Skip to content
2000
image of Recent Advances in Multifaceted Drug Delivery Using Natural Polysaccharides and Polyacrylamide-Based Nanomaterials in Nanoformulation

Abstract

Rapid growth in nanotechnology, also known as 21st-century technology, is occurring in response to the increasing diversity of diseases. The development of safe and effective drug delivery methods to enhance bioavailability is of paramount importance. Researchers have focused on creating safe, cost-effective, and environmentally friendly nanoparticle construction processes. Natural polysaccharides, a type of multifaceted polymer with a wide range of applications and advantages, are particularly well suited for nanoparticle formulations, as they can mitigate the adverse consequences of synthetic nanoparticle formulations and promote sustainability. This review summarizes various sources of natural-based polysaccharides and polyacrylamide-based nanomaterials in nanoparticle preparation. Additionally, it discusses the use of natural polysaccharides in formulations beyond nanotechnology, highlighting their importance in green synthesis and different preparation methods.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266316522241015143856
2024-10-25
2025-01-18
Loading full text...

Full text loading...

References

  1. Krystyjan M. Khachatryan G. Khachatryan K. Krzan M. Ciesielski W. Żarska S. Szczepankowska J. Polysaccharide composite materials as carbon nanoparticle carriers. Polymers (Basel) 2022 14 5 948 10.3390/polym14050948 35267771
    [Google Scholar]
  2. Huh M.S. Lee E.J. Koo H. Yhee J.Y. Oh K.S. Son S. Lee S. Kim S.H. Kwon I.C. Kim K. Polysaccharide-based Nanoparticles for Gene Delivery. Polymeric Gene Delivery Systems Springer Chen Cheng Y. 2018 65 83 10.1007/978‑3‑319‑77866‑2_3
    [Google Scholar]
  3. Raveendran S. Yoshida Y. Maekawa T. Kumar D.S. Pharmaceutically versatile sulfated polysaccharide based bionano platforms. Nanomedicine 2013 9 5 605 626 10.1016/j.nano.2012.12.006 23347895
    [Google Scholar]
  4. Melchor-Martínez E.M. Macías-Garbett R. Alvarado-Ramírez L. Araújo R.G. Sosa-Hernández J.E. Ramírez-Gamboa D. Parra-Arroyo L. Alvarez A.G. Monteverde R.P.B. Cazares K.A.S. Reyes-Mayer A. Yáñez Lino M. Iqbal H.M.N. Parra-Saldívar R. Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics. Polymers (Basel) 2022 14 6 1203 10.3390/polym14061203 35335534
    [Google Scholar]
  5. Asgher M. Qamar S.A. Iqbal H.M.N. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Bratisl.) 2021 76 2 673 685 10.2478/s11756‑020‑00588‑7
    [Google Scholar]
  6. Amer M. Eldiwany A. Elgammal E. Atwa N.A. Dawoud I. Rashad F.M. Nano-EPS from the probiotic Weissella paramesenteroides MN2C2: Production, characterization, and anticancer activity. Egypt. J. Chem. 2021 64 12 7123 7133
    [Google Scholar]
  7. Myrick J.M. Vendra V.K. Krishnan S. Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnol. Rev. 2014 3 4 319 346 10.1515/ntrev‑2012‑0050
    [Google Scholar]
  8. Dutta P.K. Srivastava R. Dutta J. Functionalized nanoparticles and chitosan-based functional nanomaterials. Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology Springer Berlin, Heidelberg Dutta P. Dutta J. 2013 1 50 10.1007/12_2012_200
    [Google Scholar]
  9. Kishore C. Ji V. Krishnan S. Jeevanandam J. Acquah C. Danquah M.K. Chapter 20 - Plant polysaccharides for cancer theranostics. Plant Polysaccharides as Pharmaceutical Excipients Elsevier 2023 453 468 10.1016/B978‑0‑323‑90780‑4.00004‑8
