Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Rapid growth in nanotechnology, also known as 21st-century technology, is occurring in response to the increasing diversity of diseases. The development of safe and effective drug delivery methods to enhance bioavailability is of paramount importance. Researchers have focused on creating safe, cost-effective, and environmentally friendly nanoparticle construction processes. Natural polysaccharides, a type of multifaceted polymer with a wide range of applications and advantages, are particularly well suited for nanoparticle formulations, as they can mitigate the adverse consequences of synthetic nanoparticle formulations and promote sustainability. This review summarizes various sources of natural-based polysaccharides and polyacrylamide-based nanomaterials in nanoparticle preparation. Additionally, it discusses the use of natural polysaccharides in formulations beyond nanotechnology, highlighting their importance in green synthesis and different preparation methods.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266316522241015143856
2024-10-25
2025-04-19
Loading full text...

Full text loading...

References

  1. KrystyjanM. KhachatryanG. KhachatryanK. KrzanM. CiesielskiW. ŻarskaS. SzczepankowskaJ. Polysaccharide composite materials as carbon nanoparticle carriers.Polymers (Basel)202214594810.3390/polym14050948 35267771
    [Google Scholar]
  2. HuhM.S. LeeE.J. KooH. YheeJ.Y. OhK.S. SonS. LeeS. KimS.H. KwonI.C. KimK. Polysaccharide-based Nanoparticles for Gene Delivery. In: Polymeric Gene Delivery Systems; Cheng, Y., Ed.; Springer: Chen, 2018; pp. 65-8310.1007/978‑3‑319‑77866‑2_3
    [Google Scholar]
  3. RaveendranS. YoshidaY. MaekawaT. KumarD.S. Pharmaceutically versatile sulfated polysaccharide based bionano platforms.Nanomedicine 20139560562610.1016/j.nano.2012.12.006 23347895
    [Google Scholar]
  4. Melchor-MartínezE.M. Macías-GarbettR. Alvarado-RamírezL. AraújoR.G. Sosa-HernándezJ.E. Ramírez-GamboaD. Parra-ArroyoL. AlvarezA.G. MonteverdeR.P.B. CazaresK.A.S. Reyes-MayerA. Yáñez LinoM. IqbalH.M.N. Parra-SaldívarR. Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics.Polymers (Basel)2022146120310.3390/polym14061203 35335534
    [Google Scholar]
  5. AsgherM. QamarS.A. IqbalH.M.N. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors.Biologia (Bratisl.)202176267368510.2478/s11756‑020‑00588‑7
    [Google Scholar]
  6. AmerM. EldiwanyA. ElgammalE. AtwaN.A. DawoudI. RashadF.M. Nano-EPS from the probiotic Weissella paramesenteroides MN2C2: Production, characterization, and anticancer activity.Egypt. J. Chem.2021641271237133
    [Google Scholar]
  7. MyrickJ.M. VendraV.K. KrishnanS. Self-assembled polysaccharide nanostructures for controlled-release applications.Nanotechnol. Rev.20143431934610.1515/ntrev‑2012‑0050
    [Google Scholar]
  8. DuttaP.K. SrivastavaR. DuttaJ. Functionalized nanoparticles and chitosan-based functional nanomaterials. In: Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. DuttaP. DuttaJ. Berlin, HeidelbergSpringer201315010.1007/12_2012_200
    [Google Scholar]
  9. KishoreC. JiV. KrishnanS. JeevanandamJ. AcquahC. DanquahM.K. Chapter 20 - Plant polysaccharides for cancer theranostics. In: Plant Polysaccharides as Pharmaceutical Excipients.Chapter 20Elsevier202345346810.1016/B978‑0‑323‑90780‑4.00004‑8
    [Google Scholar]
