Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

The search for effective cancer therapies highlights saponins, natural plant-derived compounds, as promising anticancer agents. These compounds induce apoptosis in cancer cells by activating caspases, essential enzymes for cell death. For example, Soyasapogenol B from and Astragaloside IV from effectively trigger apoptosis in cancer cells. Additionally, saponins, such as Compound K from American ginseng and Saikosaponin from , affect extrinsic and intrinsic pathways, including mitochondrial release of cytochrome C and activation of caspase-9. Ziyuglycoside II also acts on both pathways and activates the ROS/JNK pathway. Understanding these mechanisms provides promising prospects for developing more specific and safer anticancer therapies. The review utilized the ScienceDirect, PubMed, and Google Scholar databases. It was found that original articles and reviews from journals indexed in these sources emphasized the antitumor capabilities of saponins and discussed their role in apoptosis induction and caspase activation. The activation of caspases by saponins in the apoptotic pathway involves two main pathways: the extrinsic pathway is initiated by external signals that activate caspase-8, while the intrinsic pathway starts with internal stimuli, causing the release of cytochrome c and the activation of caspase-9. These pathways both lead to the activation of effector caspases (caspases 3, 6, and 7), culminating in apoptosis, an essential process for maintaining cellular balance and eliminating damaged cells. Identifying saponins in the context of cancer and their mechanisms of action is an ever-evolving field. Future research may lead to more targeted and personalized therapies, highlighting the collaboration between basic and clinical research in this promising area of medicine.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266315197241015101801
2024-10-22
2025-06-19
Loading full text...

Full text loading...

References

  1. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  2. ZhuY. YangR. LawJ.H. KhanM. YipK.W. SunQ. Editorial: Hallmark of cancer: Resisting cell death.Front. Oncol.202212106994710.3389/fonc.2022.1069947 36419903
    [Google Scholar]
  3. KhalafS.D. MahdiM.M. The cancer: Types, the mechanism of cancer growth and diagnosis: A review.World J. Pharm. Sci. Res.202433274282
    [Google Scholar]
  4. BiswasH.S. MaitiD.K. PoddarS. BhaumikA. Progress in Chemical and Biological Science2023
    [Google Scholar]
  5. SchirrmacherV. Quo vadis cancer therapy?: Fascinating discoveries of the last 60 years.Lambert Academic Publishing2017
    [Google Scholar]
  6. TilsedC.M. FisherS.A. NowakA.K. LakeR.A. LesterhuisW. J. Cancer chemotherapy: Insights into cellular and tumor microenvironmental mechanisms of action.Front. Oncol.20221296031710.3389/fonc.2022.960317 35965519
    [Google Scholar]
  7. ChopraD. RehanH. SharmaV. MishraR. Chemotherapy-induced adverse drug reactions in oncology patients: A prospective observational survey.Indian J. Med. Paediatr. Oncol.2016371424610.4103/0971‑5851.177015 27051157
    [Google Scholar]
  8. KudererN.M. DesaiA. LustbergM.B. LymanG.H. Mitigating acute chemotherapy-associated adverse events in patients with cancer.Nat. Rev. Clin. Oncol.2022191168169710.1038/s41571‑022‑00685‑3 36221000
    [Google Scholar]
  9. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  10. Nik Mohamad Nek RahimiN. NatrahI. LohJ.Y. Ervin RanzilF.K. GinaM. LimS.H.E. LaiK.S. ChongC.M. Phytocompounds as an alternative antimicrobial approach in aquaculture.Antibiotics (Basel)202211446910.3390/antibiotics11040469 35453220
    [Google Scholar]