    [Google Scholar]
  10. Swierczewska M. Han H.S. Kim K. Park J.H. Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 2016 99 Pt A 70 84 10.1016/j.addr.2015.11.015 26639578
    [Google Scholar]
  11. Uthaman S. Lee S.J. Cherukula K. Cho C.S. Park I.K. Polyacrylamide-coated magnetic nanoparticles for imaging and gene therapy. BioMed Res. Int. 2015 2015 1 14 10.1155/2015/959175 26078971
    [Google Scholar]
  12. Kaur N. Bains A. Kaushik R. Dhull S.B. Melinda F. Chawla P. A review on antifungal efficiency of plant extract-entrenched polyacrylamide-based nanohydrogels. Nutrients 2021 13 6 2055 10.3390/nu13062055 34203999
    [Google Scholar]
  13. Meng Q. Zhong S. Xu L. Wang J. Zhang Z. Gao Y. Cui X. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr. Polym. 2022 279 119013 10.1016/j.carbpol.2021.119013 34980356
    [Google Scholar]
  14. Zhang J. Zhan P. Tian H. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int. J. Biol. Macromol. 2021 182 115 128 10.1016/j.ijbiomac.2021.04.009 33836188
    [Google Scholar]
  15. Rehman A. Jafari S.M. Tong Q. Riaz T. Assadpour E. Aadil R.M. Niazi S. Khan I.M. Shehzad Q. Ali A. Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 2020 284 102251 10.1016/j.cis.2020.102251 32949812
    [Google Scholar]
  16. Irshad A. Sarwar N. Sadia H. Malik K. Javed I. Irshad A. Afzal M. Abbas M. Rizvi H. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. Int. J. Biol. Macromol. 2020 145 189 196 10.1016/j.ijbiomac.2019.12.089 31838065
    [Google Scholar]
  17. Wang W. Jiang S. Wang M-Y. Yuan H-W. Xie Q. Liu Y. Li B-S. Jian Y-Q. Liu C-X. Lou H-Y. Atta-Ur-Rahman Pan W-D. Medicinal plant of Bletilla striata: A review of its chemical constituents, pharmacological activities, and quality control. World J. Tradit. Chin. Med. 2020 6 4 393 407 10.4103/wjtcm.wjtcm_58_20
    [Google Scholar]
  18. Xuchen L. Guang B. <i>In vivo </i>and <i>in vitro</i> effects of <i>Bletilla striata</i> polysaccharide-loaded paclitaxel nanoparticles on human gastric cancer cells. Trop. J. Pharm. Res. 2019 18 1 13 17 10.4314/tjpr.v18i1.2
    [Google Scholar]
  19. Gou K. Li Y. Qu Y. Li H. Zeng R. Advances and prospects of Bletilla striata polysaccharide as promising multifunctional biomedical materials. Mater. Des. 2022 223 111198 10.1016/j.matdes.2022.111198
    [Google Scholar]
  20. Huang Y. Yi J. Li N. Lei M. Ma W. Zhang C. Properties and characterization of pH responsive nanoparticles based on polysaccharides from Bletilla striata as carriers in cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022 642 128692 10.1016/j.colsurfa.2022.128692
    [Google Scholar]
  21. Yang W. Wang Y. Li X. Yu P. Purification and structural characterization of Chinese yam polysaccharide and its activities. Carbohydr. Polym. 2015 117 1021 1027 10.1016/j.carbpol.2014.09.082 25498730
    [Google Scholar]
  22. Srivastava S. Singh D. Patel S. Singh M.R. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int. J. Biol. Macromol. 2017 101 502 517 10.1016/j.ijbiomac.2017.03.100 28342757
    [Google Scholar]
  23. Padmaja H. Sruthi S. Vangalapati M. Review on Hibiscus sabdariffa-A valuable herb. International Journal of Pharmacy & Life Sciences. 2014 5 8
    [Google Scholar]
  24. Zheng D. Zhao J. Li Y. Zhu L. Jin M. Wang L. Liu J. Lei J. Li Z. Self-assembled pH-sensitive nanoparticles based on Ganoderma lucidum polysaccharide–methotrexate conjugates for the co-delivery of antitumor drugs. ACS Biomater. Sci. Eng. 2021 7 8 3764 3773 10.1021/acsbiomaterials.1c00663 34213326
