Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

The mutual activations of multiple signaling pathways are the key factors in the development and progression of myocardial cell injuries.

Objectives

This research aimed to compare the different degrees of myocardial injury after coronary stenting, permanent pacemaker implantations, or cardiac radiofrequency ablation and to investigate the effects of the mutual activation of TNF-α/NF-κB, TLR2/TLR4, and ROS/MDA signaling pathways on myocardial injury in elderly patients after coronary stents or permanent pacemakers or radiofrequency ablation.

Methods

We determined reactive oxygen species (ROS), malondialdehyde (MDA), toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and high-sensitive cardiac troponin T (hs-cTnT) as markers of myocardial injury in patients.

Results

The levels of ROS, MDA, TLR2, TLR4, NF-κB, TNF-α, and hs-cTnT were increased in patients with permanent pacemaker implantations when compared to patients with cardiac radiofrequency ablation ( < 0.01) at 6 months and were further increased in patients with coronary stenting compared to patients with cardiac radiofrequency ablation and permanent pacemaker implantations at 6 months, respectively ( < 0.01). This research confirmed that ROS, MDA, TLR2, TLR4, NF-κB, and TNF-α predicted myocardial injury severity.

Conclusion

Oxidative stress (ROS/MDA signaling pathway) may be linked to immune response (TLR2/TLR4 signaling pathway) and pro-inflammatory response (TNF-α/NF-κB signaling pathway) in myocardial injury, and ROS/MDA signaling may play a dominant role.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314899240919081451
2024-09-27
2025-05-12
Loading full text...

Full text loading...

