Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.

Objectives

This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.

Methods

The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.

Results

Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.

Conclusion

Structure-Activity Relationship (SAR) studies can help in developing pyrazole-benzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266343336241021080438
2024-10-31
2025-05-12
Loading full text...

Full text loading...

References

  1. Cancer Today.Available from:https://gco.iarc.fr/en(accessed on 8-10-2024)
  2. Available from:https://www.cdc.gov/tobacco(accessed on 24-May-2024)
  3. Obesity and cancer.Available from:https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet(accessed on 8-10-2024)
  4. GodingA. FedewaA. BandiP. MinihanK. StoklosaM. DropeJ. GapsturM. JemalA. IslamiF. The proportion of cancer cases and deaths attributable to alcohol consumption by US state. 2013-2016.Cancer epidemiol.202171Pt A10189310.1016/j.canep.2021.101893
    [Google Scholar]
  5. NicholsL. SaundersR. KnollmannF.D. Causes of death of patients with lung cancer.Arch. Pathol. Lab. Med.2012136121552155710.5858/arpa.2011‑0521‑OA23194048
    [Google Scholar]
  6. Breast cancer.Available from: https://www.who.int(accessed on 8-10-2024)
  7. LouT. HuX. LuN. ZhangT. Causes of death following gastric cancer diagnosis: A population-based analysis.Med. Sci. Monit.202329e93984810.12659/MSM.939848
    [Google Scholar]
  8. MilenaI. Epidemiology of stomach cancer.World J Gastroenterol.202228121187120310.3748/wjg.v28.i12.1187
    [Google Scholar]
  9. Available from:https://www.who.int/health-topics/cancer#tab=tab_1%20cancer(accessed on 8-10-2024)
  10. Available from:https://www.mayoclinic.org(accessed on 8-10-2024)
  11. JinC. LangB. Hormone replacement therapy and lung cancer risk in women: a meta-analysis of cohort studies.Medicine (Baltimore)20199851e1753210.1097/MD.000000000001753231860945
    [Google Scholar]
  12. Chemotherpy.Available from:https://www.mayoclinic.org/testsprocedures/ chemotherapy/about/pac- 20385033#:~:text=Chemotherapy%20is%20used%20to%20kill,or %20sole%20treatment%20for%20cancer((accessed on 8-10-2024)
  13. Cancer surgery: Physically removing cancer.Available from:https://www.mayoclinic.org/diseases-conditions/cancer/in-depth/cancer-surgery/art-20044171#:~:text=When%20it's%20possible%2C%20the%20goal,if%20they%20contain%20cancer%20cells(accessed on 8-10-2024)
  14. KayeS.B. New antimetabolites in cancer chemotherapy and their clinical impact.Br. J. Cancer199878S3Suppl. 31710.1038/bjc.1998.7479717984
    [Google Scholar]
  15. RalhanR. KaurJ. Alkylating agents and cancer therapy.Expert Opin. Ther. Pat.20071791061107510.1517/13543776.17.9.1061
    [Google Scholar]
  16. GaoY. ShangQ. LiW. GuoW. StojadinovicA. MannionC. ManYG. ChenT. Antibiotics for cancer treatment: A double-edged sword.J. Cance.202011175135514910.7150/jca.47470
    [Google Scholar]
  17. HossainM. HabibI. SinghaK. KumarA. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect.Heliyon2024101e2317210.1016/j.heliyon.2023.e2317238163206
    [Google Scholar]
  18. KaurK. JaitakV. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer.Anticancer. Agents Med. Chem.201919896298310.2174/187152061966619031212560230864529
    [Google Scholar]
