Skip to content
2000
image of An Insight into the Structure-Activity Relationship of Benzimidazole and Pyrazole Derivatives as Anticancer Agents

Abstract

Introduction

Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.

Objective

This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.

Method

The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.

Result

Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.

Conclusion

Structure-Activity Relationship (SAR) studies can help in developing pyrazole-benzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266343336241021080438
2024-10-31
2025-01-29
Loading full text...

Full text loading...

References

  1. Cancer Today. Available from:https://gco.iarc.fr/en(accessed on 8-10-2024)
  2. Available from:https://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm#:~:text=Lung%20diseases%20caused%20by%20smoking,includes%20emphysema%20and%20chronic%20bronchitis.&text=Cigarette%20smoking%20causes%20most%20cases%20of%20lung%20cancer.&text=If%20you%20have%20asthma%2C%20tobacco,or%20make%20an%20attack%20worse.&text=Smokers%20are%2012%20to%2013,die%20from%20COPD%20than%20nonsmokers(accessed on 24-May-2024)
  3. Obesity and cancer. Available from:https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet(accessed on 8-10-2024)
  4. Goding A. Fedewa A. Bandi P. Minihan K. Stoklosa M. Drope J. Gapstur M. Jemal A. Islami F. The proportion of cancer cases and deaths attributable to alcohol consumption by US state. 2013-2016. Cancer epidemiol. 2021 71 Pt A 101893 10.1016/j.canep.2021.101893
    [Google Scholar]
  5. Nichols L. Saunders R. Knollmann F.D. Causes of death of patients with lung cancer. Arch. Pathol. Lab. Med. 2012 136 12 1552 1557 10.5858/arpa.2011‑0521‑OA 23194048
    [Google Scholar]
  6. Breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer#:~:text=Certain%20factors%20increase%20the%20risk,use%20and%20postmenopausal%20hormone%20therapy(accessed on 8-10-2024)
  7. Lou T. Hu X. Lu N. Zhang T. Causes of death following gastric cancer diagnosis: A population-based analysis. Med. Sci. Monit. 2023 29 e939848 10.12659/MSM.939848
    [Google Scholar]
  8. Milena I. Epidemiology of stomach cancer. World J Gastroenterol. 2022 28 12 1187 1203 10.3748/wjg.v28.i12.1187
    [Google Scholar]
  9. Available from:https://www.who.int/health-topics/cancer#tab=tab_1%20cancer(accessed on 8-10-2024)
  10. Available from:https://www.mayoclinic.org/tests-procedures/chemotherapy/about/pac 20385033#:~:text=Chemotherapy%20is%20used%20to%20kill(accessed on 8-10-2024)
  11. Jin C. Lang B. Hormone replacement therapy and lung cancer risk in women: a meta-analysis of cohort studies. Medicine (Baltimore) 2019 98 51 e17532 10.1097/MD.0000000000017532 31860945
    [Google Scholar]
  12. Chemotherpy. Available from:https://www.mayoclinic.org/tests-procedures/chemotherapy/about/pac-20385033#:~:text=Chemotherapy%20is%20used%20to%20kill,or%20sole%20treatment%20for%20cancer(accessed on 8-10-2024)
  13. Cancer surgery: Physically removing cancer. Available from:https://www.mayoclinic.org/diseases-conditions/cancer/in-depth/cancer-surgery/art-20044171#:~:text=When%20it's%20possible%2C%20the%20goal,if%20they%20contain%20cancer%20cells(accessed on 8-10-2024)