  10. SwierczewskaM. HanH.S. KimK. ParkJ.H. LeeS. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev., 201699Pt A708410.1016/j.addr.2015.11.01526639578
    [Google Scholar]
  11. UthamanS. LeeS.J. CherukulaK. ChoC.S. ParkI.K. Polyacrylamide-coated magnetic nanoparticles for imaging and gene therapy.BioMed Res. Int.2015201511410.1155/2015/959175 26078971
    [Google Scholar]
  12. KaurN. BainsA. KaushikR. DhullS.B. MelindaF. ChawlaP. A review on antifungal efficiency of plant extract-entrenched polyacrylamide-based nanohydrogels.Nutrients2021136205510.3390/nu13062055 34203999
    [Google Scholar]
  13. MengQ. ZhongS. XuL. WangJ. ZhangZ. GaoY. CuiX. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy.Carbohydr. Polym.202227911901310.1016/j.carbpol.2021.119013 34980356
    [Google Scholar]
  14. ZhangJ. ZhanP. TianH. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review.Int. J. Biol. Macromol.202118211512810.1016/j.ijbiomac.2021.04.009 33836188
    [Google Scholar]
  15. RehmanA. JafariS.M. TongQ. RiazT. AssadpourE. AadilR.M. NiaziS. KhanI.M. ShehzadQ. AliA. KhanS. Drug nanodelivery systems based on natural polysaccharides against different diseases.Adv. Colloid Interface Sci.202028410225110.1016/j.cis.2020.102251 32949812
    [Google Scholar]
  16. IrshadA. SarwarN. SadiaH. MalikK. JavedI. IrshadA. AfzalM. AbbasM. RizviH. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate.Int. J. Biol. Macromol.202014518919610.1016/j.ijbiomac.2019.12.089 31838065
    [Google Scholar]
  17. WangW. JiangS. WangM-Y. YuanH-W. XieQ. LiuY. LiB-S. JianY-Q. LiuC-X. LouH-Y. Atta-Ur-Rahman; Pan, W-D. Medicinal plant of Bletilla striata: A review of its chemical constituents, pharmacological activities, and quality control.World J. Tradit. Chin. Med.20206439340710.4103/wjtcm.wjtcm_58_20
    [Google Scholar]
  18. XuchenL. GuangB. <i>In vivo </i>and <i>in vitro</i> effects of <i>Bletilla striata</i> polysaccharide-loaded paclitaxel nanoparticles on human gastric cancer cells.Trop. J. Pharm. Res.2019181131710.4314/tjpr.v18i1.2
    [Google Scholar]
  19. GouK. LiY. QuY. LiH. ZengR. Advances and prospects of Bletilla striata polysaccharide as promising multifunctional biomedical materials.Mater. Des.202222311119810.1016/j.matdes.2022.111198
    [Google Scholar]
  20. HuangY. YiJ. LiN. LeiM. MaW. ZhangC. Properties and characterization of pH responsive nanoparticles based on polysaccharides from Bletilla striata as carriers in cancer therapy.Colloids Surf. A Physicochem. Eng. Asp.202264212869210.1016/j.colsurfa.2022.128692
    [Google Scholar]
  21. YangW. WangY. LiX. YuP. Purification and structural characterization of Chinese yam polysaccharide and its activities.Carbohydr. Polym.20151171021102710.1016/j.carbpol.2014.09.082 25498730
    [Google Scholar]
  22. SrivastavaS. SinghD. PatelS. SinghM.R. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders.Int. J. Biol. Macromol.201710150251710.1016/j.ijbiomac.2017.03.100 28342757
    [Google Scholar]
  23. PadmajaH. SruthiS. VangalapatiM. Review on Hibiscus sabdariffa-A valuable herb.International Journal of Pharmacy & Life Sciences.201458
    [Google Scholar]
  24. ZhengD. ZhaoJ. LiY. ZhuL. JinM. WangL. LiuJ. LeiJ. LiZ. Self-assembled pH-sensitive nanoparticles based on Ganoderma lucidum polysaccharide–methotrexate conjugates for the co-delivery of antitumor drugs.ACS Biomater. Sci. Eng.2021783764377310.1021/acsbiomaterials.1c00663 34213326
    [Google Scholar]