  19. AljuhaniE. AljohaniM.M. AlsoliemyA. ShahR. AbumelhaH.M. SaadF.A. HossanA. Al-AhmedZ.A. AlharbiA. El-MetwalyN.M. Synthesis and characterization of Cu(II)-pyrazole complexes for possible anticancer agents; conformational studies as well as compatible in-silico and in-vitro assays.Heliyon2021711e0848510.1016/j.heliyon.2021.e0848534901511
    [Google Scholar]
  20. KassemA.F. AlthomaliR.H. AnwarM.M. El-SofanyW.I. Thiazole moiety: A promising scaffold for anticancer drug discovery.J. Mol. Struct.2024130313751010.1016/j.molstruc.2024.137510
    [Google Scholar]
  21. AvvaruS.P. NoolviM.N. MoreU.A. ChakrabortyS. DashA. AminabhaviT.M. NarayanK.P. SutariyaV. Synthesis and Anticancer Activity of Thiadiazole Containing Thiourea, Benzothiazole and Imidazo[2,1-b][1,3,4]thiadiazole Scaffolds.Med. Chem.202117775076510.2174/157340641666620051908562632427086
    [Google Scholar]
  22. SatijaG. SharmaB. MadanA. IqubalA. ShaquiquzzamanM. AkhterM. ParvezS. KhanM.A. AlamM.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets.J. Heterocycl. Chem.2022591226610.1002/jhet.4355
    [Google Scholar]
  23. MohamedM.F.A. Abuo-RahmaG.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: literature review.RSC Advances20201052311393115510.1039/D0RA05594H35520674
    [Google Scholar]
  24. NammalwarB. BunceR.A. Recent Advances in Pyrimidine-Based Drugs.Pharmaceuticals (Basel)202417110410.3390/ph1701010438256937
    [Google Scholar]
  25. NarasimhamurthyK. KalleshaN. MohanC. RangappaK. Anticancer Functions of Pyridine Heterocycles.Cytotoxicity—Understanding Cellular Damage and Response. SukumaranA. Ahmed MansourM. IntechOpen202310.5772/intechopen.106156
    [Google Scholar]
  26. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective.Pharmaceuticals (Basel)202316229910.3390/ph1602029937259442
    [Google Scholar]
  27. RashadA.E. HegabM.I. Abdel-MegeidR.E. MickyJ.A. Abdel-MegeidF.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives.Bioorg. Med. Chem.200816157102710610.1016/j.bmc.2008.06.05418635363
    [Google Scholar]
  28. RadwanM.O. TomaT. ArakakiY. KamoM. InoueN. KogaR. OtsukaM. TateishiH. FujitaM. New insight into the bioactivity of substituted benzimidazole derivatives: Repurposing from anti-HIV activity to cell migration inhibition targeting hnRNP M.Bioorg. Med. Chem.20238611729410.1016/j.bmc.2023.11729437141680
    [Google Scholar]
  29. RastijaV. VrandečićK. ĆosićJ. Kanižai ŠarićG. MajićI. AgićD. ŠubarićD. KarnašM. BešloD. BrahmbhattH. KomarM. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria.Int. J. Mol. Sci.20232411933510.3390/ijms2411933537298285
    [Google Scholar]
  30. Di̇kB. CoşkunD. BahçıvanE. ÜneyK. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats.Turk. J. Med. Sci.20215131578158510.3906/sag‑2004‑38
    [Google Scholar]
  31. HaiderK. Shahar YarM. Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside.Biochemistry20223410.5772/intechopen.101702
    [Google Scholar]
  32. A AlamM. Antibacterial pyrazoles: tackling resistant bacteria.Future Med. Chem.202214534336210.4155/fmc‑2021‑027535050719
    [Google Scholar]
  33. GabaM. SinghS. MohanC. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents.Eur. J. Med. Chem.20147649450510.1016/j.ejmech.2014.01.03024602792
    [Google Scholar]
  34. NoorA. QaziN.G. NadeemH. KhanA. ParachaR.Z. AliF. SaeedA. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids.Chem. Cent. J.20171118510.1186/s13065‑017‑0314‑029086868
    [Google Scholar]
  35. SagamR.R. NukalaS.K. NagavathR. SirassuN. MohammodM. ManchalR. ThirukovelaN.S. Synthesis of new morpholine-benzimidazole-pyrazole hybrids as tubulin polymerization inhibiting anticancer agents.J. Mol. Struct.2022126813369210.1016/j.molstruc.2022.133692