  14. Kaye S.B. New antimetabolites in cancer chemotherapy and their clinical impact. Br. J. Cancer 1998 78 S3 Suppl. 3 1 7 10.1038/bjc.1998.747 9717984
    [Google Scholar]
  15. Ralhan R. Kaur J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat. 2007 17 9 1061 1075 10.1517/13543776.17.9.1061
    [Google Scholar]
  16. Gao Y. Shang Q. Li W. Guo W. Stojadinovic A. Mannion C. Man YG. Chen T. Antibiotics for cancer treatment: A double-edged sword. J. Cance. 2020 11 17 5135 5149 10.7150/jca.47470
    [Google Scholar]
  17. Hossain M. Habib I. Singha K. Kumar A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024 10 1 e23172 10.1016/j.heliyon.2023.e23172 38163206
    [Google Scholar]
  18. Kaur K. Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer. Agents Med. Chem. 2019 19 8 962 983 10.2174/1871520619666190312125602 30864529
    [Google Scholar]
  19. Aljuhani E. Aljohani M.M. Alsoliemy A. Shah R. Abumelha H.M. Saad F.A. Hossan A. Al-Ahmed Z.A. Alharbi A. El-Metwaly N.M. Synthesis and characterization of Cu(II)-pyrazole complexes for possible anticancer agents; conformational studies as well as compatible in-silico and in-vitro assays. Heliyon 2021 7 11 e08485 10.1016/j.heliyon.2021.e08485 34901511
    [Google Scholar]
  20. Kassem A.F. Althomali R.H. Anwar M.M. El-Sofany W.I. Thiazole moiety: A promising scaffold for anticancer drug discovery. J. Mol. Struct. 2024 1303 137510 10.1016/j.molstruc.2024.137510
    [Google Scholar]
  21. Avvaru S.P. Noolvi M.N. More U.A. Chakraborty S. Dash A. Aminabhavi T.M. Narayan K.P. Sutariya V. Synthesis and Anticancer Activity of Thiadiazole Containing Thiourea, Benzothiazole and Imidazo[2,1-b][1,3,4]thiadiazole Scaffolds. Med. Chem. 2021 17 7 750 765 10.2174/1573406416666200519085626 32427086
    [Google Scholar]
  22. Satija G. Sharma B. Madan A. Iqubal A. Shaquiquzzaman M. Akhter M. Parvez S. Khan M.A. Alam M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem. 2022 59 1 22 66 10.1002/jhet.4355
    [Google Scholar]
  23. Mohamed M.F.A. Abuo-Rahma G.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: literature review. RSC Advances 2020 10 52 31139 31155 10.1039/D0RA05594H 35520674
    [Google Scholar]
  24. Nammalwar B. Bunce R.A. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024 17 1 104 10.3390/ph17010104 38256937
    [Google Scholar]
  25. Narasimhamurthy K. Kallesha N. Mohan C. Rangappa K. Anticancer Functions of Pyridine Heterocycles. Cytotoxicity—Understanding Cellular Damage and Response. Sukumaran A. Ahmed Mansour M. IntechOpen 2023 10.5772/intechopen.106156
    [Google Scholar]
  26. Kumar A. Singh A.K. Singh H. Vijayan V. Kumar D. Naik J. Thareja S. Yadav J.P. Pathak P. Grishina M. Verma A. Khalilullah H. Jaremko M. Emwas A.H. Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023 16 2 299 10.3390/ph16020299 37259442
    [Google Scholar]
  27. Rashad A.E. Hegab M.I. Abdel-Megeid R.E. Micky J.A. Abdel-Megeid F.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem. 2008 16 15 7102 7106 10.1016/j.bmc.2008.06.054 18635363
    [Google Scholar]
  28. Radwan M.O. Toma T. Arakaki Y. Kamo M. Inoue N. Koga R. Otsuka M. Tateishi H. Fujita M. New insight into the bioactivity of substituted benzimidazole derivatives: Repurposing from anti-HIV activity to cell migration inhibition targeting hnRNP M. Bioorg. Med. Chem. 2023 86 117294 10.1016/j.bmc.2023.117294 37141680