  11. WenC.C. ChenH.M. YangN.S. Developing phytocompounds from medicinal plants as immunomodulators.Adv. Bot. Res.20126219727210.1016/B978‑0‑12‑394591‑4.00004‑0 32300254
    [Google Scholar]
  12. FerrazC.R. CarvalhoT.T. ManchopeM.F. ArteroN.A. Rasquel-OliveiraF.S. FattoriV. CasagrandeR. VerriW.A. Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, preclinical and clinical data, and pharmaceutical development.Molecules202025376210.3390/molecules25030762 32050623
    [Google Scholar]
  13. SwamyM.K. Phytochemicals as antiviral agents: Recent updates.In: Plant-derived Bioactives. SwamyM. SingaporeSpringer202027929510.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  14. AqilF. MunagalaR. AgrawalA.K. GuptaR. Chapter 10 - Anticancer phytocompounds: Experimental and clinical updates.In: New Look to Phytomedicine. Chapter 10Academic Press201823727210.1016/B978‑0‑12‑814619‑4.00010‑0
    [Google Scholar]
  15. KapoorB. GulatiM. GuptaR. SinghS.K. GuptaM. NabiA. ChawlaP.A. A review on plant flavonoids as potential anticancer agents.Curr. Org. Chem.202125673774710.2174/1385272824999201126214150
    [Google Scholar]
  16. Chahat; Jha, K.T.; Bhatia, R.; Chawla, P.A. Alkaloids as additional weapons in the fight against breast cancer: A review.Curr. Med. Chem.202431325113514810.2174/0929867331666230911162527
    [Google Scholar]
  17. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology28020017 35366261
    [Google Scholar]
  18. HassanH.S. SuleM.I. MusaA.M. MusaK.Y. AbubakarM.S. HassanA.S. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants.Afr. J. Tradit. Complement. Altern. Med.20129225025510.4314/ajtcam.v9i2.10 23983342
    [Google Scholar]
  19. SimõesC.M.O. AmorosM. GirreL. Mechanism of antiviral activity of triterpenoid saponins.Phytother. Res.1999134323328 10404540
    [Google Scholar]
  20. KhanM. KarimaG. KhanM. ShinJ. KimJ. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells.Int. J. Mol. Sci.202223181066510.3390/ijms231810665 36142578
    [Google Scholar]
  21. KeF. ZhangR. ChenR. GuoX. SongC. GaoX. ZengF. LiuQ. The role of Rhizoma paridis saponins on anti-cancer: The potential mechanism and molecular targets.Heliyon20241017e3732310.1016/j.heliyon.2024.e37323 39296108
    [Google Scholar]
  22. XiaoX. BaiP. Bui NguyenT.M. XiaoJ. LiuS. YangG. HuL. ChenX. ZhangX. LiuJ. WangH. The antitumoral effect of Paris Saponin I associated with the induction of apoptosis through the mitochondrial pathway.Mol. Cancer Ther.2009851179118810.1158/1535‑7163.MCT‑08‑0939 19435869
    [Google Scholar]
  23. YangL. ChenJ.J. Sheng-Xian TeoB. ZhangJ. JiangM. Research progress on the antitumor molecular mechanism of ginsenoside Rh2.Am. J. Chin. Med.202452121723010.1142/S0192415X24500095 38291582
    [Google Scholar]
  24. MondalS. Anticancer potential of biologically active diosgenin and its derivatives: An update.Curr. Tradit. Med.2024101e02022321339010.2174/2215083809666230202143136
    [Google Scholar]
  25. ShengF. YangS. LiM. WangJ. LiuL. ZhangL. Research progress on the anticancer effects of Astragalus membranaceus saponins and their mechanisms of action.Molecules20242914338810.3390/molecules29143388 39064966
    [Google Scholar]
  26. WangF. LiangL. YuM. WangW. BadarI.H. BaoY. ZhuK. LiY. ShafiS. LiD. DiaoY. EfferthT. XueZ. HuaX. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects.Phytomedicine202412815543210.1016/j.phymed.2024.155432 38518645
    [Google Scholar]
  27. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  28. FeitelsonM.A. ArzumanyanA. KulathinalR.J. BlainS.W. HolcombeR.F. MahajnaJ. MarinoM. Martinez-ChantarM.L. NawrothR. Sanchez-GarciaI. SharmaD. SaxenaN.K. SinghN. VlachostergiosP.J. GuoS. HonokiK. FujiiH. GeorgakilasA.G. BilslandA. AmedeiA. NiccolaiE. AminA. AshrafS.S. BoosaniC.S. GuhaG. CirioloM.R. AquilanoK. ChenS. MohammedS.I. AzmiA.S. BhaktaD. HalickaD. KeithW.N. NowsheenS. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol.,201535Suppl)(SupplS25S5410.1016/j.semcancer.2015.02.00625892662