    [Google Scholar]
  36. Clinical Trials Using Bendamustine Hydrochloride.Available from: https://www.cancer.gov/research/participate/clinical-trials/intervention/bendamustine-hydrochloride(accessed on 8-10-2024)
  37. ZhangY. WuC. ZhangN. FanR. YeY. XuJ. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents.Int. J. Mol. Sci.202324161272410.3390/ijms24161272437628906
    [Google Scholar]
  38. IwamotoK. UeharaY. InoueY. TaguchiK. MuraokaD. OgoN. MatsunoK. AsaiA. Inhibition of STAT3 by Anticancer Drug Bendamustine.PLoS One2017121e017070910.1371/journal.pone.017070928125678
    [Google Scholar]
  39. ProtaA.E. DanelF. BachmannF. BargstenK. BueyR.M. PohlmannJ. ReineltS. LaneH. SteinmetzM.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization.J. Mol. Biol.201442681848186010.1016/j.jmb.2014.02.00524530796
    [Google Scholar]
  40. Available from: https://go.drugbank.com/drugs/DB12001(accessed on 8-10-2024)
  41. Available from: https://go.drugbank.com/drugs/DB11689(accessed on 8-10-2024)
  42. Available from: https://go.drugbank.com/drugs/DB11967(accessed on 8-10-2024)
  43. ZhouW. ZhangX. ChengC. WangF. WangX. LiangY. ToK.K.W. ZhouW. HuangH. FuL. Crizotinib (PF‐02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P‐glycoprotein.Br. J. Pharmacol.201216651669168310.1111/j.1476‑5381.2012.01849.x22233293
    [Google Scholar]
  44. PrabhashK. NoronhaV. JoshiA. DesaiS. SahuA. Crizotinib: A comprehensive review.South Asian J. Cancer201322919710.4103/2278‑330X.11050624455567
    [Google Scholar]
  45. HeA.R. CohenR.B. DenlingerC.S. SamaA. BirnbaumA. HwangJ. SatoT. LewisN. MynderseM. NilandM. GilesJ. WallinJ. MoserB. ZhangW. WalgrenR. PlimackE.R. First-in-Human Phase I Study of Merestinib, an Oral Multikinase Inhibitor, in Patients with Advanced Cancer.Oncologist2019249e930e94210.1634/theoncologist.2018‑0411
    [Google Scholar]
  46. KonicekB.W. CapenA.R. CredilleK.M. EbertP.J. FalconB.L. HeadyG.L. PatelB.K.R. PeekV.L. StephensJ.R. StewartJ.A. StoutS.L. TimmD.E. UmS.L. WillardM.D. WulurI.H. ZengY. WangY. WalgrenR.A. Betty YanS.C. Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors.Oncotarget2018917137961380610.18632/oncotarget.2448829568395
    [Google Scholar]
  47. Available from: https://go.drugbank.com/drugs/DB08895(accessed on 8-10-2024)
  48. MaitlandM.L. Piha-PaulS. FalchookG. KurzrockR. NguyenL. JanischL. KarovicS. McKeeM. HoeningE. WongS. MunasingheW. PalmaJ. DonawhoC. LianG.K. AnsellP. RatainM.J. HongD. Clinical pharmacodynamic/exposure characterisation of the multikinase inhibitor ilorasertib (ABT-348) in a phase 1 dose-escalation trial.Br. J. Cancer201811881042105010.1038/s41416‑018‑0020‑229551775
    [Google Scholar]
  49. El RashedyA.A. Aboul-EneinH.Y. Benzimidazole derivatives as potential anticancer agents.Mini Rev. Med. Chem.201313339940710.2174/138955751131303000823190032
    [Google Scholar]
  50. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.01036873180
    [Google Scholar]
  51. Available from:https://www.cancer.gov/ (accessed on 8-10-2024)
  52. HartleyJ.A. ReszkaK. ZuoE.T. WilsonW.D. MorganA.R. LownJ.W. Characteristics of the interaction of anthrapyrazole anticancer agents with deoxyribonucleic acids: structural requirements for DNA binding, intercalation, and photosensitization.Mol. Pharmacol.19883332652713352592
    [Google Scholar]