    [Google Scholar]
  29. Rastija V. Vrandečić K. Ćosić J. Kanižai Šarić G. Majić I. Agić D. Šubarić D. Karnaš M. Bešlo D. Brahmbhatt H. Komar M. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria. Int. J. Mol. Sci. 2023 24 11 9335 10.3390/ijms24119335 37298285
    [Google Scholar]
  30. Di̇k B. Coşkun D. Bahçi̇van E. Üney K. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats. Turk. J. Med. Sci. 2021 51 3 1578 1585 10.3906/sag‑2004‑38
    [Google Scholar]
  31. Haider K. Shahar Yar M. Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside. Biochemistry 2022 34 10.5772/intechopen.101702
    [Google Scholar]
  32. A Alam M. Antibacterial pyrazoles: tackling resistant bacteria. Future Med. Chem. 2022 14 5 343 362 10.4155/fmc‑2021‑0275 35050719
    [Google Scholar]
  33. Gaba M. Singh S. Mohan C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 2014 76 494 505 10.1016/j.ejmech.2014.01.030 24602792
    [Google Scholar]
  34. Noor A. Qazi N.G. Nadeem H. Khan A. Paracha R.Z. Ali F. Saeed A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J. 2017 11 1 85 10.1186/s13065‑017‑0314‑0 29086868
    [Google Scholar]
  35. Sagam R.R. Nukala S.K. Nagavath R. Sirassu N. Mohammod M. Manchal R. Thirukovela N.S. Synthesis of new morpholine-benzimidazole-pyrazole hybrids as tubulin polymerization inhibiting anticancer agents. J. Mol. Struct. 2022 1268 133692 10.1016/j.molstruc.2022.133692
    [Google Scholar]
  36. Clinical Trials Using Bendamustine Hydrochloride. Available from: https://www.cancer.gov/research/participate/clinical-trials/intervention/bendamustine-hydrochloride(accessed on 8-10-2024)
  37. Zhang Y. Wu C. Zhang N. Fan R. Ye Y. Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2023 24 16 12724 10.3390/ijms241612724 37628906
    [Google Scholar]
  38. Iwamoto K. Uehara Y. Inoue Y. Taguchi K. Muraoka D. Ogo N. Matsuno K. Asai A. Inhibition of STAT3 by Anticancer Drug Bendamustine. PLoS One 2017 12 1 e0170709 10.1371/journal.pone.0170709 28125678
    [Google Scholar]
  39. Prota A.E. Danel F. Bachmann F. Bargsten K. Buey R.M. Pohlmann J. Reinelt S. Lane H. Steinmetz M.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol. 2014 426 8 1848 1860 10.1016/j.jmb.2014.02.005 24530796
    [Google Scholar]
  40. Available from: https://go.drugbank.com/drugs/DB12001(accessed on 8-10-2024)
  41. Available from: https://go.drugbank.com/drugs/DB11689(accessed on 8-10-2024)
  42. Available from: https://go.drugbank.com/drugs/DB11967(accessed on 8-10-2024)
  43. Zhou W. Zhang X. Cheng C. Wang F. Wang X. Liang Y. To K.K.W. Zhou W. Huang H. Fu L. Crizotinib (PF‐02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P‐glycoprotein. Br. J. Pharmacol. 2012 166 5 1669 1683 10.1111/j.1476‑5381.2012.01849.x 22233293
    [Google Scholar]
  44. Prabhash K. Noronha V. Joshi A. Desai S. Sahu A. Crizotinib: A comprehensive review. South Asian J. Cancer 2013 2 2 91 97 10.4103/2278‑330X.110506 24455567
    [Google Scholar]
  45. He A.R. Cohen R.B. Denlinger C.S. Sama A. Birnbaum A. Hwang J. Sato T. Lewis N. Mynderse M. Niland M. Giles J. Wallin J. Moser B. Zhang W. Walgren R. Plimack E.R. First-in-Human Phase I Study of Merestinib, an Oral Multikinase Inhibitor, in Patients with Advanced Cancer. Oncologist 2019 24 9 e930 e942 10.1634/theoncologist.2018‑0411