    [Google Scholar]
  29. WangZ. Regulation of cell cycle progression by growth factor-induced cell signaling.Cells20211012332710.3390/cells10123327 34943835
    [Google Scholar]
  30. Danilkovitch-MiagkovaA. ZbarB. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors.J. Clin. Invest.2002109786386710.1172/JCI0215418 11927612
    [Google Scholar]
  31. HirscheyM.D. DeBerardinisR.J. DiehlA.M.E. DrewJ.E. FrezzaC. GreenM.F. JonesL.W. KoY.H. LeA. LeaM.A. LocasaleJ.W. LongoV.D. LyssiotisC.A. McDonnellE. MehrmohamadiM. MichelottiG. MuralidharV. MurphyM.P. PedersenP.L. PooreB. RaffaghelloL. RathmellJ.C. SivanandS. Vander HeidenM.G. WellenK.E. AmedeiA. AminA. Salman AshrafS. AzmiA.S. BhaktaD. BislandA. BoosaniC.S. ChenS. FujiiH. GeorgakilasA. GuhaG. HalickaD. HelferichB. HonokiK. KeithW.N. MohammedS. NiccolaiE. NowsheenS. YangX. Dysregulated metabolism contributes to oncogenesis.Semin. Cancer Biol.201535S129S15010.1016/j.semcancer.2015.10.002 26454069
    [Google Scholar]
  32. KhanM.A. ZubairH. AnandS. SrivastavaS.K. SinghS. SinghA.P. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities.Cancer Lett.202047317618510.1016/j.canlet.2020.01.003 31923436
    [Google Scholar]
  33. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells10051056 33946927
    [Google Scholar]
  34. SeverR. BruggeJ.S. Signal transduction in cancer.Cold Spring Harb. Perspect. Med.201554a00609810.1101/cshperspect.a006098 25833940
    [Google Scholar]
  35. BiJ. IchuT.A. ZancaC. YangH. ZhangW. GuY. ChowdhryS. ReedA. IkegamiS. TurnerK.M. ZhangW. VillaG.R. WuS. QuehenbergerO. YongW.H. KornblumH.I. RichJ.N. CloughesyT.F. CaveneeW.K. FurnariF.B. CravattB.F. MischelP.S. Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling.Cell Metab.2019303525538.e810.1016/j.cmet.2019.06.014 31303424
    [Google Scholar]
  36. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  37. BersiniS. JeonJ.S. MorettiM. KammR.D. In vitro models of the metastatic cascade: From local invasion to extravasation.Drug Discov. Today201419673574210.1016/j.drudis.2013.12.006 24361339
    [Google Scholar]
  38. ChiangS.P.H. CabreraR.M. SegallJ.E. Tumor cell intravasation.Am. J. Physiol. Cell Physiol.20163111C1C1410.1152/ajpcell.00238.2015 27076614
    [Google Scholar]
  39. MartinT.A. YeL. SandersA.J. LaneJ. JiangW.G. Cancer invasion and metastasis: Molecular and cellular perspective. In: Madame Curie Bioscience Database; 2000-2013.Landes Bioscience: Austin (TX), 2013
    [Google Scholar]
  40. JafriM.A. AnsariS.A. AlqahtaniM.H. ShayJ.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies.Genome Med.2016816910.1186/s13073‑016‑0324‑x 27323951
    [Google Scholar]
  41. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  42. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  43. NunesA.F.S. AquinoR.L. Oncology therapy for nurses and pharmacists.Saberes Plur.202372e13255410.54909/sp.v7i2.132554
    [Google Scholar]
  44. FormentiS.C. DemariaS. Systemic effects of local radiotherapy.Lancet Oncol.200910771872610.1016/S1470‑2045(09)70082‑8 19573801
    [Google Scholar]
  45. HoskinP. Radiotherapy in Practice.2nd edNew YorkOxford University Press2011
    [Google Scholar]
  46. FilhoJ.F. CicooR.D. Manual of Conduct in Surgery Head and Neck.Sao PauloUninove2022
    [Google Scholar]
  47. El-ShemyH. Soybean - Bio-Active Compounds IntechOpen: Croatia,2013
    [Google Scholar]