  53. SantosN.E. CarreiraA.R.F. SilvaV.L.M. BragaS.S. Natural and Biomimetic Antitumor Pyrazoles, A Perspective.Molecules2020256136410.3390/molecules2506136432192149
    [Google Scholar]
  54. AliA.M. TawfikS.S. MostafaA.S. MassoudM.A.M. Benzimidazole‐based protein kinase inhibitors: Current perspectives in targeted cancer therapy.Chem. Biol. Drug Des.2022100565667310.1111/cbdd.1413035962624
    [Google Scholar]
  55. Błaszczak-ŚwiątkiewiczK. SikoraJ. SzymańskiJ. DanilewiczM. Mikiciuk-OlasikE. Biological evaluation of the toxicity and the cell cycle interruption by some benzimidazole derivatives.Tumour Biol.2016378111351114510.1007/s13277‑016‑4828‑126932526
    [Google Scholar]
  56. Available from: https://www.cancer.gov/about-cancer/treatment/ (accessed on 8-10-2024)
  57. ChoudharyS. AroraM. VermaH. KumarM. SilakariO. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile.Eur. J. Pharmacol.202189917402710.1016/j.ejphar.2021.17402733731294
    [Google Scholar]
  58. NafizC. Pharmacological and toxicological screening of novel benzimidazole-morpholine derivatives as dual-acting inhibitors.Molecules.2024221374
    [Google Scholar]
  59. AnutaV. NitulescuG. Dinu-PîrvuC. OlaruO. Biopharmaceutical profiling of new antitumor pyrazole derivatives.Molecules20141910163811640110.3390/molecules19101638125314601
    [Google Scholar]
  60. SongB. ParkE.Y. KimK.J. KiS.H. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics.Cancers (Basel)20221419460110.3390/cancers1419460136230527
    [Google Scholar]
  61. FengL.S. SuW.Q. ChengJ.B. XiaoT. LiH.Z. ChenD.A. ZhangZ.L. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure–activity relationship, and mechanisms of action (2019–2021).Arch. Pharm. (Weinheim)2022–20213556220005110.1002/ardp.20220005135385159
    [Google Scholar]
  62. SzumilakM. Wiktorowska-OwczarekA. StanczakA. Hybrid Drugs—A Strategy for Overcoming Anticancer Drug Resistance?Molecules2021269260110.3390/molecules2609260133946916
    [Google Scholar]
  63. UpadhyayN. TilekarK. LoiodiceF. AnisimovaN.Y. SpirinaT.S. SokolovaD.V. SmirnovaG.B. ChoeJ. Meyer-AlmesF.J. PokrovskyV.S. LavecchiaA. RamaaC.S. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy.Bioorg. Chem.202110710452710.1016/j.bioorg.2020.10452733317839
    [Google Scholar]
  64. PatilS. BhandariS. A Review: Discovering 1,3,4-oxadiazole and Chalcone Nucleus for Cytotoxicity / EGFR Inhibitory Anticancer Activity.Mini Rev. Med. Chem.202222580582010.2174/138955752166621090216064434477516
    [Google Scholar]
  65. Sampath KumarH.M. HerrmannL. TsogoevaS.B. Structural hybridization as a facile approach to new drug candidates.Bioorg. Med. Chem. Lett.2020302312751410.1016/j.bmcl.2020.12751432860980
    [Google Scholar]
  66. IvasivV. AlbertiniC. GonçalvesA.E. RossiM. BolognesiM.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases.Curr. Top. Med. Chem.201919191694171110.2174/156802661966619061911573531237210
    [Google Scholar]
  67. HarrisonJ.R. BrandS. SmithV. RobinsonD.A. ThompsonS. SmithA. DaviesK. MokN. TorrieL.S. CollieI. HallyburtonI. NorvalS. SimeonsF.R.C. StojanovskiL. FrearsonJ.A. BrenkR. WyattP.G. GilbertI.H. ReadK.D. A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N -Myristoyltransferase Inhibitors.J. Med. Chem.201861188374838910.1021/acs.jmedchem.8b0088430207721
    [Google Scholar]
  68. TahlanS. KumarS. KakkarS. NarasimhanB. Benzimidazole scaffolds as promising antiproliferative agents: a review.BMC Chem.20191316610.1186/s13065‑019‑0579‑631384813
    [Google Scholar]