    [Google Scholar]
  46. Konicek B.W. Capen A.R. Credille K.M. Ebert P.J. Falcon B.L. Heady G.L. Patel B.K.R. Peek V.L. Stephens J.R. Stewart J.A. Stout S.L. Timm D.E. Um S.L. Willard M.D. Wulur I.H. Zeng Y. Wang Y. Walgren R.A. Betty Yan S.C. Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors. Oncotarget 2018 9 17 13796 13806 10.18632/oncotarget.24488 29568395
    [Google Scholar]
  47. Available from: https://go.drugbank.com/drugs/DB08895(accessed on 8-10-2024)
  48. Maitland M.L. Piha-Paul S. Falchook G. Kurzrock R. Nguyen L. Janisch L. Karovic S. McKee M. Hoening E. Wong S. Munasinghe W. Palma J. Donawho C. Lian G.K. Ansell P. Ratain M.J. Hong D. Clinical pharmacodynamic/exposure characterisation of the multikinase inhibitor ilorasertib (ABT-348) in a phase 1 dose-escalation trial. Br. J. Cancer 2018 118 8 1042 1050 10.1038/s41416‑018‑0020‑2 29551775
    [Google Scholar]
  49. El Rashedy A.A. Aboul-Enein H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem. 2013 13 3 399 407 10.2174/1389557511313030008 23190032
    [Google Scholar]
  50. Lee Y.T. Tan Y.J. Oon C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B 2023 13 2 478 497 10.1016/j.apsb.2022.09.010 36873180
    [Google Scholar]
  51. Available from:https://www.cancer.gov/about-cancer/treatment/types/targeted therapies#:~:text=Targeted%20therapy%20is%20a%20type(accessed on 8-10-2024) 2024
  52. Hartley J.A. Reszka K. Zuo E.T. Wilson W.D. Morgan A.R. Lown J.W. Characteristics of the interaction of anthrapyrazole anticancer agents with deoxyribonucleic acids: structural requirements for DNA binding, intercalation, and photosensitization. Mol. Pharmacol. 1988 33 3 265 271 3352592
    [Google Scholar]
  53. Santos N.E. Carreira A.R.F. Silva V.L.M. Braga S.S. Natural and Biomimetic Antitumor Pyrazoles, A Perspective. Molecules 2020 25 6 1364 10.3390/molecules25061364 32192149
    [Google Scholar]
  54. Ali A.M. Tawfik S.S. Mostafa A.S. Massoud M.A.M. Benzimidazole‐based protein kinase inhibitors: Current perspectives in targeted cancer therapy. Chem. Biol. Drug Des. 2022 100 5 656 673 10.1111/cbdd.14130 35962624
    [Google Scholar]
  55. Błaszczak-Świątkiewicz K. Sikora J. Szymański J. Danilewicz M. Mikiciuk-Olasik E. Biological evaluation of the toxicity and the cell cycle interruption by some benzimidazole derivatives. Tumour Biol. 2016 37 8 11135 11145 10.1007/s13277‑016‑4828‑1 26932526
    [Google Scholar]
  56. 2024 Available from:https://www.cancer.gov/about-cancer/treatment/types/targeted therapies#:~:text=Targeted%20therapy%20is%20a%20type(accessed on 8-10-2024)
  57. Choudhary S. Arora M. Verma H. Kumar M. Silakari O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur. J. Pharmacol. 2021 899 174027 10.1016/j.ejphar.2021.174027 33731294
    [Google Scholar]
  58. Nafiz C. Pharmacological and toxicological screening of novel benzimidazole-morpholine derivatives as dual-acting inhibitors. Molecules. 2024 22 1374
    [Google Scholar]
  59. Anuta V. Nitulescu G. Dinu-Pîrvu C. Olaru O. Biopharmaceutical profiling of new antitumor pyrazole derivatives. Molecules 2014 19 10 16381 16401 10.3390/molecules191016381 25314601