  48. SpargS.G. LightM.E. van StadenJ. Biological activities and distribution of plant saponins.J. Ethnopharmacol.2004942-321924310.1016/j.jep.2004.05.016 15325725
    [Google Scholar]
  49. DewickP.M. Medicinal Natural Products: A Biosynthetic Approach.3rd edJonh Wiley & Sons Ltd200910.1002/9780470742761
    [Google Scholar]
  50. El-azizM.M.A. AshourA.S. MadboulyH.A. SadekA. MeladG. SdigK. KerikshiE. Investigations on green preparation of heavy metal saponin complexes.J. Water Environ. Nanotechnol.20172210311110.22090/jwent.2017.02.005
    [Google Scholar]
  51. WangL. WellerC.L. Recent advances in extraction of nutraceuticals from plants.Trends Food Sci. Technol.200617630031210.1016/j.tifs.2005.12.004
    [Google Scholar]
  52. LingY. LinZ. ZhaW. LianT. YouS. Rapid detection and characterisation of triterpene saponins from the root of Pulsatilla chinensis (Bunge) regel by HPLC-ESI-QTOF-MS/MS.Phytochem. Anal.2016273-417418310.1002/pca.2613
    [Google Scholar]
  53. CaoD. WangQ. JinJ. QiuM. ZhouL. Simultaneous qualitative and quantitative analyses of triterpenoids in Ilex pubescens by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.Phytochem. Anal.201729216817910.1002/pca.2725
    [Google Scholar]
  54. GevrenovaR. BardarovV. BardarovK. Voutquenne-nazabadiokoL. HenryM. Selective profiling of saponins from Gypsophila trichotoma Wend. by HILIC separation and HRMS detection.Phytochem. Anal.201729325027410.1002/pca.2739
    [Google Scholar]
  55. ChenM. HuangS.J. HuangC. LiuP. LinK. LiuC. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells.BMC Cancer20161653210.1186/s12885‑016‑2599‑0 27461108
    [Google Scholar]
  56. ChengG. GaoF. SunX. BiH. ZhuY. Paris saponin vii suppresses osteosarcoma cell migration and invasion by inhibiting MMP 2/9 production via the P38 MAPK signaling pathway. Mol. Med. Rep.,20161443199320510.3892/mmr.2016.5663
    [Google Scholar]
  57. ZengK. SongF. LiN. DongX. JiangY. TuP. ASC, a bioactive steroidal saponin from ophitopogin japonicas, inhibits angiogenesis through interruption of src tyrosine kinase-dependent matrix metalloproteinase pathway.Basic Clin. Pharmacol. Toxicol.2015116211512310.1111/bcpt.12305
    [Google Scholar]
  58. KoczurkiewiczP. KlaśK. GrabowskaK. PiskaK. RogowskaK. Wójcik-PszczołaK. PodolakI. GalantyA. MichalikM. PękalaE. Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug—Minireview of in vitro studies.Phytother. Res.20193392141215110.1002/ptr.6371 31294509
    [Google Scholar]
  59. YunU.J. LeeJ.H. KooK.H. YeS.K. KimS.Y. LeeC.H. KimY.N. Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and Src inhibition.Biochem. Pharmacol.201385101441145310.1016/j.bcp.2013.02.025 23473805
    [Google Scholar]
  60. ZhangP. ZhangD. MaC. WangR. WangW. Free radical scavenging effect and immunomodulatory activity of total saponins extract of ginseng fibrous roots.Molecules20242912277010.3390/molecules29122770 38930835
    [Google Scholar]
  61. LiL. ZhangJ. ChengW. DiF. WangC. AnQ. Saponins of Paris polyphylla for the improvement of acne: Anti-inflammatory, antibacterial, antioxidant and immunomodulatory effects.Molecules2024298179310.3390/molecules29081793 38675613
    [Google Scholar]
  62. NagS.A. QinJ.J. WangW. WangM.H. WangH. ZhangR. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action.Front. Pharmacol.201232510.3389/fphar.2012.00025 22403544
    [Google Scholar]
  63. XuX.F. ZhangT.L. JinS. WangR. XiaoX. ZhangW.D. WangP.Y. WangX.J. Ardipusilloside I induces apoptosis by regulating Bcl-2 family proteins in human mucoepidermoid carcinoma Mc3 cells.BMC Complement. Altern. Med.201313132210.1186/1472‑6882‑13‑322 24256941
    [Google Scholar]
  64. JuangY.P. LiangP.H. Biological and pharmacological effects of synthetic saponins.Molecules20202521497410.3390/molecules25214974 33121124
