL. LiuJ. ZhuM. KuangW. Niujiaodihuang Detoxify Decoction inhibits ferroptosis by enhancing glutathione synthesis in acute liver failure models.J. Ethnopharmacol.202127911430510.1016/j.jep.2021.11430534129898
    [Google Scholar]
  23. QianA. ZhouL. ShiD. PangZ. LuB. Portulaca oleracea alleviates CCl4-induced acute liver injury by regulating hepatic S100A8 and S100A9.Chin. Herb. Med.202315111011610.1016/j.chmed.2022.05.00436875440
    [Google Scholar]
  24. LinJ. LingQ. YanL. ChenB. WangF. QianY. GaoY. WangQ. WuH. SunX. ShiY. KongX. Ancient herbal formula mahuang lianqiao chixiaodou decoction protects acute and acute-on-chronic liver failure via inhibiting von willebrand factor signaling.Cells20221121336810.3390/cells1121336836359765
    [Google Scholar]
  25. LiW. YangK. LiB. WangY. LiuJ. ChenD. DiaoY. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis.Front. Pharmacol.202213106010410.3389/fphar.2022.106010436506567
    [Google Scholar]
  26. LiuH. ZhanX. XuG. WangZ. LiR. WangY. QinQ. ShiW. HouX. YangR. WangJ. XiaoX. BaiZ. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases.Pharmacol. Res.202116410538410.1016/j.phrs.2020.10538433352229
    [Google Scholar]
  27. JinX. FuW. ZhouJ. ShuaiN. YangY. WangB. Oxymatrine attenuates oxidized low density lipoprotein induced HUVEC injury by inhibiting NLRP3 inflammasome mediated pyroptosis via the activation of the SIRT1/Nrf2 signaling pathway.Int. J. Mol. Med.202148418710.3892/ijmm.2021.502034368883
    [Google Scholar]
  28. LiuT. XuG. LiangL. XiaoX. ZhaoY. BaiZ. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment.Front. Pharmacol.20221396759410.3389/fphar.2022.96759436160411
    [Google Scholar]
  29. OuH. FanY. GuoX. LaoZ. ZhuM. LiG. ZhaoL. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network.Front. Cell. Infect. Microbiol.202313113999810.3389/fcimb.2023.113999837113134
    [Google Scholar]
  30. OuH. YeX. HuangH. ChengH. Constructing a screening model to obtain the functional herbs for the treatment of active ulcerative colitis based on herb-compound-target network and immuno-infiltration analysis.Naunyn Schmiedebergs Arch. Pharmacol.202439774693471110.1007/s00210‑023‑02900‑z38117365
    [Google Scholar]
  31. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  32. NissimO. MelisM. DiazG. KleinerD.E. TiceA. FantolaG. ZamboniF. MishraL. FarciP. Liver regeneration signature in hepatitis B virus (HBV)-associated acute liver failure identified by gene expression profiling.PLoS One2012711e4961110.1371/journal.pone.004961123185381
    [Google Scholar]
  33. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  34. LangfelderP. HorvathS. WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  35. JuM. BiJ. WeiQ. JiangL. GuanQ. ZhangM. SongX. ChenT. FanJ. LiX. WeiM. ZhaoL. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer.Brief. Bioinform.2021224bbaa34510.1093/bib/bbaa34533212483
    [Google Scholar]
  36. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  37. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  38. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  39. WangX. LinQ. ShenM. LinH. FengJ. PengL. HuangM. ZhanX. ChenZ. MaT.J.N.P.C. Identification of the ingredients and mechanisms of Curcumae Radix for depression based on network pharmacology and molecular docking.Nat. Prod. Commun.20211651934578X21101664310.1177/1934578X211016643
    [Google Scholar]
  40. LandrumG. Rdkit documentation Release 120134179
    [Google Scholar]
  41. SalentinS. SchreiberS. HauptV.J. AdasmeM.F. SchroederM. PLIP: fully automated protein–ligand interaction profiler.Nucleic Acids Res.201543W1W443W44710.1093/nar/gkv31525873628
    [Google Scholar]
  42. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  43. SayafK. BattistellaS. RussoF.P. NLRP3 Inflammasome in Acute and Chronic Liver Diseases.Int. J. Mol. Sci.2024258453710.3390/ijms2508453738674122
    [Google Scholar]
  44. BaiY. ZhouR. XieX. ZhuA. NanY. WuT. HuX. CaoZ. JuD. FanJ. A Novel Bifunctional Fusion Protein (Anti-IL-17A-sST2) Protects against Acute Liver Failure, Modulating the TLR4/MyD88 Pathway and NLRP3 Inflammasome Activation.Biomedicines2024125111810.3390/biomedicines1205111838791080