    [Google Scholar]
  60. Song B. Park E.Y. Kim K.J. Ki S.H. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022 14 19 4601 10.3390/cancers14194601 36230527
    [Google Scholar]
  61. Feng L.S. Su W.Q. Cheng J.B. Xiao T. Li H.Z. Chen D.A. Zhang Z.L. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure–activity relationship, and mechanisms of action (2019–2021). Arch. Pharm. (Weinheim) 2022–2021 355 6 2200051 10.1002/ardp.202200051 35385159
    [Google Scholar]
  62. Szumilak M. Wiktorowska-Owczarek A. Stanczak A. Hybrid Drugs—A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021 26 9 2601 10.3390/molecules26092601 33946916
    [Google Scholar]
  63. Upadhyay N. Tilekar K. Loiodice F. Anisimova N.Y. Spirina T.S. Sokolova D.V. Smirnova G.B. Choe J. Meyer-Almes F.J. Pokrovsky V.S. Lavecchia A. Ramaa C.S. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg. Chem. 2021 107 104527 10.1016/j.bioorg.2020.104527 33317839
    [Google Scholar]
  64. Patil S. Bhandari S. A Review: Discovering 1,3,4-oxadiazole and Chalcone Nucleus for Cytotoxicity / EGFR Inhibitory Anticancer Activity. Mini Rev. Med. Chem. 2022 22 5 805 820 10.2174/1389557521666210902160644 34477516
    [Google Scholar]
  65. Sampath Kumar H.M. Herrmann L. Tsogoeva S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020 30 23 127514 10.1016/j.bmcl.2020.127514 32860980
    [Google Scholar]
  66. Ivasiv V. Albertini C. Gonçalves A.E. Rossi M. Bolognesi M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr. Top. Med. Chem. 2019 19 19 1694 1711 10.2174/1568026619666190619115735 31237210
    [Google Scholar]
  67. Harrison J.R. Brand S. Smith V. Robinson D.A. Thompson S. Smith A. Davies K. Mok N. Torrie L.S. Collie I. Hallyburton I. Norval S. Simeons F.R.C. Stojanovski L. Frearson J.A. Brenk R. Wyatt P.G. Gilbert I.H. Read K.D. A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N -Myristoyltransferase Inhibitors. J. Med. Chem. 2018 61 18 8374 8389 10.1021/acs.jmedchem.8b00884 30207721
    [Google Scholar]
  68. Tahlan S. Kumar S. Kakkar S. Narasimhan B. Benzimidazole scaffolds as promising antiproliferative agents: a review. BMC Chem. 2019 13 1 66 10.1186/s13065‑019‑0579‑6 31384813
    [Google Scholar]
  69. Pevarello P. Brasca M.G. Orsini P. Traquandi G. Longo A. Nesi M. Orzi F. Piutti C. Sansonna P. Varasi M. Cameron A. Vulpetti A. Roletto F. Alzani R. Ciomei M. Albanese C. Pastori W. Marsiglio A. Pesenti E. Fiorentini F. Bischoff J.R. Mercurio C. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization. J. Med. Chem. 2005 48 8 2944 2956 10.1021/jm0408870 15828833
    [Google Scholar]
  70. Kryštof V. Cankař P. Fryšová I. Slouka J. Kontopidis G. Džubák P. Hajdúch M. Srovnal J. de Azevedo W.F. Jr Orság M. Paprskářová M. Rolčík J. Látr A. Fischer P.M. Strnad M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J. Med. Chem. 2006 49 22 6500 6509 10.1021/jm0605740 17064068
    [Google Scholar]
  71. Hai S.X. Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Euro. J. Med. Chem. 2013 68 1e9 10.1016/j.ejmech.2013.07.003
    [Google Scholar]
  72. Ravula P. Vamaraju H.B. Paturi M. Chandra Jn N.S. Kolli S. Design, synthesis, in silico toxicity prediction, molecular docking, and evaluation of novel pyrazole derivatives as potential antiproliferative agents. EXCLI J. 2016 15 187 202 10.17179/excli2016‑103 27103897