    [Google Scholar]
  25. Elumalai D. Suman T.Y. Hemavathi M. Swetha C. Kavitha R. Arulvasu C. Kaleena P.K. Biofabrication of gold nanoparticles using Ganoderma lucidum and their cytotoxicity against human colon cancer cell line (HT-29). Bull. Mater. Sci. 2021 44 2 132 10.1007/s12034‑021‑02435‑0
    [Google Scholar]
  26. Al-Ansari M.M. Dhasarathan P. Ranjitsingh A.J.A. Al-Humaid L.A. Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI. Saudi J. Biol. Sci. 2020 27 11 2993 3002 10.1016/j.sjbs.2020.09.008 33100858
    [Google Scholar]
  27. Liu Z. Xing J. Zheng S. Bo R. Luo L. Huang Y. Niu Y. Li Z. Wang D. Hu Y. Liu J. Wu Y. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydr. Polym. 2016 142 141 148 10.1016/j.carbpol.2016.01.021 26917384
    [Google Scholar]
  28. Mishra P.K. Mishra H. Ekielski A. Talegaonkar S. Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 2017 22 12 1825 1834 10.1016/j.drudis.2017.08.006 28847758
    [Google Scholar]
  29. Zeng Y. Lv Y. Hu M. Guo F. Zhang C. Curcumin-loaded hydroxypropyl-β-cyclodextrin inclusion complex with enhanced dissolution and oral bioavailability for epilepsy treatment. Xenobiotica 2022 52 7 718 728 10.1080/00498254.2022.2136044 36227237
    [Google Scholar]
  30. Tan R.S.L. Hassandarvish P. Chee C.F. Chan L.W. Wong T.W. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr. Polym. 2022 290 119500 10.1016/j.carbpol.2022.119500 35550778
    [Google Scholar]
  31. Trapani A. De Giglio E. Cafagna D. Denora N. Agrimi G. Cassano T. Gaetani S. Cuomo V. Trapani G. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int. J. Pharm. 2011 419 1-2 296 307 10.1016/j.ijpharm.2011.07.036 21821107
    [Google Scholar]
  32. Aderibigbe B.A. Naki T. Chitosan-based nano-carriers for nose to brain delivery. Appl. Sci. (Basel) 2019 9 11 2219 10.3390/app9112219
    [Google Scholar]
  33. Hira I. Kumar A. Kumari R. Saini A.K. Saini R.V. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Mater. Sci. Eng. C 2018 90 494 503 10.1016/j.msec.2018.04.085 29853118
    [Google Scholar]
  34. Jamroży M. Kudłacik-Kramarczyk S. Drabczyk A. Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int. J. Mol. Sci. 2024 25 2 786 10.3390/ijms25020786 38255859
    [Google Scholar]
  35. Gaikwad D. Sutar R. Patil D. Polysaccharide mediated nanodrug delivery: A review. Int. J. Biol. Macromol. 2024 261 Pt 1 129547 10.1016/j.ijbiomac.2024.129547 38278399
    [Google Scholar]
  36. Chen J.K. Shen C.R. Liu C.L. N-acetylglucosamine: production and applications. Mar. Drugs 2010 8 9 2493 2516 10.3390/md8092493 20948902
    [Google Scholar]
  37. Chanmee T. Ontong P. Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett. 2016 375 1 20 30 10.1016/j.canlet.2016.02.031 26921785
    [Google Scholar]
  38. Dobkin B.H. Paraplegia and spinal cord syndromes. Bradley’s Neurology in Clinical Practice E–Book Elsevier 2021 356 361
    [Google Scholar]
  39. He M. Huang L. Hou X. Zhong C. Bachir Z.A. Lan M. Chen R. Gao F. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy. Int. J. Pharm. 2019 560 1 10 10.1016/j.ijpharm.2019.01.027 30677484
    [Google Scholar]
  40. Duong H.T.T. Thambi T. Yin Y. Kim S.H. Nguyen T.L. Phan V.H.G. Kim J. Jeong J.H. Lee D.S. Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials 2020 230 119599 10.1016/j.biomaterials.2019.119599 31718883
    [Google Scholar]
  41. Han Y. Bo Z. Xu M. Sun N. Liu D. The protective role of TLR3 and TLR9 ligands in human pharyngeal epithelial cells infected with influenza A virus. Korean J. Physiol. Pharmacol. 2014 18 3 225 231 10.4196/kjpp.2014.18.3.225 24976762