    [Google Scholar]
  65. MengQ. DingB. MaP. LinJ. Interrelation between programmed cell death and immunogenic cell death: Take antitumor nanodrug as an example.Small Methods202375e220140610.1002/smtd.202201406
    [Google Scholar]
  66. KurosakaK. TakahashiM. WatanabeN. KobayashiY. Silent cleanup of very early apoptotic cells by macrophages.J. Immunol.200317194672467910.4049/jimmunol.171.9.4672 14568942
    [Google Scholar]
  67. YangL. ChenS. LuoP. YanW. WangC. Liposarcoma: Advances in cellular and molecular genetics alterations and corresponding clinical treatment.J. Cancer202011110010710.7150/jca.36380
    [Google Scholar]
  68. PeterM.E. Apoptosis meets necrosis.Nature2011471733831031210.1038/471310a 21412328
    [Google Scholar]
  69. Stefanowicz-HajdukJ. BartoszewskiR. BartoszewskaS. KochanK. AdamskaA. KosińskiI. OchockaJ.R. Pennogenyl saponins from Paris quadrifolia l. induce extrinsic and intrinsic pathway of apoptosis in human cervical cancer HeLa cells.PLoS One2015108e013599310.1371/journal.pone.0135993 26295969
    [Google Scholar]
  70. AuyeungK.K-W. MokN-L. WongC-M. ChoC-H. KoK-S. Astragalus saponins modulate MTOR and ERK signaling to promote apoptosis through the extrinsic pathway in HT-29 colon cancer cells.Int. J. Mol. Med.201026341349 20664949
    [Google Scholar]
  71. MbavengA.T. NdontsaB.L. KueteV. NguekeuY.M.M. Çelikİ. MbouangouereR. TaneP. EfferthT. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death.Phytomedicine201843788510.1016/j.phymed.2018.03.035 29747757
    [Google Scholar]
  72. ChengC.L. ChaoW.T. LiY.H. OuY.C. WangS.S. ChiuK.Y. YuanS.Y. Escin induces apoptosis in human bladder cancer cells: An in vitro and in vivo study.Eur. J. Pharmacol.2018840798810.1016/j.ejphar.2018.09.033 30287153
    [Google Scholar]
  73. XuZ.X. DingT. HaridasV. ConnollyF. GuttermanJ.U. Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts.PLoS One2009412e853210.1371/journal.pone.0008532 20046832
    [Google Scholar]
  74. ChoS.H. ChungK.S. ChoiJ.H. KimD.H. LeeK.T. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells.BMC Cancer20099144910.1186/1471‑2407‑9‑449 20017956
    [Google Scholar]
  75. WangL. WangJ. ZhaoH. JiangG. FengX. SuiW. LiuH. Retracted article: soyasapogenol B exhibits anti-growth and anti-metastatic activities in clear cell renal cell carcinoma.Naunyn Schmiedebergs Arch. Pharmacol.2019392555156310.1007/s00210‑018‑01607‑w 30607469
    [Google Scholar]
  76. AshkenaziA. Targeting the extrinsic apoptosis pathway in cancer.Cytokine Growth Factor Rev.2008193-432533110.1016/j.cytogfr.2008.04.001 18495520
    [Google Scholar]
  77. SuC.M. WangH.C. HsuF.T. LuC.H. LaiC.K. ChungJ.G. KuoY.C. Astragaloside IV induces apoptosis, G1-phase arrest and inhibits anti-apoptotic signaling in hepatocellular carcinoma. In vivo, 202034263163810.21873/invivo.11817
    [Google Scholar]
  78. FanX. FuH. XieN. GuoH. FuT. ShanY. Inhibition of JAK2/STAT3 signaling pathway by panaxadiol limits the progression of pancreatic cancer.Aging (Albany NY)20211319228302284210.18632/aging.203575 34623971
    [Google Scholar]
  79. LiB. ZhaoJ. WangC.Z. SearleJ. HeT.C. YuanC.S. DuW. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53.Cancer Lett.2011301218519210.1016/j.canlet.2010.11.015 21194832
    [Google Scholar]
  80. LeeI.K. KangK.A. LimC.M. KimK.C. KimH.S. KimD.H. KimB.J. ChangW.Y. ChoiJ.H. HyunJ.W. Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells.Int. J. Mol. Sci.201011124916493110.3390/ijms11124916 21614182
    [Google Scholar]
  81. ChenC.H. ChenM.F. HuangS.J. HuangC.Y. WangH.K. HsiehW.C. HuangC.H. LiuL.F. ShiuL.Y. Saikosaponin a induces apoptosis through mitochondria-dependent pathway in hepatic stellate cells.Am. J. Chin. Med.201745235136810.1142/S0192415X17500227 28231747