    [Google Scholar]
  73. Khan I. Garikapati K.R. Shaik A.B. Makani V.K.K. Rahim A. Shareef M.A. Reddy V.G. Pal-Bhadra M. Kamal A. Kumar C.G. Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c ] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis. Eur. J. Med. Chem. 2018 144 104 115 10.1016/j.ejmech.2017.12.010 29268127
    [Google Scholar]
  74. Dai H. Ge S. Guo J. Chen S. Huang M. Yang J. Sun S. Ling Y. Shi Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem. 2018 143 1066 1076 10.1016/j.ejmech.2017.11.098 29232583
    [Google Scholar]
  75. Ibrahim D. Radini I. Khidre R. Design, Synthesis And Biological Estimation Of Innovative Pyrazoles As Anticancer Agents Targeting Cdk2. Acta Poloniae Pharmaceutical-. Drug Res. 2019 76 3 453 468 10.32383/appdr/102651‑
    [Google Scholar]
  76. Oudah K.H. Najm M.A.A. Samir N. Serya R.A.T. Abouzid K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem. 2019 92 103239 10.1016/j.bioorg.2019.103239 31513938
    [Google Scholar]
  77. Ghada M.E. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity. Bioorg. Chem. 2019 86 1 14 10.1016/j.bioorg.2019.01.008
    [Google Scholar]
  78. Dawood D.H. Nossier E.S. Ali M.M. Mahmoud A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem. 2020 101 103916 10.1016/j.bioorg.2020.103916 32559576
    [Google Scholar]
  79. Ramadan S.K. El-Ziaty A.K. Ali R.S. Synthesis, antiproliferative activity, and molecular docking of some N ‐heterocycles bearing a pyrazole scaffold against liver and breast tumors. J. Heterocycl. Chem. 2021 58 1 290 304 10.1002/jhet.4168
    [Google Scholar]
  80. Çinar Başaran, R.; Erdogan; Çakmak; Boga; Çevik. Synthesis and biological evaluation of some pyrazolone based Schiff base derivatives as enzymes inhibitors, antioxidant, and anticancer agents. Research square 10.21203/rs.3.rs‑540190/v1
    [Google Scholar]
  81. Eldehna M. Design, synthesis, in vitro biological assessment and molecular modeling insights for novel 3-(naphthalen-1-yl) -4, 5-dihydropyrazoles as anticancer agents with potential EGFR inhibitory activity. Scientifc Rep. 2022 12 12821 10.1038/s41598‑022‑15050‑8
    [Google Scholar]
  82. Elzahabi H.S.A. Nossier E.S. Alasfoury R.A. El-Manawaty M. Sayed S.M. Elkaeed E.B. Metwaly A.M. Hagras M. Eissa I.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem. 2022 37 1 1053 1076 10.1080/14756366.2022.2062752 35821615
    [Google Scholar]
  83. Gellis A. Kovacic H. Boufatah N. Vanelle P. Synthesis and cytotoxicity evaluation of some benzimidazole-4,7-diones as bioreductive anticancer agents. Eur. J. Med. Chem. 2008 43 9 1858 1864 10.1016/j.ejmech.2007.11.020 18222567
    [Google Scholar]
  84. Li Y. Tan C. Gao C. Zhang C. Luan X. Chen X. Liu H. Chen Y. Jiang Y. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg. Med. Chem. 2011 19 15 4529 4535 10.1016/j.bmc.2011.06.022
    [Google Scholar]
  85. Husain A. Rashid M. Shaharyar M. Siddiqui A.A. Mishra R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents. Eur. J. Med. Chem. 2013 62 785 798 10.1016/j.ejmech.2012.07.011 23333063
    [Google Scholar]