    [Google Scholar]
  42. Thara E. Dorff T.B. Pinski J.K. Quinn D.I. Vaccine therapy with sipuleucel-T (Provenge) for prostate cancer. Maturitas 2011 69 4 296 303 10.1016/j.maturitas.2011.04.012 21621934
    [Google Scholar]
  43. Zeng Y. Xiang Y. Sheng R. Tomás H. Rodrigues J. Gu Z. Zhang H. Gong Q. Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact. Mater. 2021 6 10 3358 3382 10.1016/j.bioactmat.2021.03.008 33817416
    [Google Scholar]
  44. Wei X. Wang J. Liang M. Song M. Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics 2022 12 18 7821 7852 10.7150/thno.78572 36451865
    [Google Scholar]
  45. Cordeiro A.S. Alonso M.J. de la Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv. 2015 33 6 1279 1293 10.1016/j.biotechadv.2015.05.010 26049133
    [Google Scholar]
  46. Miura R. Sawada S. Mukai S. Sasaki Y. Akiyoshi K. Antigen delivery to antigen-presenting cells for adaptive immune response by self-assembled anionic polysaccharide nanogel vaccines. Biomacromolecules 2020 21 2 621 629 10.1021/acs.biomac.9b01351 31800235
    [Google Scholar]
  47. Souza P.R. de Oliveira A.C. Vilsinski B.H. Kipper M.J. Martins A.F. Polysaccharide-based materials created by physical processes: from preparation to biomedical applications. Pharmaceutics 2021 13 5 621 10.3390/pharmaceutics13050621 33925380
    [Google Scholar]
  48. Xu H. Nie W. Dai L. Luo R. Lin D. Zhang M. Zhang J. Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr. Polym. 2023 301 Pt A 120311 10.1016/j.carbpol.2022.120311 36436872
    [Google Scholar]
  49. Allawadhi P. Singh V. Govindaraj K. Khurana I. Sarode L.P. Navik U. Banothu A.K. Weiskirchen R. Bharani K.K. Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr. Polym. 2022 281 118923 10.1016/j.carbpol.2021.118923 35074100
    [Google Scholar]
  50. Awasthi A. Gulati M. Kumar B. Kaur J. Vishwas S. Khursheed R. Porwal O. Alam A. Kr A. Corrie L. Kumar R. Kumar A. Kaushik M. Jha N.K. Gupta P.K. Chellappan D.K. Gupta G. Dua K. Gupta S. Gundamaraju R. Rao P.V. Singh S.K. Recent progress in development of dressings used for diabetic wounds with special emphasis on scaffolds. BioMed Res. Int. 2022 2022 1 43 10.1155/2022/1659338 35832856
    [Google Scholar]
  51. Afzal O. Rizwanullah M. Altamimi A.S.A. Alossaimi M.A. Kamal M. Ahmad J. Harnessing natural polysaccharides-based nanoparticles for oral delivery of phytochemicals: Knocking down the barriers. J. Drug Deliv. Sci. Technol. 2023 82 104368 10.1016/j.jddst.2023.104368
    [Google Scholar]
  52. Elbialy N.S. Aboushoushah S.F. Sofi B.F. Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous Mesoporous Mater. 2020 291 109540 10.1016/j.micromeso.2019.06.002
    [Google Scholar]
  53. Nadar S.S. Vaidya L. Maurya S. Rathod V.K. Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review. Coord. Chem. Rev. 2019 396 1 21 10.1016/j.ccr.2019.05.011
    [Google Scholar]
  54. Bilia A.R. Piazzini V. Asprea M. Risaliti L. Vanti G. Bergonzi M.C. Plants extracts loaded in nanocarriers: An emergent formulating approach. Nat. Prod. Commun. 2018 13 9 1097 1234 10.1177/1934578X1801300914
    [Google Scholar]
  55. Chakravarty M. Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 2021 11 3 748 787 10.1007/s13346‑020‑00818‑0 32748035
    [Google Scholar]
  56. Lin N. Huang J. Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 2012 4 11 3274 3294 10.1039/c2nr30260h 22565323