    [Google Scholar]
  45. XiaoT. CuiY. JiH. YanL. PeiD. QuS. Baicalein attenuates acute liver injury by blocking NLRP3 inflammasome.Biochem. Biophys. Res. Commun.202153421221810.1016/j.bbrc.2020.11.10933272570
    [Google Scholar]
  46. ChenF. LiuY. LiQ. WangF. Inhibition of hepatic NLRP3 inflammasome ameliorates non-alcoholic steatohepatitis/hepatitis B - induced hepatic injury.Clin. Res. Hepatol. Gastroenterol.202347110205610.1016/j.clinre.2022.10205636427780
    [Google Scholar]
  47. WanP. YangG. ChengQ. ZhangX. YueZ. LiM. LiuC. YiQ. JiaY. LiuJ. XingX. SunB. LiY. The role of inflammasome in chronic viral hepatitis.Front. Cell. Infect. Microbiol.202414138202910.3389/fcimb.2024.138202938817443
    [Google Scholar]
  48. LiY. YuP. KesslerA.L. ShuJ. LiuX. LiangZ. LiuJ. LiY. LiP. WangL. WangY. MaZ. LiuA. WangL. BrunoM.J. de ManR.A. PeppelenboschM.P. BuschowS.I. WangL. WangY. PanQ. Hepatitis E virus infection activates NOD‐like receptor family pyrin domain‐containing 3 inflammasome antagonizing interferon response but therapeutically targetable.Hepatology202275119621210.1002/hep.3211434392558
    [Google Scholar]
  49. XiaoyuH. SiH. LiS. WangW. GuoJ. LiY. CaoY. FuY. ZhangN. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice.Int. Immunopharmacol.20175218519010.1016/j.intimp.2017.09.00728938188
    [Google Scholar]
  50. KimS.J. LeeS.M. NLRP3 inflammasome activation in d-galactosamine and lipopolysaccharide-induced acute liver failure: Role of heme oxygenase-1.Free Radic. Biol. Med.201365997100410.1016/j.freeradbiomed.2013.08.17823994575
    [Google Scholar]
  51. GaoX. LiuS. TanL. DingC. FanW. GaoZ. LiM. TangZ. WuY. XuL. YanL. LuoY. SongS. Estrogen receptor α regulates metabolic-associated fatty liver disease by targeting NLRP3–GSDMD axis-mediated hepatocyte pyroptosis.J. Agric. Food Chem.20216948145441455610.1021/acs.jafc.1c0540034817168
    [Google Scholar]
  52. XuY. YuanQ. CaoS. CuiS. XueL. SongX. LiZ. XuR. YuanQ. LiR. Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress.Biochem. Biophys. Res. Commun.20205294998100410.1016/j.bbrc.2020.06.07532819611
    [Google Scholar]
  53. LiL. WangH. ZhaoS. ZhaoY. ChenY. ZhangJ. WangC. SunN. FanH. Paeoniflorin ameliorates lipopolysaccharide‐induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats.Phytother. Res.20223662558257110.1002/ptr.747135570830
    [Google Scholar]
  54. SongJ. LiA. QianY. LiuB. LvL. YeD. SunX. MaoY. Genetically Predicted Circulating Levels of Cytokines and the Risk of Cancer.Front. Immunol.20221388614410.3389/fimmu.2022.88614435865545
    [Google Scholar]
  55. RichterJ.E. RubensteinJ.H. Presentation and epidemiology of gastroesophageal reflux disease.Gastroenterology2018154226727610.1053/j.gastro.2017.07.04528780072
    [Google Scholar]
  56. YadlapatiR. HubscherE. PelletierC. JacobR. BrackleyA. ShahS. Induction and maintenance of healing in erosive esophagitis in the United States.Expert Rev. Gastroenterol. Hepatol.2022161096798010.1080/17474124.2022.213411536254610
    [Google Scholar]
  57. XiaoY. ZhaoC. TaiY. LiB. LanT. LaiE. DaiW. GuoY. GanC. KostallariE. TangC. GaoJ. STING mediates hepatocyte pyroptosis in liver fibrosis by Epigenetically activating the NLRP3 inflammasome.Redox Biol.20236210269110.1016/j.redox.2023.10269137018971
    [Google Scholar]
  58. OngJ.S. AnJ. HanX. LawM.H. NandakumarP. SchumacherJ. GockelI. BohmerA. JankowskiJ. PallesC. OlsenC.M. NealeR.E. FitzgeraldR. ThriftA.P. VaughanT.L. BuasM.F. HindsD.A. GharahkhaniP. KendallB.J. MacGregorS. Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett’s oesophagus and provides insights into clinical heterogeneity in reflux diagnosis.Gut20227161053106110.1136/gutjnl‑2020‑32390634187846
    [Google Scholar]
  59. GeorgakisM.K. de LemosJ.A. AyersC. WangB. BjörkbackaH. PanaT.A. ThorandB. SunC. FaniL. MalikR. DupuisJ. EngströmG. Orho-MelanderM. MelanderO. BoekholdtS.M. ZiererA. ElhadadM.A. KoenigW. HerderC. HoogeveenR.C. KavousiM. BallantyneC.M. PetersA. MyintP.K. NilssonJ. BenjaminE.J. DichgansM. Association of circulating monocyte chemoattractant protein–1 levels with cardiovascular mortality.JAMA Cardiol.20216558759210.1001/jamacardio.2020.539233146689