  25. ElumalaiD. SumanT.Y. HemavathiM. SwethaC. KavithaR. ArulvasuC. KaleenaP.K. Biofabrication of gold nanoparticles using Ganoderma lucidum and their cytotoxicity against human colon cancer cell line (HT-29).Bull. Mater. Sci.202144213210.1007/s12034‑021‑02435‑0
    [Google Scholar]
  26. Al-AnsariM.M. DhasarathanP. RanjitsinghA.J.A. Al-HumaidL.A. Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI.Saudi J. Biol. Sci.202027112993300210.1016/j.sjbs.2020.09.008 33100858
    [Google Scholar]
  27. LiuZ. XingJ. ZhengS. BoR. LuoL. HuangY. NiuY. LiZ. WangD. HuY. LiuJ. WuY. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response.Carbohydr. Polym.201614214114810.1016/j.carbpol.2016.01.021 26917384
    [Google Scholar]
  28. MishraP.K. MishraH. EkielskiA. TalegaonkarS. VaidyaB. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications.Drug Discov. Today201722121825183410.1016/j.drudis.2017.08.006 28847758
    [Google Scholar]
  29. ZengY. LvY. HuM. GuoF. ZhangC. Curcumin-loaded hydroxypropyl-β-cyclodextrin inclusion complex with enhanced dissolution and oral bioavailability for epilepsy treatment.Xenobiotica202252771872810.1080/00498254.2022.2136044 36227237
    [Google Scholar]
  30. TanR.S.L. HassandarvishP. CheeC.F. ChanL.W. WongT.W. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine.Carbohydr. Polym.202229011950010.1016/j.carbpol.2022.119500 35550778
    [Google Scholar]
  31. TrapaniA. De GiglioE. CafagnaD. DenoraN. AgrimiG. CassanoT. GaetaniS. CuomoV. TrapaniG. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery.Int. J. Pharm.20114191-229630710.1016/j.ijpharm.2011.07.036 21821107
    [Google Scholar]
  32. AderibigbeB.A. NakiT. Chitosan-based nano-carriers for nose to brain delivery.Appl. Sci. (Basel)2019911221910.3390/app9112219
    [Google Scholar]
  33. HiraI. KumarA. KumariR. SainiA.K. SainiR.V. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas.Mater. Sci. Eng. C20189049450310.1016/j.msec.2018.04.085 29853118
    [Google Scholar]
  34. JamrożyM. Kudłacik-KramarczykS. DrabczykA. KrzanM. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms.Int. J. Mol. Sci.202425278610.3390/ijms25020786 38255859
    [Google Scholar]
  35. GaikwadD. SutarR. PatilD. Polysaccharide mediated nanodrug delivery: A review.Int. J. Biol. Macromol.2024261Pt 112954710.1016/j.ijbiomac.2024.129547 38278399
    [Google Scholar]
  36. ChenJ.K. ShenC.R. LiuC.L. N-acetylglucosamine: production and applications.Mar. Drugs2010892493251610.3390/md8092493 20948902
    [Google Scholar]
  37. ChanmeeT. OntongP. ItanoN. Hyaluronan: A modulator of the tumor microenvironment.Cancer Lett.20163751203010.1016/j.canlet.2016.02.031 26921785
    [Google Scholar]
  38. DobkinB.H. Paraplegia and spinal cord syndromes.In: Bradley’s Neurology in Clinical Practice E–Book.Elsevier2021356361
    [Google Scholar]
  39. HeM. HuangL. HouX. ZhongC. BachirZ.A. LanM. ChenR. GaoF. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy.Int. J. Pharm.201956011010.1016/j.ijpharm.2019.01.027 30677484
    [Google Scholar]
  40. DuongH.T.T. ThambiT. YinY. KimS.H. NguyenT.L. PhanV.H.G. KimJ. JeongJ.H. LeeD.S. Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma.Biomaterials202023011959910.1016/j.biomaterials.2019.119599 31718883
    [Google Scholar]
  41. HanY. BoZ. XuM. SunN. LiuD. The protective role of TLR3 and TLR9 ligands in human pharyngeal epithelial cells infected with influenza A virus.Korean J. Physiol. Pharmacol.201418322523110.4196/kjpp.2014.18.3.225 24976762