    [Google Scholar]
  57. Debele T.A. Mekuria S.L. Tsai H.C. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater. Sci. Eng. C 2016 68 964 981 10.1016/j.msec.2016.05.121 27524098
    [Google Scholar]
  58. Saha I. Datta S. Bacterial exopolysaccharides in drug delivery applications. J. Drug Deliv. Sci. Technol. 2022 74 103557 10.1016/j.jddst.2022.103557
    [Google Scholar]
  59. Wasser S.P. Mushroom pharmacy. Encyclopedia of Science & Technology McGraw Hill 2014 678 683
    [Google Scholar]
  60. Salleh M.S.N. Ali R.R. Shameli K. Hamzah M.Y. Kasmani R.M. Nasef M.M. Interaction Insight of Pullulan-Mediated Gamma-Irradiated Silver Nanoparticle Synthesis and Its Antibacterial Activity. Polymers (Basel) 2021 13 20 3578 10.3390/polym13203578 34685342
    [Google Scholar]
  61. Kalimuthu A.K. Pandian S.R.K. Pavadai P. Panneerselvam T. Kabilan S.J. Sankaranarayanan M. Ala C. Kunjiappan S. Drug Delivery Applications of Exopolysaccharides from Endophytic Bacteria Pseudomonas otitidis from Tribulus terrestris L. J. Polym. Environ. 2023 31 8 3632 3649 10.1007/s10924‑023‑02848‑4
    [Google Scholar]
  62. Richa R. Roy Choudhury A. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin. Int. J. Biol. Macromol. 2020 156 1287 1296 10.1016/j.ijbiomac.2019.11.167 31760004
    [Google Scholar]
  63. Qiu A. Wang Y. Zhang G. Wang H. Natural polyacrylamide-based nano-drug delivery systems for treatment of diabetes. Polymers (Basel) 2022 14 15 3217 10.3390/polym14153217 35956731
    [Google Scholar]
  64. Li J. Xiang H. Zhang Q. Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022 15 5 602 10.3390/ph15050602 35631428
    [Google Scholar]
  65. Gao Y. Wang Z. Xue C. Wei Z. Modulation of Fabrication and Nutraceutical Delivery Performance of Ovalbumin-Stabilized Oleogel-Based Nanoemulsions via Complexation with Gum Arabic. Foods 2022 11 13 1859 10.3390/foods11131859 35804676
    [Google Scholar]
  66. Du M. Yang Z. Lu W. Wang B. Wang Q. Chen Z. Chen L. Han S. Cai T. Cai Y. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J. Microencapsul. 2020 37 6 403 412 10.1080/02652048.2020.1767224 32401077
    [Google Scholar]
  67. Zoratto N. Montanari E. Viola M. Wang J. Coviello T. Di Meo C. Matricardi P. Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr. Polym. 2021 266 118119 10.1016/j.carbpol.2021.118119 34044935
    [Google Scholar]
  68. Deacon J. Abdelghany S.M. Quinn D.J. Schmid D. Megaw J. Donnelly R.F. Jones D.S. Kissenpfennig A. Elborn J.S. Gilmore B.F. Taggart C.C. Scott C.J. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). J. Control. Release 2015 198 55 61 10.1016/j.jconrel.2014.11.022 25481442
    [Google Scholar]
  69. Moraes F.C. Marcelo Forero Ramirez L. Aid R. Benadda S. Maire M. Chauvierre C. Antunes J.C. Chaubet F. Letourneur D. P-selectin targeting polysaccharide-based nanogels for miRNA delivery. Int. J. Pharm. 2021 597 120302 10.1016/j.ijpharm.2021.120302 33540032
    [Google Scholar]
  70. Bardajee G.R. Khamooshi N. Nasri S. Vancaeyzeele C. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. Int. J. Biol. Macromol. 2020 153 180 189 10.1016/j.ijbiomac.2020.02.329 32135252
    [Google Scholar]
  71. Al-Remawi M. Elsayed A. Maghrabi I. Hamaidi M. Jaber N. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm. Dev. Technol. 2017 22 3 390 398 10.1080/10837450.2016.1213745 27470482
    [Google Scholar]