    [Google Scholar]
  60. HerdianaY. Functional food in relation to gastroesophageal reflux disease (GERD).Nutrients20231516358310.3390/nu1516358337630773
    [Google Scholar]
  61. FengX. CaoS. QiuF. ZhangB. Traditional application and modern pharmacological research of Artemisia annua L.Pharmacol. Ther.202021610765010.1016/j.pharmthera.2020.10765032758647
    [Google Scholar]
  62. ParkC.Y. ChoiE. YangH.J. HoS.H. ParkS.J. ParkK.M. KimS.H. Efficacy of Artemisia annua L. extract for recovery of acute liver failure.Food Sci. Nutr.2020873738374910.1002/fsn3.166232724636
    [Google Scholar]
  63. LiT. ChenY. TanP. ShiH. HuangZ. CaiT. ChengY. DuY. FuW. Dihydroartemisinin alleviates steatosis and inflammation in nonalcoholic steatohepatitis by decreasing endoplasmic reticulum stress and oxidative stress.Bioorg. Chem.202212210573710.1016/j.bioorg.2022.10573735338970
    [Google Scholar]
  64. BaiL. LiJ. LiH. SongJ. ZhouY. LuR. LiuB. PangY. ZhangP. ChenJ. LiuX. WuJ. LiangC. ZhouJ. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats.Biochem. Pharmacol.201916911361910.1016/j.bcp.2019.08.02131465776
    [Google Scholar]
  65. JiangY. DuH. LiuX. FuX. LiX. CaoQ. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway.J. Drug Target.2020281707910.1080/1061186X.2019.161629631094238
    [Google Scholar]
  66. HongF. ZhaoM. XueL.L. MaX. LiuL. CaiX.Y. ZhangR.J. LiN. WangL. NiH.F. WuW.S. YeH.Y. ChenL.J. The ethanolic extract of Artemisia anomala exerts anti-inflammatory effects via inhibition of NLRP3 inflammasome.Phytomedicine202210215416310.1016/j.phymed.2022.15416335597027
    [Google Scholar]
  67. HanX. XuT. FangQ. ZhangH. YueL. HuG. SunL. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy.Redox Biol.20214410201010.1016/j.redox.2021.10201034082381
    [Google Scholar]
  68. WangX. WangL. DongR. HuangK. WangC. GuJ. LuoH. LiuK. WuJ. SunH. MengQ. Luteolin ameliorates LPS-induced acute liver injury by inhibiting TXNIP-NLRP3 inflammasome in mice.Phytomedicine20218715358610.1016/j.phymed.2021.15358634044253
    [Google Scholar]
  69. HungM.Y. FuT.Y. ShihP.H. LeeC.P. YenG.C. Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats, Food and chemical toxicology.Int. J. Briti. Indus. Biolog. Rese. Assoc.20064481424143110.1016/j.fct.2006.03.009
    [Google Scholar]
  70. ZouJ. LiW. WangG. FangS. CaiJ. WangT. ZhangH. LiuP. WuJ. MaY. Hepatoprotective effects of Huangqi decoction (Astragali Radix and Glycyrrhizae Radix et Rhizoma) on cholestatic liver injury in mice: Involvement of alleviating intestinal microbiota dysbiosis.J. Ethnopharmacol.202126711354410.1016/j.jep.2020.11354433152436
    [Google Scholar]
  71. ZhongM. YanY. YuanH. AR. XuG. CaiF. YangY. WangY. ZhangW. Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats.Food Funct.202213137287730110.1039/D2FO01009G35726797
    [Google Scholar]
  72. LiQ. FengH. WangH. WangY. MouW. XuG. ZhangP. LiR. ShiW. WangZ. FangZ. RenL. WangY. LinL. HouX. DaiW. LiZ. WeiZ. LiuT. WangJ. GuoY. LiP. ZhaoX. ZhanX. XiaoX. BaiZ. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction.EMBO Rep.2022232e5349910.15252/embr.20215349934882936
    [Google Scholar]
  73. AiG. WuX. DouY. HuangR. ZhongL. LiuY. XianY. LinZ. LiY. SuZ. ChenJ. QuC. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway, Food and chemical toxicology.Int. J. Briti. Indus. Biolog. Rese. Assoc.202216611321510.1016/j.fct.2022.113215
    [Google Scholar]
  74. AhnH. LeeG.S. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation.Phytomedicine201724778610.1016/j.phymed.2016.11.01928160865
    [Google Scholar]
  75. GanboldM. OwadaY. OzawaY. ShimamotoY. FerdousiF. TominagaK. ZhengY.W. OhkohchiN. IsodaH. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis.Sci. Rep.2019911621010.1038/s41598‑019‑52736‑y31700054
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266331775241024064136
Loading
/content/journals/ctmc/10.2174/0115680266331775241024064136
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test