    [Google Scholar]
  42. TharaE. DorffT.B. PinskiJ.K. QuinnD.I. Vaccine therapy with sipuleucel-T (Provenge) for prostate cancer.Maturitas201169429630310.1016/j.maturitas.2011.04.012 21621934
    [Google Scholar]
  43. ZengY. XiangY. ShengR. TomásH. RodriguesJ. GuZ. ZhangH. GongQ. LuoK. Polysaccharide-based nanomedicines for cancer immunotherapy: A review.Bioact. Mater.20216103358338210.1016/j.bioactmat.2021.03.008 33817416
    [Google Scholar]
  44. WeiX. WangJ. LiangM. SongM. Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy.Theranostics202212187821785210.7150/thno.78572 36451865
    [Google Scholar]
  45. CordeiroA.S. AlonsoM.J. de la FuenteM. Nanoengineering of vaccines using natural polysaccharides.Biotechnol. Adv.20153361279129310.1016/j.biotechadv.2015.05.010 26049133
    [Google Scholar]
  46. MiuraR. SawadaS. MukaiS. SasakiY. AkiyoshiK. Antigen delivery to antigen-presenting cells for adaptive immune response by self-assembled anionic polysaccharide nanogel vaccines.Biomacromolecules202021262162910.1021/acs.biomac.9b01351 31800235
    [Google Scholar]
  47. SouzaP.R. de OliveiraA.C. VilsinskiB.H. KipperM.J. MartinsA.F. Polysaccharide-based materials created by physical processes: from preparation to biomedical applications.Pharmaceutics202113562110.3390/pharmaceutics13050621 33925380
    [Google Scholar]
  48. XuH. NieW. DaiL. LuoR. LinD. ZhangM. ZhangJ. GaoF. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy.. Carbohydr. Polym., 2023301Pt A12031110.1016/j.carbpol.2022.12031136436872
    [Google Scholar]
  49. AllawadhiP. SinghV. GovindarajK. KhuranaI. SarodeL.P. NavikU. BanothuA.K. WeiskirchenR. BharaniK.K. KhuranaA. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis.Carbohydr. Polym.202228111892310.1016/j.carbpol.2021.118923 35074100
    [Google Scholar]
  50. AwasthiA. GulatiM. KumarB. KaurJ. VishwasS. KhursheedR. PorwalO. AlamA. KrA. CorrieL. KumarR. KumarA. KaushikM. JhaN.K. GuptaP.K. ChellappanD.K. GuptaG. DuaK. GuptaS. GundamarajuR. RaoP.V. SinghS.K. Recent progress in development of dressings used for diabetic wounds with special emphasis on scaffolds.BioMed Res. Int.2022202214310.1155/2022/1659338 35832856
    [Google Scholar]
  51. AfzalO. RizwanullahM. AltamimiA.S.A. AlossaimiM.A. KamalM. AhmadJ. Harnessing natural polysaccharides-based nanoparticles for oral delivery of phytochemicals: Knocking down the barriers.J. Drug Deliv. Sci. Technol.20238210436810.1016/j.jddst.2023.104368
    [Google Scholar]
  52. ElbialyN.S. AboushoushahS.F. SofiB.F. NoorwaliA. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy.Microporous Mesoporous Mater.202029110954010.1016/j.micromeso.2019.06.002
    [Google Scholar]
  53. NadarS.S. VaidyaL. MauryaS. RathodV.K. Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review.Coord. Chem. Rev.201939612110.1016/j.ccr.2019.05.011
    [Google Scholar]
  54. BiliaA.R. PiazziniV. AspreaM. RisalitiL. VantiG. BergonziM.C. Plants extracts loaded in nanocarriers: An emergent formulating approach.Nat. Prod. Commun.20181391097123410.1177/1934578X1801300914
    [Google Scholar]
  55. ChakravartyM. VoraA. Nanotechnology-based antiviral therapeutics.Drug Deliv. Transl. Res.202111374878710.1007/s13346‑020‑00818‑0 32748035
    [Google Scholar]
  56. LinN. HuangJ. DufresneA. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review.Nanoscale20124113274329410.1039/c2nr30260h 22565323