  69. PevarelloP. BrascaM.G. OrsiniP. TraquandiG. LongoA. NesiM. OrziF. PiuttiC. SansonnaP. VarasiM. CameronA. VulpettiA. RolettoF. AlzaniR. CiomeiM. AlbaneseC. PastoriW. MarsiglioA. PesentiE. FiorentiniF. BischoffJ.R. MercurioC. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization.J. Med. Chem.20054882944295610.1021/jm040887015828833
    [Google Scholar]
  70. KryštofV. CankařP. FryšováI. SloukaJ. KontopidisG. DžubákP. HajdúchM. SrovnalJ. de AzevedoW.F.Jr OrságM. PaprskářováM. RolčíkJ. LátrA. FischerP.M. StrnadM. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects.J. Med. Chem.200649226500650910.1021/jm060574017064068
    [Google Scholar]
  71. HaiS.X. Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors.Euro. J. Med. Chem.2013681e910.1016/j.ejmech.2013.07.003
    [Google Scholar]
  72. RavulaP. VamarajuH.B. PaturiM. Chandra JnN.S. KolliS. Design, synthesis, in silico toxicity prediction, molecular docking, and evaluation of novel pyrazole derivatives as potential antiproliferative agents.EXCLI J.20161518720210.17179/excli2016‑10327103897
    [Google Scholar]
  73. KhanI. GarikapatiK.R. ShaikA.B. MakaniV.K.K. RahimA. ShareefM.A. ReddyV.G. Pal-BhadraM. KamalA. KumarC.G. Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c ] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis.Eur. J. Med. Chem.201814410411510.1016/j.ejmech.2017.12.01029268127
    [Google Scholar]
  74. DaiH. GeS. GuoJ. ChenS. HuangM. YangJ. SunS. LingY. ShiY. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage.Eur. J. Med. Chem.20181431066107610.1016/j.ejmech.2017.11.09829232583
    [Google Scholar]
  75. IbrahimD. RadiniI. KhidreR. Design, Synthesis And Biological Estimation Of Innovative Pyrazoles As Anticancer Agents Targeting Cdk2. Acta Poloniae Pharmaceutical-.Drug Res.201976345346810.32383/appdr/102651‑
    [Google Scholar]
  76. OudahK.H. NajmM.A.A. SamirN. SeryaR.A.T. AbouzidK.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors.Bioorg. Chem.20199210323910.1016/j.bioorg.2019.10323931513938
    [Google Scholar]
  77. GhadaM.E. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity.Bioorg. Chem.20198611410.1016/j.bioorg.2019.01.008
    [Google Scholar]
  78. DawoodD.H. NossierE.S. AliM.M. MahmoudA.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase.Bioorg. Chem.202010110391610.1016/j.bioorg.2020.10391632559576
    [Google Scholar]
  79. RamadanS.K. El-ZiatyA.K. AliR.S. Synthesis, antiproliferative activity, and molecular docking of some N ‐heterocycles bearing a pyrazole scaffold against liver and breast tumors.J. Heterocycl. Chem.202158129030410.1002/jhet.4168
    [Google Scholar]
  80. Çinar Başaran, R.; Erdogan; Çakmak; Boga; Çevik. Synthesis and biological evaluation of some pyrazolone based Schiff base derivatives as enzymes inhibitors, antioxidant, and anticancer agents.Research square10.21203/rs.3.rs‑540190/v1
    [Google Scholar]
  81. EldehnaM. Design, synthesis, in vitro biological assessment and molecular modeling insights for novel 3-(naphthalen-1-yl) -4, 5-dihydropyrazoles as anticancer agents with potential EGFR inhibitory activity.Scientifc Rep.2022121282110.1038/s41598‑022‑15050‑8
    [Google Scholar]
  82. ElzahabiH.S.A. NossierE.S. AlasfouryR.A. El-ManawatyM. SayedS.M. ElkaeedE.B. MetwalyA.M. HagrasM. EissaI.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers.J. Enzyme Inhib. Med. Chem.20223711053107610.1080/14756366.2022.206275235821615
    [Google Scholar]