  72. Okubo M. Miyazaki M. Yuba E. Harada A. Chondroitin sulfate-based pH-sensitive polymer-modified liposomes for intracellular antigen delivery and induction of cancer immunity. Bioconjug. Chem. 2019 30 5 1518 1529 10.1021/acs.bioconjchem.9b00221 30945847
    [Google Scholar]
  73. de Oliveira J.K. Ueda-Nakamura T. Corrêa A.G. Petrilli R. Lopez R.F.V. Nakamura C.V. Auzely-Velty R. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Mater. Sci. Eng. C 2020 110 110720 10.1016/j.msec.2020.110720 32204033
    [Google Scholar]
  74. Siafaka P.I. Titopoulou A. Koukaras E.N. Kostoglou M. Koutris E. Karavas E. Bikiaris D.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm. 2015 495 1 249 264 10.1016/j.ijpharm.2015.08.100 26341322
    [Google Scholar]
  75. Swaminathan S. Vavia P.R. Trotta F. Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 2007 57 1-4 89 94 10.1007/s10847‑006‑9216‑9
    [Google Scholar]
  76. Caldera F. Argenziano M. Trotta F. Dianzani C. Gigliotti L. Tannous M. Pastero L. Aquilano D. Nishimoto T. Higashiyama T. Cavalli R. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr. Polym. 2018 194 111 121 10.1016/j.carbpol.2018.04.027 29801818
    [Google Scholar]
  77. Mariyam Bee A.J. Design and characterisation of rosuvastatin calcium nanosponge using a natural polymer at different concentration. Thesis, Kamalakshi Pandurangan College of Pharmacy, Tiruvannamalai
    [Google Scholar]
  78. Ansari R. Maheshwari R. Mahajan S.C. Jain V. Development and characterization of hydrogel system bearing minoxidil loaded β–cyclodextrin based nanosponges for topical delivery. Drug Deliv. Lett. 2014 4 2 148 155 10.2174/2210303104666140313232454
    [Google Scholar]
  79. Hoti G. Matencio A. Rubin Pedrazzo A. Cecone C. Appleton S.L. Khazaei Monfared Y. Caldera F. Trotta F. Nutraceutical concepts and dextrin-based delivery systems. Int. J. Mol. Sci. 2022 23 8 4102 10.3390/ijms23084102 35456919
    [Google Scholar]
  80. Badawi A.A. El-Laithy H.M. El Qidra R.K. El Mofty H. El dally M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch. Pharm. Res. 2008 31 8 1040 1049 10.1007/s12272‑001‑1266‑6 18787795
    [Google Scholar]
  81. Balan V. Dodi G. Tudorachi N. Ponta O. Simon V. Butnaru M. Verestiuc L. Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: Synthesis and characterization. Chem. Eng. J. 2015 279 188 197 10.1016/j.cej.2015.04.152
    [Google Scholar]
  82. Sombra F.M. Richter A.R. de Araújo A.R. de Oliveira Silva Ribeiro F. Souza Mendes J.F. dos Santos Fontenelle R.O. da Silva D.A. Paula H.C.B. Feitosa J.P.A. Goycoolea F.M. de Paula R.C.M. Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. Int. J. Biol. Macromol. 2020 146 1133 1141 10.1016/j.ijbiomac.2019.10.053 31734368
    [Google Scholar]
  83. Moradi S. Anarjan N. Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions. Food Sci. Biotechnol. 2019 28 2 413 421 10.1007/s10068‑018‑0478‑y 30956853
    [Google Scholar]
  84. dos Santos S.B.F. Pereira S.A. Rodrigues F.A.M. da Silva A.C.C. de Almeida R.R. Sousa A.C.C. Fechine L.M.U.D. Denardin J.C. Araneda F. Sá L.G.A.V. da Silva C.R. Nobre Júnior H.V. Ricardo N.M.P.S. Antibacterial activity of fluoxetine-loaded starch nanocapsules. Int. J. Biol. Macromol. 2020 164 2813 2817 10.1016/j.ijbiomac.2020.08.184 32853612
    [Google Scholar]
  85. Kasemset S. Wang L. He Z. Miller D.J. Kirschner A. Freeman B.D. Sharma M.M. Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane. J. Membr. Sci. 2017 522 100 115 10.1016/j.memsci.2016.07.016
    [Google Scholar]