    [Google Scholar]
  57. DebeleT.A. MekuriaS.L. TsaiH.C. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.Mater. Sci. Eng. C20166896498110.1016/j.msec.2016.05.121 27524098
    [Google Scholar]
  58. SahaI. DattaS. Bacterial exopolysaccharides in drug delivery applications.J. Drug Deliv. Sci. Technol.20227410355710.1016/j.jddst.2022.103557
    [Google Scholar]
  59. WasserS.P. Mushroom pharmacy.In: Encyclopedia of Science & Technology.McGraw Hill2014678683
    [Google Scholar]
  60. SallehM.S.N. AliR.R. ShameliK. HamzahM.Y. KasmaniR.M. NasefM.M. Interaction Insight of Pullulan-Mediated Gamma-Irradiated Silver Nanoparticle Synthesis and Its Antibacterial Activity.Polymers (Basel)20211320357810.3390/polym13203578 34685342
    [Google Scholar]
  61. KalimuthuA.K. PandianS.R.K. PavadaiP. PanneerselvamT. KabilanS.J. SankaranarayananM. AlaC. KunjiappanS. Drug Delivery Applications of Exopolysaccharides from Endophytic Bacteria Pseudomonas otitidis from Tribulus terrestris L.J. Polym. Environ.20233183632364910.1007/s10924‑023‑02848‑4
    [Google Scholar]
  62. RichaR. Roy ChoudhuryA. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin.Int. J. Biol. Macromol.20201561287129610.1016/j.ijbiomac.2019.11.167 31760004
    [Google Scholar]
  63. QiuA. WangY. ZhangG. WangH. Natural polyacrylamide-based nano-drug delivery systems for treatment of diabetes.Polymers (Basel)20221415321710.3390/polym14153217 35956731
    [Google Scholar]
  64. LiJ. XiangH. ZhangQ. MiaoX. Polysaccharide-Based Transdermal Drug Delivery.Pharmaceuticals (Basel)202215560210.3390/ph15050602 35631428
    [Google Scholar]
  65. GaoY. WangZ. XueC. WeiZ. Modulation of Fabrication and Nutraceutical Delivery Performance of Ovalbumin-Stabilized Oleogel-Based Nanoemulsions via Complexation with Gum Arabic.Foods20221113185910.3390/foods11131859 35804676
    [Google Scholar]
  66. DuM. YangZ. LuW. WangB. WangQ. ChenZ. ChenL. HanS. CaiT. CaiY. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel.J. Microencapsul.202037640341210.1080/02652048.2020.1767224 32401077
    [Google Scholar]
  67. ZorattoN. MontanariE. ViolaM. WangJ. CovielloT. Di MeoC. MatricardiP. Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review.Carbohydr. Polym.202126611811910.1016/j.carbpol.2021.118119 34044935
    [Google Scholar]
  68. DeaconJ. AbdelghanyS.M. QuinnD.J. SchmidD. MegawJ. DonnellyR.F. JonesD.S. KissenpfennigA. ElbornJ.S. GilmoreB.F. TaggartC.C. ScottC.J. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase).J. Control. Release2015198556110.1016/j.jconrel.2014.11.022 25481442
    [Google Scholar]
  69. MoraesF.C. Marcelo Forero RamirezL. AidR. BenaddaS. MaireM. ChauvierreC. AntunesJ.C. ChaubetF. LetourneurD. P-selectin targeting polysaccharide-based nanogels for miRNA delivery.Int. J. Pharm.202159712030210.1016/j.ijpharm.2021.120302 33540032
    [Google Scholar]
  70. BardajeeG.R. KhamooshiN. NasriS. VancaeyzeeleC. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug.Int. J. Biol. Macromol.202015318018910.1016/j.ijbiomac.2020.02.329 32135252
    [Google Scholar]
  71. Al-RemawiM. ElsayedA. MaghrabiI. HamaidiM. JaberN. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.Pharm. Dev. Technol.201722339039810.1080/10837450.2016.1213745 27470482
    [Google Scholar]
  72. OkuboM. MiyazakiM. YubaE. HaradaA. Chondroitin sulfate-based pH-sensitive polymer-modified liposomes for intracellular antigen delivery and induction of cancer immunity.Bioconjug. Chem.20193051518152910.1021/acs.bioconjchem.9b00221 30945847