  83. GellisA. KovacicH. BoufatahN. VanelleP. Synthesis and cytotoxicity evaluation of some benzimidazole-4,7-diones as bioreductive anticancer agents.Eur. J. Med. Chem.20084391858186410.1016/j.ejmech.2007.11.02018222567
    [Google Scholar]
  84. LiY. TanC. GaoC. ZhangC. LuanX. ChenX. LiuH. ChenY. JiangY. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors.Bioorg. Med. Chem.201119154529453510.1016/j.bmc.2011.06.022
    [Google Scholar]
  85. HusainA. RashidM. ShaharyarM. SiddiquiA.A. MishraR. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents.Eur. J. Med. Chem.20136278579810.1016/j.ejmech.2012.07.01123333063
    [Google Scholar]
  86. BharathK. Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents.Med. Chem. Commun.20156606612
    [Google Scholar]
  87. Nofal, z.; Soliman, A.; El-Karim, S.; El-Zahar; Srour; Sethumadhavan, S.; Timothy J. Synthesis of Some New Benzimidazole–Thiazole Derivatives as Anticancer Agents.J. Heterocycl. Chem.201400010.1002/jhet
    [Google Scholar]
  88. Acar ÇevikU. SağlıkB.N. ArdıçC.M. ÖzkayY. AtlıÖ. Çevik Synthesis and evaluation of new benzimidazole derivatives with hydrazone moiety as anticancer agents.Turk Biyokim. Derg.201843215115810.1515/tjb‑2017‑0167
    [Google Scholar]
  89. BistrovićA. KrstulovićL. HarejA. GrbčićP. SedićM. KoštrunS. PavelićS.K. BajićM. Raić-MalićS. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer.Eur. J. Med. Chem.20181431616163410.1016/j.ejmech.2017.10.061
    [Google Scholar]
  90. Cheng-Ying Pi-Wen, K.; Yu-Jui; Chang; Kapoor, M.; Yu-Chuan, L.; Hsueh-Liang, C.; Hui-Hsien, L.; Jia-Cherng, H.; Ming-Hua, H.Molecules201924325910.3390/molecules24183259
    [Google Scholar]
  91. IbrahimH.S. AlbakriM.E. MahmoudW.R. AllamH.A. RedaA.M. Abdel-AzizH.A. Synthesis and biological evaluation of some novel thiobenzimidazole derivatives as anti-renal cancer agents through inhibition of c-MET kinase.Bioorg. Chem.20198533734810.1016/j.bioorg.2019.01.00630658233
    [Google Scholar]
  92. GünerA. PolatliE. AkkanT. BektaşH. AlbayC. Anticancer and antiangiogenesis activities of novel synthesized 2-substitutedbenzimidazoles molecules.Turk. J. Chem.20194351270128910.3906/kim‑1904‑46
    [Google Scholar]
  93. MorcossM.M. Novel benzimidazole/hydrazone derivatives as promising anticancer lead compounds: design, synthesis, and molecular docking study.JABPS202032455210.21608/jabps.2020.21160.1064
    [Google Scholar]
  94. Acar ÇevikU. SağlıkB.N. OsmaniyeD. LeventS. Kaya ÇavuşoğluB. KaradumanA.B. Atlı EklioğluÖ. ÖzkayY. KaplancıklıZ.A. Çevik Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison.J. Enzyme Inhib. Med. Chem.20203511657167310.1080/14756366.2020.180683132811204
    [Google Scholar]
  95. ZhouW. ZhangW. PengY. JiangZ.H. ZhangL. DuZ. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase ii catalytic inhibitors.Molecules20202514318010.3390/molecules25143180
    [Google Scholar]
  96. SanaS. ReddyV.G. Srinivasa ReddyT. TokalaR. KumarR. BhargavaS.K. ShankaraiahN. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies.Bioorg. Chem.2021110May10476510.1016/j.bioorg.2021.10476533677248
    [Google Scholar]
  97. KatikireddyR. MarriS. KakkerlaR. Synthesis, anticancer activity and molecular docking studies of hybrid benzimidazole-1,3,4-oxadiazol-2-n-alkyl/aryl amines.Polycyclic Aromatic Comp.20214295855586910.1080/10406638.2021.1959352
    [Google Scholar]
  98. SireeshaR. SreenivasuluR. ChandrasekharC. JadavS.S. PavaniY. RaoM.V.B. SubbaraoM. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives.J. Mol. Struct.2021122612935110.1016/j.molstruc.2020.129351