  86. Silva A.L.G. Carvalho N.V. Paterno L.G. Moura L.D. Filomeno C.L. de Paula E. Báo S.N. Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines. Cancer Nanotechnol. 2021 12 1 11 10.1186/s12645‑021‑00083‑x
    [Google Scholar]
  87. Kettler K. Veltman K. van de Meent D. van Wezel A. Hendriks A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 2014 33 3 481 492 10.1002/etc.2470 24273100
    [Google Scholar]
  88. Mutalik S.P. Pandey A. Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int. J. Biol. Macromol. 2020 151 136 158 10.1016/j.ijbiomac.2020.02.150 32070745
    [Google Scholar]
  89. Zein R. Sharrouf W. Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J. Oncol. 2020 2020 1 1 16 10.1155/2020/5194780 32765604
    [Google Scholar]
  90. Sadeghi Ghadi Z. Dinarvand R. Asemi N. Talebpour Amiri F. Ebrahimnejad P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur. J. Pharm. Sci. 2019 130 234 246 10.1016/j.ejps.2019.01.035 30711688
    [Google Scholar]
  91. Młynek M. Trzciński J.W. Ciach T. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes. Biomedicines 2023 11 5 1307 10.3390/biomedicines11051307 37238978
    [Google Scholar]
  92. Reza Soltani E. Ahmad Panahi H. Moniri E. Torabi Fard N. Raeisi I. Beik J. Yousefi Siavoshani A. Construction of a pH/Temperature dual-responsive drug delivery platform based on exfoliated MoS2 nanosheets for effective delivery of doxorubicin: Parametric optimization via central composite design. Mater. Chem. Phys. 2023 295 127159 10.1016/j.matchemphys.2022.127159
    [Google Scholar]
  93. Thangudu S. Huang E.Y. Su C.H. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater. Sci. 2022 10 18 5032 5053 10.1039/D2BM00692H 35858468
    [Google Scholar]
  94. Bhat A.A. Gupta G. Alharbi K.S. Afzal O. Altamimi A.S.A. Almalki W.H. Kazmi I. Al-Abbasi F.A. Alzarea S.I. Chellappan D.K. Singh S.K. MacLoughlin R. Oliver B.G. Dua K. Polysaccharide-Based Nanomedicines Targeting Lung Cancer. Pharmaceutics 2022 14 12 2788 10.3390/pharmaceutics14122788 36559281
    [Google Scholar]
  95. Srivastava N. Choudhury A.R. Microbial polysaccharide-based nanoformulations for nutraceutical delivery. ACS Omega 2022 7 45 40724 40739 10.1021/acsomega.2c06003 36406482
    [Google Scholar]
  96. Laubach J. Joseph M. Brenza T. Gadhamshetty V. Sani R.K. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J. Control. Release 2021 329 971 987 10.1016/j.jconrel.2020.10.027 33091530
    [Google Scholar]
  97. Plucinski A. Lyu Z. Schmidt B.V.K.J. Polysaccharide nanoparticles: from fabrication to applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 35 7030 7062 10.1039/D1TB00628B 33928990
    [Google Scholar]
  98. Bai L. Xu D. Zhou Y.M. Zhang Y.B. Zhang H. Chen Y.B. Cui Y.L. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications. Antioxidants 2022 11 12 2491 10.3390/antiox11122491 36552700
    [Google Scholar]
  99. Stevanović M. Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024 16 5 670 10.3390/pharmaceutics16050670 38794332
    [Google Scholar]
  100. Efthimiadou E.K. Metaxa A.F. Kordas G. Modified polysaccharides as drug delivery. Polysaccharides Springer International Publishing Ramawat K.G. Mérillon J-M. 2015 1805 1835 10.1007/978‑3‑319‑03751‑6_23‑1
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266316522241015143856
Loading
/content/journals/ctmc/10.2174/0115680266316522241015143856
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: polymer ; green synthesis ; polysaccharide ; Nanotechnology ; sustainable ; formulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test