    [Google Scholar]
  82. MarchenkoN.D. MollU.M. Mitochondrial death functions of p53.Mol. Cell. Oncol.201412e95599510.1080/23723548.2014.955995 27308326
    [Google Scholar]
  83. QinH. DuX. ZhangY. WangR. Platycodin D, a triterpenoid saponin from Platycodon grandiflorum, induces G2/M arrest and apoptosis in human hepatoma HepG2 cells by modulating the PI3K/Akt pathway.Tumour Biol.20143521267127410.1007/s13277‑013‑1169‑1 24048756
    [Google Scholar]
  84. GuoX.X. LiY. SunC. JiangD. LinY.J. JinF.X. LeeS.K. JinY.H. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells.Protein Cell20145322423410.1007/s13238‑014‑0027‑2 24622841
    [Google Scholar]
  85. AdamskaA. Stefanowicz-HajdukJ. OchockaJ.R. Alpha-hederin, the active saponin of Nigella sativa, as an anticancer agent inducing apoptosis in the SKOV-3 cell line.Molecules20192416295810.3390/molecules24162958 31443189
    [Google Scholar]
  86. KimT.J. KimH.J. KangM. ChoJ.H. KimY.G. LeeS.M. ByunJ.S. KimD.Y. Ginsenoside F2 induces cellular toxicity to glioblastoma through the impairment of mitochondrial function.Phytomedicine20218315348310.1016/j.phymed.2021.153483 33578358
    [Google Scholar]
  87. LiuY. FanD. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer.Biochem. Pharmacol.201916828530410.1016/j.bcp.2019.07.008 31301277
    [Google Scholar]
  88. MaiT.T. MoonJ. SongY. VietP.Q. PhucP.V. LeeJ.M. YiT.H. ChoM. ChoS.K. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells.Cancer Lett.2012321214415310.1016/j.canlet.2012.01.045 22326284
    [Google Scholar]
  89. MallickS. PalB.C. KumarD. ChatterjeeN. DasS. SahaK.D. Effect of corchorusin-D, a saikosaponin like compound, on B16F10 melanoma cells (in vitro and in vivo).J. Asian Nat. Prod. Res.201315111197120310.1080/10286020.2013.837451 24215510
    [Google Scholar]
  90. LiuW. WangS. YangQ. FengX. YuB. YuX. 20(s)-ginsenoside Rh2 promotes TRAIL-induced apoptosis by upregulating DR5 in human hepatocellular carcinoma cells.Med. Oncol.20223977010.1007/s12032‑022‑01663‑6 35568793
    [Google Scholar]
  91. ZhuX. WangK. ZhangK. ZhuL. ZhouF. Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells.Toxicol. Lett.20142271657310.1016/j.toxlet.2014.03.015 24680927
    [Google Scholar]
  92. ChoY.J. WooJ.H. LeeJ.S. JangD.S. LeeK.T. ChoiJ.H. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells.J. Pharmacol. Sci.2016132161410.1016/j.jphs.2016.02.006 27032907
    [Google Scholar]
  93. WuQ. DengJ. FanD. DuanZ. ZhuC. FuR. WangS. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells.Biochem. Pharmacol.2018148647410.1016/j.bcp.2017.12.004 29225132
    [Google Scholar]
  94. LiangY. ZhangT. JingS. ZuoP. LiT. WangY. XingS. ZhangJ. WeiZ. 20(S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway.Am. J. Chin. Med.202149375376510.1142/S0192415X2150035X 33641655
    [Google Scholar]
  95. TuY. ChenL. RenN. LiB. WuY. RankinG.O. RojanasakulY. WangY. ChenY.C. Cycle arrest and apoptosis via AKT-MDM2-P53 signaling pathway in ovarian cancer cells.Molecules20202515351510.3390/molecules25153515 32752095
    [Google Scholar]
  96. HanS. JeongA.J. YangH. Kang, Bin Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells.J. Ethnopharmacol.2016194839010.1016/j.jep.2016.08.039
    [Google Scholar]
  97. LiuY. YuS. XingX. QiaoJ. YinY. WangJ. LiuM. ZhangW. Ginsenoside Rh2 stimulates the production of mitochondrial reactive oxygen species and induces apoptosis of cervical cancer cells by inhibiting mitochondrial electron transfer chain complex.Mol. Med. Rep.202124687310.3892/mmr.2021.12513 34713297
    [Google Scholar]