    [Google Scholar]
  73. de OliveiraJ.K. Ueda-NakamuraT. CorrêaA.G. PetrilliR. LopezR.F.V. NakamuraC.V. Auzely-VeltyR. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis.Mater. Sci. Eng. C202011011072010.1016/j.msec.2020.110720 32204033
    [Google Scholar]
  74. SiafakaP.I. TitopoulouA. KoukarasE.N. KostoglouM. KoutrisE. KaravasE. BikiarisD.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug.Int. J. Pharm.2015495124926410.1016/j.ijpharm.2015.08.100 26341322
    [Google Scholar]
  75. SwaminathanS. VaviaP.R. TrottaF. TorneS. Formulation of betacyclodextrin based nanosponges of itraconazole.J. Incl. Phenom. Macrocycl. Chem.2007571-4899410.1007/s10847‑006‑9216‑9
    [Google Scholar]
  76. CalderaF. ArgenzianoM. TrottaF. DianzaniC. GigliottiL. TannousM. PasteroL. AquilanoD. NishimotoT. HigashiyamaT. CavalliR. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment.Carbohydr. Polym.201819411112110.1016/j.carbpol.2018.04.027 29801818
    [Google Scholar]
  77. Mariyam BeeA.J. Design and characterisation of rosuvastatin calcium nanosponge using a natural polymer at different concentration.Thesis, Kamalakshi Pandurangan College of Pharmacy, Tiruvannamalai,
    [Google Scholar]
  78. AnsariR. MaheshwariR. MahajanS.C. JainV. Development and characterization of hydrogel system bearing minoxidil loaded β–cyclodextrin based nanosponges for topical delivery.Drug Deliv. Lett.20144214815510.2174/2210303104666140313232454
    [Google Scholar]
  79. HotiG. MatencioA. Rubin PedrazzoA. CeconeC. AppletonS.L. Khazaei MonfaredY. CalderaF. TrottaF. Nutraceutical concepts and dextrin-based delivery systems.Int. J. Mol. Sci.2022238410210.3390/ijms23084102 35456919
    [Google Scholar]
  80. BadawiA.A. El-LaithyH.M. El QidraR.K. El MoftyH. El dally, M. Chitosan based nanocarriers for indomethacin ocular delivery.Arch. Pharm. Res.20083181040104910.1007/s12272‑001‑1266‑6 18787795
    [Google Scholar]
  81. BalanV. DodiG. TudorachiN. PontaO. SimonV. ButnaruM. VerestiucL. Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: Synthesis and characterization.Chem. Eng. J.201527918819710.1016/j.cej.2015.04.152
    [Google Scholar]
  82. SombraF.M. RichterA.R. de AraújoA.R. de Oliveira Silva RibeiroF. Souza MendesJ.F. dos Santos FontenelleR.O. da SilvaD.A. PaulaH.C.B. FeitosaJ.P.A. GoycooleaF.M. de PaulaR.C.M. Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier.Int. J. Biol. Macromol.20201461133114110.1016/j.ijbiomac.2019.10.053 31734368
    [Google Scholar]
  83. MoradiS. AnarjanN. Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions.Food Sci. Biotechnol.201928241342110.1007/s10068‑018‑0478‑y 30956853
    [Google Scholar]
  84. dos SantosS.B.F. PereiraS.A. RodriguesF.A.M. da SilvaA.C.C. de AlmeidaR.R. SousaA.C.C. FechineL.M.U.D. DenardinJ.C. AranedaF. SáL.G.A.V. da SilvaC.R. Nobre JúniorH.V. RicardoN.M.P.S. Antibacterial activity of fluoxetine-loaded starch nanocapsules.Int. J. Biol. Macromol.20201642813281710.1016/j.ijbiomac.2020.08.184 32853612
    [Google Scholar]
  85. KasemsetS. WangL. HeZ. MillerD.J. KirschnerA. FreemanB.D. SharmaM.M. Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane.J. Membr. Sci.201752210011510.1016/j.memsci.2016.07.016
    [Google Scholar]
  86. SilvaA.L.G. CarvalhoN.V. PaternoL.G. MouraL.D. FilomenoC.L. de PaulaE. BáoS.N. Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines.Cancer Nanotechnol.20211211110.1186/s12645‑021‑00083‑x