References

  1. KhanN.A. LawyerG. McDonoughS. WangQ. KassemN.O. Kas-PetrusF. YeD. SinghK.P. KassemN.O.F. RahmanI. Systemic biomarkers of inflammation, oxidative stress and tissue injury and repair among waterpipe, cigarette and dual tobacco smokers.Tob. Control202029Suppl. 2s102s10910.1136/tobaccocontrol‑2019‑05495831494573
    [Google Scholar]
  2. SunL. WangX. SaredyJ. YuanZ. YangX. WangH. Innate-adaptive immunity interplay and redox regulation in immune response.Redox Biol.20203710175910.1016/j.redox.2020.10175933086106
    [Google Scholar]
  3. AskinL. TanriverdiO. TurkmenS. Clinical importance of high- sensitivity troponin T in patients without coronary artery disease.North. Clin. Istanb.20197330531010.14744/nci.2019.7113532478307
    [Google Scholar]
  4. Piera-VelazquezS. JimenezS.A. Oxidative stress induced by reactive oxygen species (ROS) and NADPH oxidase 4 (NOX4) in the pathogenesis of the fibrotic process in systemic sclerosis: A promising therapeutic target.J. Clin. Med.20211020479110.3390/jcm1020479134682914
    [Google Scholar]
  5. BerginP. LeggettA. CardwellC.R. WoodsideJ.V. ThakkinstianA. MaxwellA.P. McKayG.J. The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: A systematic review and meta-analysis.BMC Nephrol.202122112610.1186/s12882‑021‑02328‑833832458
    [Google Scholar]
  6. Di LorenzoA. BolliE. TaroneL. CavalloF. ContiL. Toll- like receptor 2 at the crossroad between cancer cells, the immune system, and the microbiota.Int. J. Mol. Sci.20202124941810.3390/ijms2124941833321934
    [Google Scholar]
  7. MishraV. PathakC. Human toll-like receptor 4 (hTLR4): Structural and functional dynamics in cancer.Int. J. Biol. Macromol.201912242545110.1016/j.ijbiomac.2018.10.14230365988
    [Google Scholar]
  8. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑632958760
    [Google Scholar]
  9. KunnumakkaraA. ThakurK.K. RanaV. BoraB. BanikK. KhatoonE. SailoB.L. ShabnamB. GirisaS. GuptaS.C. AggarwalB.B. Upside and downside of tumor necrosis factor blockers for treatment of immune/inflammatory diseases.Crit. Rev. Immunol.201939643947910.1615/CritRevImmunol.202003320532421957
    [Google Scholar]
  10. YuL. LuZ. DaiX. ShenC. ZhangL. ZhangJ. Prognostic value of CT-derived myocardial blood flow, CT fractional flow reserve and high-risk plaque features for predicting major adverse cardiac events.Cardiovasc. Diagn. Ther.202111495696610.21037/cdt‑21‑21934527519
    [Google Scholar]
  11. JanM.I. KhanR.A. Fozia AhmadI. KhanN. UroojK. ShahA.U.H.A. KhanA.U. AliT. IshtiaqA. ShahM. UllahA. MurtazaI. UllahR. AlotaibiA. MurthyH.C.A. C-reactive protein and high-sensitive cardiac troponins correlate with oxidative stress in valvular heart disease patients.Oxid. Med. Cell. Longev.2022202211010.1155/2022/502985335535358
    [Google Scholar]
  12. ZhouY.X. HanW.W. SongD.D. LiZ.P. DingH.J. ZhouT. JiangL. HuE.C. Effect of miR-10a on sepsis-induced liver injury in rats through TGF-β1/Smad signaling pathway.Eur. Rev. Med. Pharmacol. Sci.202024286286910.26355/eurrev_202001_2007032016992
    [Google Scholar]
  13. AtikN. Putri PratiwiS. HamijoyoL. Correlation between C-reactive protein with malondialdehyde in systemic lupus erythematosus patients.Int. J. Rheumatol.202020201510.1155/2020/807841232695177
    [Google Scholar]
  14. PerticoneM. MaioR. GigliottiS. ArturiF. SuccurroE. SciacquaA. AndreozziF. SestiG. PerticoneF. Immuno-mediated inflammation in hypertensive patients with 1-h post-load hyperglycemia.Int. J. Mol. Sci.202223181089110.3390/ijms23181089136142799
    [Google Scholar]
  15. PapilaK. SozerV. CigdemK. DurmusS. KurtulusD. PapilaC. GelisgenR. UzunH. Circulating nuclear factor-kappa B mediates cancer-associated inflammation in human breast and colon cancer.J. Med. Biochem.202140215015910.5937/jomb0‑2712833776564
    [Google Scholar]