    [Google Scholar]
  99. RenB. LiuR.C. JiK. TangJ.J. GaoJ.M. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives.Bioorg. Med. Chem. Lett.20214312809710.1016/j.bmcl.2021.12809733979690
    [Google Scholar]
  100. El-GalilH.E. New benzimidazole-, 1,2,4-triazole-, and 1,3,5-triazine-based derivatives as potential egfrwt and egfrt790m inhibitors: microwave-assisted synthesis, anticancer evaluation, and moleculardocking study.Am. Chem. Soc.2022771557171
    [Google Scholar]
  101. KrishnaG. Synthesis of novel benzimidazole-pyrazoline hybrid molecules as antibacterial and anticancer agent.Behera J. Pharmaceut. Negative Res.202314Special issue 12023521
    [Google Scholar]
  102. ZhengY. ZhengM. LingX. LiuY. XueY. AnL. GuN. JinM. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole–benzimidazole derivatives as potent Aurora A/B kinase inhibitors.Bioorg. Med. Chem. Lett.201323123523353010.1016/j.bmcl.2013.04.03923664099
    [Google Scholar]
  103. ReddyT.S. KulhariH. ReddyV.G. BansalV. KamalA. ShuklaR. Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents.Eur. J. Med. Chem.201510179080510.1016/j.ejmech.2015.07.03126231080
    [Google Scholar]
  104. GalalS.A. AbdelsamieA.S. ShoumanS.A. AttiaY.M. AliH.I. TabllA. El-ShenawyR. El AbdY.S. AliM.M. MahmoudA.E. Abdel-HalimA.H. FyiadA.A. GirgisA.S. El-DiwaniH.I. PartI. Part I: Design, synthesis and biological evaluation of novel pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors with studying their activities alone and in combination with genotoxic drugs.Eur. J. Med. Chem.201713439240510.1016/j.ejmech.2017.03.09028433679
    [Google Scholar]
  105. AkhtarM.J. KhanA.A. AliZ. DewanganR.P. RafiM. HassanM.Q. AkhtarM.S. SiddiquiA.A. PartapS. PashaS. YarM.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors.Bioorg. Chem.20187815816910.1016/j.bioorg.2018.03.00229571113
    [Google Scholar]
  106. AshokD. Ram ReddyM. NagarajuN. DharavathR. RamakrishnaK. GunduS. ShravaniP. SarasijaM. Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives.Med. Chem. Res.202029469970610.1007/s00044‑020‑02515‑6
    [Google Scholar]
  107. SivaramakarthikeyanR. IniyavalS. SaravananV. LimW.M. MaiC.W. RamalinganC. Molecular Hybrids Integrated with Benzimidazole and Pyrazole Structural Motifs: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies.ACS Omega2020517100891009810.1021/acsomega.0c0063032391496
    [Google Scholar]
  108. YamaniA. Zdżalik-BieleckaD. LipnerJ. StańczakA. PiórkowskaN. StańczakP. OlejkowskaP. Hucz-KalitowskaJ. MagdyczM. DzwonekK. DubielK. Lamparska-PrzybyszM. opiel, D.; Pieczykolan, J.; Wieczorek, M. Discovery and optimization of novel pyrazole-benzimidazole CPL304110, as a potent and selective inhibitor of fibroblast growth factor receptors FGFR.Eur. J. Med. Chem.202121011299010.1016/j.ejmech.2020.11299033199155
    [Google Scholar]
  109. AzimiA. NajafM. KhodarahmiS. HassanzadehG. AliM. BagherF. MahdaviM. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole benzofuran hybrids as new α glucosidase inhibitor.Sci. Rep.2021112077610.1038/s41598‑021‑99899‑1
    [Google Scholar]
  110. SiddigL.A. KhasawnehM.A. SamadiA. SaadehH. AbutahaN. WadaanM.A. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents.Open Chem.20211911062107310.1515/chem‑2021‑0093
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266343336241021080438
Loading
/content/journals/ctmc/10.2174/0115680266343336241021080438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test