    [Google Scholar]
  87. KettlerK. VeltmanK. van de MeentD. van WezelA. HendriksA.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.Environ. Toxicol. Chem.201433348149210.1002/etc.2470 24273100
    [Google Scholar]
  88. MutalikS.P. PandeyA. MutalikS. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces.Int. J. Biol. Macromol.202015113615810.1016/j.ijbiomac.2020.02.150 32070745
    [Google Scholar]
  89. ZeinR. SharroufW. SeltingK. Physical properties of nanoparticles that result in improved cancer targeting.J. Oncol.20202020111610.1155/2020/5194780 32765604
    [Google Scholar]
  90. Sadeghi GhadiZ. DinarvandR. AsemiN. Talebpour AmiriF. EbrahimnejadP. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin.Eur. J. Pharm. Sci.201913023424610.1016/j.ejps.2019.01.035 30711688
    [Google Scholar]
  91. MłynekM. TrzcińskiJ.W. CiachT. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes.Biomedicines2023115130710.3390/biomedicines11051307 37238978
    [Google Scholar]
  92. Reza SoltaniE. Ahmad PanahiH. MoniriE. Torabi FardN. RaeisiI. BeikJ. Yousefi SiavoshaniA. Construction of a pH/Temperature dual-responsive drug delivery platform based on exfoliated MoS2 nanosheets for effective delivery of doxorubicin: Parametric optimization via central composite design.Mater. Chem. Phys.202329512715910.1016/j.matchemphys.2022.127159
    [Google Scholar]
  93. ThanguduS. HuangE.Y. SuC.H. Safe magnetic resonance imaging on biocompatible nanoformulations.Biomater. Sci.202210185032505310.1039/D2BM00692H 35858468
    [Google Scholar]
  94. BhatA.A. GuptaG. AlharbiK.S. AfzalO. AltamimiA.S.A. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. ChellappanD.K. SinghS.K. MacLoughlinR. OliverB.G. DuaK. Polysaccharide-Based Nanomedicines Targeting Lung Cancer.Pharmaceutics20221412278810.3390/pharmaceutics14122788 36559281
    [Google Scholar]
  95. SrivastavaN. ChoudhuryA.R. Microbial polysaccharide-based nanoformulations for nutraceutical delivery.ACS Omega2022745407244073910.1021/acsomega.2c06003 36406482
    [Google Scholar]
  96. LaubachJ. JosephM. BrenzaT. GadhamshettyV. SaniR.K. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery.J. Control. Release202132997198710.1016/j.jconrel.2020.10.027 33091530
    [Google Scholar]
  97. PlucinskiA. LyuZ. SchmidtB.V.K.J. Polysaccharide nanoparticles: from fabrication to applications.J. Mater. Chem. B Mater. Biol. Med.20219357030706210.1039/D1TB00628B 33928990
    [Google Scholar]
  98. BaiL. XuD. ZhouY.M. ZhangY.B. ZhangH. ChenY.B. CuiY.L. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications.Antioxidants20221112249110.3390/antiox11122491 36552700
    [Google Scholar]
  99. StevanovićM. FilipovićN. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years.Pharmaceutics202416567010.3390/pharmaceutics16050670 38794332
    [Google Scholar]
  100. EfthimiadouE.K. MetaxaA.F. KordasG. Modified polysaccharides as drug delivery. In: Polysaccharides. RamawatK.G. MérillonJ-M. Springer International Publishing20151805183510.1007/978‑3‑319‑03751‑6_23‑1
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266316522241015143856
Loading
/content/journals/ctmc/10.2174/0115680266316522241015143856
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Formulation; Green synthesis; Nanotechnology; Polymer; Polysaccharide; Sustainable
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test