  16. GuoN. ZhouL.X. MengN. ShiY.P. Associations of oral and intestinal florae and serum inflammatory factors with pathogenesis of oral cancer.Eur. Rev. Med. Pharmacol. Sci.20202421110901109510.26355/eurrev_202011_2359533215425
    [Google Scholar]
  17. KawaiM. MaloneK.E. TangM.T.C. LiC.I. Active smoking and the risk of estrogen receptor-positive and triple-negative breast cancer among women ages 20 to 44 years.Cancer201412071026103410.1002/cncr.2840224515648
    [Google Scholar]
  18. ValléeA. GabetA. GraveC. SorbetsE. BlacherJ. OliéV. Patterns of hypertension management in france in 2015: The ESTEBAN survey.J. Clin. Hypertens. (Greenwich)202022466367210.1111/jch.1383432092238
    [Google Scholar]
  19. WeeY. BurnsK. BettN. Medical management of chronic stable angina.Aust. Prescr.201538413113610.18773/austprescr.2015.04226648642
    [Google Scholar]
  20. FladsethK. KristensenA. MannsverkJ. TrovikT. SchirmerH. Pre-test characteristics of unstable angina patients with obstructive coronary artery disease confirmed by coronary angiography.Open Heart201852e00088810.1136/openhrt‑2018‑00088830487980
    [Google Scholar]
  21. LohW.J. ChangX. AwT.C. PhuaS.K. LowA.F. ChanM.Y.Y. WattsG.F. HengC.K. Lipoprotein(a) as predictor of coronary artery disease and myocardial infarction in a multi-ethnic Asian population.Atherosclerosis202234916016510.1016/j.atherosclerosis.2021.11.01834887076
    [Google Scholar]
  22. FadiniG.P. MorieriM.L. BoscariF. FiorettoP. MaranA. BusettoL. BonoraB.M. SelminE. ArcidiaconoG. PinelliS. FarniaF. FalaguastaD. RussoL. VoltanG. MazzocutS. CostantiniG. GhirardiniF. TressoS. CattelanA.M. VianelloA. AvogaroA. VettorR. Newly-diagnosed diabetes and admission hyperglycemia predict COVID-19 severity by aggravating respiratory deterioration.Diabetes Res. Clin. Pract.202016810837410.1016/j.diabres.2020.10837432805345
    [Google Scholar]
  23. GalarisD. BarboutiA. PantopoulosK. Iron homeostasis and oxidative stress: An intimate relationship.Biochim. Biophys. Acta Mol. Cell Res.201918661211853510.1016/j.bbamcr.2019.11853531446062
    [Google Scholar]
  24. SunH. LiJ. MaimaitiB. LiuJ. LiZ. ChengY. ZhaoW. MijitiS. JiangT. MengQ. WangJ. JinQ. MengH. Circulating malondialdehyde level in patients with epilepsy: A meta-analysis.Seizure20229911311910.1016/j.seizure.2022.05.01535636158
    [Google Scholar]
  25. Ghassemi-BarghiN. EhsanfarZ. MohammadrezakhaniO. AshariS. GhiabiS. BayramiZ. Mechanistic approach for protective effect of ARA290, a specific ligand for the erythropoietin/CD131 heteroreceptor, against cisplatin-Induced nephrotoxicity, the involvement of apoptosis and inflammation pathways.Inflammation202346134235810.1007/s10753‑022‑01737‑736085231
    [Google Scholar]
  26. WangX. ZhaoC. JiW. XuY. GuoH. Relationship of TLR2, TLR4 and tissue remodeling in chronic rhinosinusitis.Int. J. Clin. Exp. Pathol.20158211991212https://doi.org/www.ijcep.com25973005
    [Google Scholar]
  27. CastoldiA. BragaT.T. Correa-CostaM. AguiarC.F. BassiÊ.J. Correa-SilvaR. EliasR.M. SalvadorF. Moraes-VieiraP.M. CenedezeM.A. ReisM.A. HiyaneM.I. Pacheco-SilvaÁ. GonçalvesG.M. CâmaraN.O.S. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis.PLoS One201275e3758410.1371/journal.pone.003758422655058
    [Google Scholar]
  28. ChenR. XieF. ZhaoJ. YueB. Suppressed nuclear factor-kappa B alleviates lipopolysaccharide-induced acute lung injury through downregulation of CXCR4 mediated by microRNA-194.Respir. Res.202021114410.1186/s12931‑020‑01391‑332522221
    [Google Scholar]
  29. HolbrookJ Lara-ReynaS Jarosz-GriffithsH McDermottM Tumour necrosis factor signalling in health and diseaseF1000Research20198F1000 Faculty Rev-11110.12688/f1000research.17023.130755793
    [Google Scholar]