  86. Bharath K. Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents. Med. Chem. Commun. 2015 6 606 612
    [Google Scholar]
  87. Nofal, z.; Soliman, A.; El-Karim, S.; El-Zahar; Srour; Sethumadhavan, S.; Timothy J. Synthesis of Some New Benzimidazole–Thiazole Derivatives as Anticancer Agents. J. Heterocycl. Chem. 2014 000 10.1002/jhet
    [Google Scholar]
  88. Acar Çevik U. Sağlık B.N. Ardıç C.M. Özkay Y. Atlı Ö. Çevik Synthesis and evaluation of new benzimidazole derivatives with hydrazone moiety as anticancer agents. Turk Biyokim. Derg. 2018 43 2 151 158 10.1515/tjb‑2017‑0167
    [Google Scholar]
  89. Bistrović A. Krstulović L. Harej A. Grbčić P. Sedić M. Koštrun S. Pavelić S.K. Bajić M. Raić-Malić S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem. 2018 143 1616 1634 10.1016/j.ejmech.2017.10.061
    [Google Scholar]
  90. Cheng-Ying Pi-Wen, K.; Yu-Jui; Chang; Kapoor, M.; Yu-Chuan, L.; Hsueh-Liang, C.; Hui-Hsien, L.; Jia-Cherng, H.; Ming-Hua, H. Molecules 2019 24 3259 10.3390/molecules24183259
    [Google Scholar]
  91. Ibrahim H.S. Albakri M.E. Mahmoud W.R. Allam H.A. Reda A.M. Abdel-Aziz H.A. Synthesis and biological evaluation of some novel thiobenzimidazole derivatives as anti-renal cancer agents through inhibition of c-MET kinase. Bioorg. Chem. 2019 85 337 348 10.1016/j.bioorg.2019.01.006 30658233
    [Google Scholar]
  92. Güner A. Polatli E. Akkan T. Bektaş H. Albay C. Anticancer and antiangiogenesis activities of novel synthesized 2-substitutedbenzimidazoles molecules. Turk. J. Chem. 2019 43 5 1270 1289 10.3906/kim‑1904‑46
    [Google Scholar]
  93. Morcoss M.M. Novel benzimidazole/hydrazone derivatives as promising anticancer lead compounds: design, synthesis, and molecular docking study. JABPS 2020 3 2 45 52 10.21608/jabps.2020.21160.1064
    [Google Scholar]
  94. Acar Çevik U. Sağlık B.N. Osmaniye D. Levent S. Kaya Çavuşoğlu B. Karaduman A.B. Atlı Eklioğlu Ö. Özkay Y. Kaplancıklı Z.A. Çevik Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison. J. Enzyme Inhib. Med. Chem. 2020 35 1 1657 1673 10.1080/14756366.2020.1806831 32811204
    [Google Scholar]
  95. Zhou W. Zhang W. Peng Y. Jiang Z.H. Zhang L. Du Z. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase ii catalytic inhibitors. Molecules 2020 25 14 3180 10.3390/molecules25143180
    [Google Scholar]
  96. Sana S. Reddy V.G. Srinivasa Reddy T. Tokala R. Kumar R. Bhargava S.K. Shankaraiah N. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies. Bioorg. Chem. 2021 110 May 104765 10.1016/j.bioorg.2021.104765 33677248
    [Google Scholar]
  97. Katikireddy R. Marri S. Kakkerla R. Synthesis, anticancer activity and molecular docking studies of hybrid benzimidazole-1,3,4-oxadiazol-2-n-alkyl/aryl amines. Polycyclic Aromatic Comp. 2021 42 9 5855 5869 10.1080/10406638.2021.1959352
    [Google Scholar]
  98. Sireesha R. Sreenivasulu R. Chandrasekhar C. Jadav S.S. Pavani Y. Rao M.V.B. Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J. Mol. Struct. 2021 1226 129351 10.1016/j.molstruc.2020.129351
    [Google Scholar]
  99. Ren B. Liu R.C. Ji K. Tang J.J. Gao J.M. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2021 43 128097 10.1016/j.bmcl.2021.128097 33979690
    [Google Scholar]