  98. HwangJ.W. OhJ.H. YooH.S. LeeY.W. ChoC.K. KwonK.R. YoonJ.H. ParkJ. HerS. LeeZ.W. JangI.S. ChoiJ.S. Mountain ginseng extract exhibits anti-lung cancer activity by inhibiting the nuclear translocation of NF-κB.Am. J. Chin. Med.201240118720210.1142/S0192415X12500152 22298458
    [Google Scholar]
  99. KimS.M. LeeS.Y. YukD.Y. MoonD.C. ChoiS.S. KimY. HanS.B. OhK.W. HongJ.T. Inhibition of NF-κB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel.Arch. Pharm. Res.200932575576510.1007/s12272‑009‑1515‑4 19471891
    [Google Scholar]
  100. ZhuW. TianF. LiuL. Chikusetsu (CHI) triggers mitochondria-regulated apoptosis in human prostate cancer via reactive oxygen species (ROS) production.Biomed. Pharmacother.20179044645410.1016/j.biopha.2017.03.050 28391166
    [Google Scholar]
  101. WangQ. ZhengX. YangL. ShiF. GaoL. ZhongY. SunH. HeF. LinY. WangX. Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells.J. Exp. Clin. Cancer Res.201029115910.1186/1756‑9966‑29‑159 21143894
    [Google Scholar]
  102. JiangZ. YangY. YangY. ZhangY. YueZ. PanZ. RenX. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune.Biomed. Pharmacother.20179637838310.1016/j.biopha.2017.09.129 29031195
    [Google Scholar]
  103. BanJ.O. HwangI.G. KimT.M. HwangB.Y. LeeU.S. JeongH.S. YoonY.W. KimD.J. HongJ.T. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-κB in Human Colon Cancer Cells.Arch. Pharm. Res.200730111455146310.1007/BF02977371 18087815
    [Google Scholar]
  104. ZhaoM. ChenQ. XuW. WangH. CheY. WuM. WangL. LijuanC. HaoH. Total ginsenosides extract induce autophagic cell death in NSCLC cells through activation of endoplasmic reticulum stress.J. Ethnopharmacol.201924311209310.1016/j.jep.2019.112093 31325602
    [Google Scholar]
  105. YanJ. DouX. ZhouJ. XiongY. MoL. LiL. LeiY. Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation.J. Exp. Clin. Cancer Res.201938135310.1186/s13046‑019‑1355‑0 31412953
    [Google Scholar]
  106. FuR. ZhangL. LiY. LiB. MingY. LiZ. XingH. ChenJ. Saikosaponin D inhibits autophagosome lysosome fusion and induces autophagy independent apoptosis in MDA MB 231 breast cancer cells.Mol. Med. Rep.20202221026103410.3892/mmr.2020.11155 32468000
    [Google Scholar]
  107. KingM.L. MurphyL.L. Role of cyclin inhibitor protein p21 in the inhibition of HCT116 human colon cancer cell proliferation by American ginseng (Panax quinquefolius) and its constituents.Phytomedicine2010173-426126810.1016/j.phymed.2009.06.008 19674880
    [Google Scholar]
  108. MallickS. GhoshP. SamantaS.K. KinraS. PalB.C. GomesA. VedasiromoniJ.R. Corchorusin-D, a saikosaponin-like compound isolated from Corchorus acutangulus Lam., targets mitochondrial apoptotic pathways in leukemic cell lines (HL-60 and U937).Cancer Chemother. Pharmacol.201066470971910.1007/s00280‑009‑1214‑3 20033811
    [Google Scholar]
  109. HwangY.S. ParkK.K. ChungW.Y. Kalopanaxsaponin A inhibits the invasion of human oral squamous cell carcinoma by reducing metalloproteinase-9 mRNA stability and protein trafficking.Biol. Pharm. Bull.201235328930010.1248/bpb.35.289 22382313
    [Google Scholar]
  110. MallickS. PalB.C. VedasiromoniJ.R. KumarD. SahaK.D. Corchorusin-D directed apoptosis of K562 cells occurs through activation of mitochondrial and death receptor pathways and suppression of AKT/PKB pathway.Cell. Physiol. Biochem.201230491592610.1159/000341469 22965801
    [Google Scholar]
  111. ShinD.Y. KimG.Y. LiW. ChoiB.T. KimN.D. KangH.S. ChoiY.H. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells.Biomed. Pharmacother.2009632869410.1016/j.biopha.2008.08.001 18804340
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266315197241015101801
Loading
/content/journals/ctmc/10.2174/0115680266315197241015101801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test