  30. YangH. XieT. LiD. DuX. WangT. LiC. SongX. XuL. YiF. LiangX. GaoL. YangX. MaC. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway.Mol. Metab.201923243610.1016/j.molmet.2019.02.00730862474
    [Google Scholar]
  31. ChoiS.Y. RyuH.M. ChoiJ.Y. ChoJ.H. KimC.D. KimY.L. ParkS.H. The role of Toll-like receptor 4 in high-glucose-induced inflammatory and fibrosis markers in human peritoneal mesothelial cells.Int. Urol. Nephrol.201749117118110.1007/s11255‑016‑1430‑927722989
    [Google Scholar]
  32. YangC.S. ShinD.M. LeeH.M. SonJ.W. LeeS.J. AkiraS. Gougerot-PocidaloM.A. El-BennaJ. IchijoH. JoE.K. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling.Cell. Microbiol.200810374175410.1111/j.1462‑5822.2007.01081.x18028450
    [Google Scholar]
  33. LiangW. ChenM. ZhengD. LiJ. SongM. ZhangW. FengJ. LanJ. The opening of ATP-sensitive K+ channels protects H9c2 cardiac cells against the high glucose-induced injury and inflammation by inhibiting the ROS-TLR4-necroptosis pathway.Cell. Physiol. Biochem.20174131020103410.1159/00046139128291959
    [Google Scholar]
  34. WuJ. NiuP. ZhaoY. ChengY. ChenW. LinL. LuJ. ChengX. XuZ. Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells.PLoS One2019142e021206310.1371/journal.pone.021206330807577
    [Google Scholar]
  35. LiuR. CuiW. DuM. YuanJ. ZhangJ. XuO. LiuH. A early-onset case of post-cardiac injury syndrome after coronary stenting.World J. Emerg. Med.202314216516810.5847/wjem.j.1920‑8642.2023.03436911065
    [Google Scholar]
  36. DahdouhZ.S. T-stenting and small protrusion technique for left main coronary injury post Bentall procedure.Turk Kardiyol. Dern. Ars.2021491677110.5543/tkda.2020.8400633390581
    [Google Scholar]
  37. KassierA. FischellT.A. Managing coronary artery perforation after percutaneous coronary intervention.Expert Rev. Cardiovasc. Ther.202220321522210.1080/14779072.2022.205946535341445
    [Google Scholar]
  38. ZhouY. ChenZ. MaJ. ChenA. LuD. WuY. RenD. ZhangC. DaiC. ZhangY. QianJ. GeJ. Incidence, predictors and clinical significance of periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention.J. Cardiol.202076330931610.1016/j.jjcc.2020.03.00832354492
    [Google Scholar]
  39. JianW. GuanJ.H. ZhengW.B. MoC.H. XuY.T. HuangQ.L. WeiC.M. WangC. YangZ.J. YangG.L. GuiC. Association between serum angiopoietin-2 concentrations and periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention.Aging (Albany NY)20201265140515110.18632/aging.10293632182213
    [Google Scholar]
  40. WenzlF.A. ManningerM. WunschS. ScherrD. BispingE.H. Post-cardiac injury syndrome triggered by radiofrequency ablation for AVNRT.BMC Cardiovasc. Disord.202121161110.1186/s12872‑021‑02436‑134953495
    [Google Scholar]
  41. PopaM.A. BahlkeF. KottmaierM. FoerschnerL. BourierF. LengauerS. TelishevskaM. KrafftH. EnglertF. ReentsT. LennerzC. CaluoriG. JaïsP. HesslingG. DeisenhoferI. Myocardial injury and inflammation following pulsed-field ablation and very high-power short-duration ablation for atrial fibrillation.J. Cardiovasc. Electrophysiol.202435231732710.1111/jce.1615738105426
    [Google Scholar]
  42. MeloS.L. FerrazA.P. LemoucheS.O. DevidoM.S. SousaG.L. RochitteC.E. PisaniC.F. HachulD.T. ScanavaccaM. Myocardial injury progression after radiofrequency ablation in school-age children.Arq. Bras. Cardiol.20241211e2022072710.36660/abc.2022072738324855
    [Google Scholar]
  43. ShinoharaT. TakahashiN. MukaiY. KimuraT. YamaguchiK. TakitaA. OrigasaH. OkumuraK. KYU-RABLE Investigators Catheter ablation energy sources and myocardial injury and coagulation biomarkers during uninterrupted periprocedural edoxaban use - A subanalysis of KYU-RABLE.Circ. J.202286228028610.1253/circj.CJ‑21‑024734275977
    [Google Scholar]
  44. NakagawaH. IkedaA. YokoyamaK. AnY. HusseinA.A. SalibaW.I. WazniO.M. CastellviQ. Improvement in lesion formation with radiofrequency energy and utilization of alternate energy sources (cryoablation and pulsed field ablation) for ventricular arrhythmia ablation.Card. Electrophysiol. Clin.202214475776710.1016/j.ccep.2022.08.00336396191