  100. El-Galil H.E. New benzimidazole-, 1,2,4-triazole-, and 1,3,5-triazine-based derivatives as potential egfrwt and egfrt790m inhibitors: microwave-assisted synthesis, anticancer evaluation, and moleculardocking study. Am. Chem. Soc. 2022 7 7155 7171
    [Google Scholar]
  101. Krishna G. Synthesis of novel benzimidazole-pyrazoline hybrid molecules as antibacterial and anticancer agent. Behera J. Pharmaceut. Negative Res. 2023 14 Special issue 1 2023521
    [Google Scholar]
  102. Zheng Y. Zheng M. Ling X. Liu Y. Xue Y. An L. Gu N. Jin M. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole–benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg. Med. Chem. Lett. 2013 23 12 3523 3530 10.1016/j.bmcl.2013.04.039 23664099
    [Google Scholar]
  103. Reddy T.S. Kulhari H. Reddy V.G. Bansal V. Kamal A. Shukla R. Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem. 2015 101 790 805 10.1016/j.ejmech.2015.07.031 26231080
    [Google Scholar]
  104. Galal S.A. Abdelsamie A.S. Shouman S.A. Attia Y.M. Ali H.I. Tabll A. El-Shenawy R. El Abd Y.S. Ali M.M. Mahmoud A.E. Abdel-Halim A.H. Fyiad A.A. Girgis A.S. El-Diwani H.I. Part I. Part I: Design, synthesis and biological evaluation of novel pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors with studying their activities alone and in combination with genotoxic drugs. Eur. J. Med. Chem. 2017 134 392 405 10.1016/j.ejmech.2017.03.090 28433679
    [Google Scholar]
  105. Akhtar M.J. Khan A.A. Ali Z. Dewangan R.P. Rafi M. Hassan M.Q. Akhtar M.S. Siddiqui A.A. Partap S. Pasha S. Yar M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem. 2018 78 158 169 10.1016/j.bioorg.2018.03.002 29571113
    [Google Scholar]
  106. Ashok D. Ram Reddy M. Nagaraju N. Dharavath R. Ramakrishna K. Gundu S. Shravani P. Sarasija M. Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives. Med. Chem. Res. 2020 29 4 699 706 10.1007/s00044‑020‑02515‑6
    [Google Scholar]
  107. Sivaramakarthikeyan R. Iniyaval S. Saravanan V. Lim W.M. Mai C.W. Ramalingan C. Molecular Hybrids Integrated with Benzimidazole and Pyrazole Structural Motifs: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. ACS Omega 2020 5 17 10089 10098 10.1021/acsomega.0c00630 32391496
    [Google Scholar]
  108. Yamani A. Zdżalik-Bielecka D. Lipner J. Stańczak A. Piórkowska N. Stańczak P. Olejkowska P. Hucz-Kalitowska J. Magdycz M. Dzwonek K. Dubiel K. Lamparska-Przybysz M. opiel, D.; Pieczykolan, J.; Wieczorek, M. Discovery and optimization of novel pyrazole-benzimidazole CPL304110, as a potent and selective inhibitor of fibroblast growth factor receptors FGFR. Eur. J. Med. Chem. 2021 210 112990 10.1016/j.ejmech.2020.112990 33199155
    [Google Scholar]
  109. Azimi A. Najaf M. Khodarahmi S. Hassanzadeh G. Ali M. Bagher F. Mahdavi M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole benzofuran hybrids as new α glucosidase inhibitor. Sci. Rep. 2021 11 20776 10.1038/s41598‑021‑99899‑1
    [Google Scholar]
  110. Siddig L.A. Khasawneh M.A. Samadi A. Saadeh H. Abutaha N. Wadaan M.A. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. Open Chem. 2021 19 1 1062 1073 10.1515/chem‑2021‑0093
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266343336241021080438
Loading
/content/journals/ctmc/10.2174/0115680266343336241021080438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test