    [Google Scholar]
  45. PatelZ.K. ShahM.S. BharuchaR. BenzM. Post-cardiac injury syndrome following permanent dual-chamber pacemaker implantation.Cureus2022141e2173710.7759/cureus.2173735251809
    [Google Scholar]
  46. KhalidN. RanaI.A. Post-cardiac injury syndrome following permanent pacemaker implantation presenting exclusively as massive pleural effusion —A rare occurrence.J. Pak. Med. Assoc.202373102093209510.47391/JPMA.823737876079
    [Google Scholar]
  47. DevereauxP.J. LamyA. ChanM.T.V. AllardR.V. LomivorotovV.V. LandoniG. ZhengH. PaparellaD. McGillionM.H. Belley-CôtéE.P. ParlowJ.L. UnderwoodM.J. WangC.Y. DvirnikN. AbubakirovM. FominskiyE. ChoiS. FremesS. MonacoF. UrrútiaG. MaestreM. HajjarL.A. HillisG.S. MillsN.L. MargariV. MillsJ.D. BillingJ.S. MethangkoolE. PolanczykC.A. Sant’AnnaR. ShukevichD. ConenD. KavsakP.A. McQueenM.J. BradyK. SpenceJ. Le ManachY. MianR. LeeS.F. BangdiwalaS.I. HussainS. BorgesF.K. PettitS. VincentJ. GuyattG.H. YusufS. AlpertJ.S. WhiteH.D. WhitlockR.P. VISION Cardiac Surgery Investigators High-sensitivity troponin I after cardiac surgery and 30-day mortality.N. Engl. J. Med.2022386982783610.1056/NEJMoa200080335235725
    [Google Scholar]
  48. LiangG. LiY. LiS. HuangZ. Efficacy of dexmedetomidine on myocardial ischemia/reperfusion injury in patients undergoing cardiac surgery with cardiopulmonary bypass: A protocol for systematic review and meta-analysis.Medicine (Baltimore)20231029e3302510.1097/MD.000000000003302536862913
    [Google Scholar]
  49. ZhangG.R. PengC.M. LiuZ.Z. LengY.F. The effect of dexmedetomidine on myocardial ischemia/reperfusion injury in patients undergoing cardiac surgery with cardiopulmonary bypass: A meta-analysis.Eur. Rev. Med. Pharmacol. Sci.202125237409741710.26355/eurrev_202112_2743834919243
    [Google Scholar]
  50. CherryA.D. Mitochondrial dysfunction in cardiac surgery.Anesthesiol. Clin.201937476978510.1016/j.anclin.2019.08.00331677690
    [Google Scholar]
  51. JoM.S. LeeJ. KimS.Y. KwonH.J. LeeH.K. ParkD.J. KimY. Comparison between creatine kinase MB, heart-type fatty acid-binding protein, and cardiac troponin T for detecting myocardial ischemic injury after cardiac surgery.Clin. Chim. Acta201948817417810.1016/j.cca.2018.10.04030389460
    [Google Scholar]
  52. ChengX.F. WangK. ZhangH.T. ZhangH. JiangX.Y. LuL.C. ChenC. ChengY.Q. WangD.J. LiK. Risk factors for postoperative myocardial injury-related cardiogenic shock in patients undergoing cardiac surgery.J. Cardiothorac. Surg.202318122010.1186/s13019‑023‑02312‑337415183
    [Google Scholar]
  53. SchneiderU. MukharyamovM. BeyersdorfF. DewaldO. LieboldA. GaudinoM. FremesS. DoenstT. The value of perioperative biomarker release for the assessment of myocardial injury or infarction in cardiac surgery.Eur. J. Cardiothorac. Surg.202261473574110.1093/ejcts/ezab49334791135
    [Google Scholar]
  54. PölzlL. EnglerC. SterzingerP. LohmannR. NägeleF. HirschJ. GraberM. EderJ. ReinstadlerS. SapplerN. KiloJ. TancevskiI. BachmannS. AbfaltererH. Ruttmann-UlmerE. UlmerH. GriesmacherA. HeutsS. ThielmannM. BauerA. GrimmM. BonarosN. HolfeldJ. Gollmann-TepeköylüC. Association of high-sensitivity cardiac troponin T with 30-day and 5-year mortality after cardiac surgery.J. Am. Coll. Cardiol.202382131301131210.1016/j.jacc.2023.07.01137730286
    [Google Scholar]
  55. WangX. LiL. HeL. YaoY. The effect of tranexamic acid on myocardial injury in cardiac surgical patients: A systematic review and meta-analysis.Blood Coagul. Fibrinolysis202233842943710.1097/MBC.000000000000115835946446
    [Google Scholar]
  56. SabeS.A. HarrisD.D. BroadwinM. SellkeF.W. Cardioprotection in cardiovascular surgery.Basic Res. Cardiol.2024119454556810.1007/s00395‑024‑01062‑038856733
    [Google Scholar]
  57. BoeningA. HinkeM. HeepM. BoenglerK. NiemannB. GrieshaberP. Cardiac surgery in acute myocardial infarction: Crystalloid versus blood cardioplegia – an experimental study.J. Cardiothorac. Surg.2020151410.1186/s13019‑020‑1058‑931915024
    [Google Scholar]
  58. ShengD.Z. ZhengD. KikuchiK. Cardiac resection injury in zebrafish.Methods Mol. Biol.20212158636910.1007/978‑1‑0716‑0668‑1_632857366
    [Google Scholar]
  59. BolkierY. Nevo-CaspiY. SalemY. VardiA. MishaliD. ParetG. Micro-RNA-208a, -208b, and -499 as biomarkers for myocardial damage after cardiac surgery in children.Pediatr. Crit. Care Med.2016174e193e19710.1097/PCC.000000000000064426886516
    [Google Scholar]
  60. SchwarzerM. RohrbachS. NiemannB. Heart and mitochondria: Pathophysiology and implications for cardiac surgeons.Thorac. Cardiovasc. Surg.201866101101910.1055/s‑0037‑161526329258126
    [Google Scholar]
  61. RothS. Lurati BuseG. New cardiac biomarkers for early detection of myocardial infarction in cardiac surgery.Anaesthesist202170121040104310.1007/s00101‑021‑00974‑z33944961
    [Google Scholar]
  62. AlbadraniM. Histidine–tryptophan–ketoglutarate solution versus multidose cardioplegia for myocardial protection in cardiac surgeries: A systematic review and meta-analysis.J. Cardiothorac. Surg.202217113310.1186/s13019‑022‑01891‑x35642063
    [Google Scholar]
  63. dA. KhasawnehM. OdwanH. AlghoulY. MakahlehZ. AltarabshehS. Postoperative cardiac arrest in cardiac surgery-how to improve the outcome?Med. Arh.202175214915310.5455/medarh.2021.75.149‑15334219876
    [Google Scholar]
  64. WangM. ScottS.R. KoniarisL.G. ZimmersT.A. Pathological responses of cardiac mitochondria to burn trauma.Int. J. Mol. Sci.20202118665510.3390/ijms2118665532932869
    [Google Scholar]
  65. LiZ.S. WangK. PanT. SunY.H. LiuC. ChengY.Q. ZhangH. ZhangH.T. WangD.J. ChenZ.J. The evaluation of levosimendan in patients with acute myocardial infarction related ventricular septal rupture undergoing cardiac surgery: A prospective observational cohort study with propensity score analysis.BMC Anesthesiol.202222113510.1186/s12871‑022‑01663‑z35501683
    [Google Scholar]
  66. PisanoA. TorellaM. YavorovskiyA. LandoniG. The impact of anesthetic regimen on outcomes in adult cardiac surgery: A narrative review.J. Cardiothorac. Vasc. Anesth.202135371172910.1053/j.jvca.2020.03.05432434720
    [Google Scholar]
  67. Santos-JuniorV.A. LolloP.C.B. CanteroM.A. MouraC.S. Amaya-FarfanJ. MoratoP.N. Heat shock proteins: Protection and potential biomarkers for ischemic injury of cardiomyocytes after surgery.Rev. Bras. Cir. Cardiovasc.201833329130210.21470/1678‑9741‑2017‑016930043923
    [Google Scholar]
  68. FilbeyK. Sedaghat-HamedaniF. KayvanpourE. XynogalosP. SchererD. MederB. KatusH.A. ZitronE. Postcardiac injury syndrome after cardiac implantable electronic device implantation.Herz202045769670210.1007/s00059‑020‑04910‑632170340
    [Google Scholar]
  69. WangD. ZhaoH. DengC. LeiW. RenJ. ZhangS. YangW. LuC. TianY. ChenY. QiuY. MengL. YangY. Sulfide-modified nanoscale zero-valent iron as a novel therapeutic remedy for septic myocardial injury.J. Adv. Res.20245514515810.1016/j.jare.2023.02.00836801383
    [Google Scholar]
  70. AlmeidaA.S. CeronR.O. AnschauF. KopittkeL. LiraK.B. DelvauxR.S. RodeJ. ReyR.A.W. WittkeE.I. RombaldiA.R. Comparison between Custodiol, del Nido and modified del Nido in the myocardial protection - Cardioplegia Trial: A study protocol for a randomised, double-blind clinical trial.BMJ Open2021119e04794210.1136/bmjopen‑2020‑04794234489276
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314899240919081451
Loading
/content/journals/ctmc/10.2174/0115680266314899240919081451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test