Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction.

Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various pyrrole-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266307696240708115422
2024-07-26
2025-07-06
Loading full text...

Full text loading...

References

  1. Nishanth RaoR. JenaS. MukherjeeM. MaitiB. ChandaK. Green synthesis of biologically active heterocycles of medicinal importance: A review.Environ. Chem. Lett.20211943315335810.1007/s10311‑021‑01232‑9
    [Google Scholar]
  2. ShaabanS. Abdel-WahabB.F. Groebke–Blackburn–Bienaymé multicomponent reaction: Emerging chemistry for drug discovery.Mol. Divers.201620123325410.1007/s11030‑015‑9602‑626016721
    [Google Scholar]
  3. Abdel-WahabB. ShaabanS. Thiazolothiadiazoles and thiazolooxadiazoles: Synthesis and biological applications.Synthesis201446131709171610.1055/s‑0033‑1338627
    [Google Scholar]
  4. BiavaM. PorrettaG.C. PoceG. BattilocchioC. AlfonsoS. de LoguA. ManettiF. BottaM. Developing pyrrole-derived antimycobacterial agents: A rational lead optimization approach.ChemMedChem20116459359910.1002/cmdc.20100052621341373
    [Google Scholar]
  5. GuptonJ.T. Pyrrole Natural Products with Antitumor Properties.Heterocyclic Antitumor Antibiotics. LeeM. Berlin, HeidelbergSpringer Berlin Heidelberg2006539210.1007/7081_019
    [Google Scholar]
  6. MotatiD.R. UrediD. WatkinsE.B. The discovery and development of oxalamide and pyrrole small molecule inhibitors of gp120 and HIV entry : A review.Curr. Top. Med. Chem.201919181650167510.2174/156802661966619071716395931424369
    [Google Scholar]
  7. Li PetriG. SpanòV. SpatolaR. HollR. RaimondiM.V. BarrajaP. MontalbanoA. Bioactive pyrrole-based compounds with target selectivity.Eur. J. Med. Chem.202020811278310.1016/j.ejmech.2020.11278332916311
    [Google Scholar]
  8. BaillyC. Lamellarins, from A to Z: A family of anticancer marine pyrrole alkaloids.Curr. Med. Chem. Anticancer Agents20044436337810.2174/156801104335293915281908
    [Google Scholar]
  9. BellinaF. RossiR. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions.Tetrahedron200662317213725610.1016/j.tet.2006.05.024
    [Google Scholar]
  10. AyatsC. SoleyR. AlbericioF. ÁlvarezM. Synthesis of the pyrrolo[2,3-c]carbazole core of the dictyodendrins.Org. Biomol. Chem.20097586086210.1039/b822933n19225666
    [Google Scholar]
  11. JungE.K. LeungE. BarkerD. Synthesis and biological activity of pyrrole analogues of combretastatin A-4.Bioorg. Med. Chem. Lett.201626133001300510.1016/j.bmcl.2016.05.02627212068
    [Google Scholar]
  12. HamamaW.S. El-BanaG.G. ShaabanS. ZoorobH.H. Synthetic approach to some new annulated 1,2,4‐triazine skeletons with antimicrobial and cytotoxic activities.J. Heterocycl. Chem.201855497198210.1002/jhet.3127
    [Google Scholar]
  13. MedjahedN. KibouZ. BerrichiA. Choukchou-BrahamN. Advances in pyrazoles rings’ syntheses by heterogeneous catalysts, ionic liquids, and multicomponent reactions : A Review.Curr. Org. Chem.202327647150910.2174/1385272827666230602121855
    [Google Scholar]
  14. MehiaouiN. HassaineR. BerrichiA. KibouZ. Choukchou-BrahamN. Synthesis of highly heterocyclic fluorescent molecules: 2-imino-2H-pyrano[3,2-c] Pyridin-5(6H)-ones derivatives.J. Fluoresc.20233351995200110.1007/s10895‑023‑03212‑436947278
    [Google Scholar]
  15. BalakrishnaA. AguiarA. SobralP.J.M. WaniM.Y. Almeida e SilvaJ. SobralA.J.F.N. Paal–Knorr synthesis of pyrroles: From conventional to green synthesis.Catal. Rev., Sci. Eng.20196118411010.1080/01614940.2018.1529932
    [Google Scholar]
  16. ZhangM. DingY. QinH.X. XuZ.G. LanH.T. YangD.L. YiC. One-pot synthesis of substituted pyrrole–imidazole derivatives with anticancer activity.Mol. Divers.20202441177118410.1007/s11030‑019‑09982‑z31494841
    [Google Scholar]
  17. YaoT.T. XiaoD.X. LiZ.S. ChengJ.L. FangS.W. DuY.J. ZhaoJ.H. DongX.W. ZhuG.N. Design, synthesis, and fungicidal evaluation of novel pyrazole-furan and pyrazole-pyrrole carboxamide as succinate dehydrogenase inhibitors.J. Agric. Food Chem.201765265397540310.1021/acs.jafc.7b0125128616975
    [Google Scholar]
  18. JiangS. TalaS.R. LuH. ZouP. AvanI. IbrahimT.S. Abo-DyaN.E. AbdelmajeidA. DebnathA.K. KatritzkyA.R. Design, synthesis, and biological activity of a novel series of 2,5-disubstituted furans/pyrroles as HIV-1 fusion inhibitors targeting gp41.Bioorg. Med. Chem. Lett.201121226895689810.1016/j.bmcl.2011.08.08121978673
    [Google Scholar]
  19. LiuJ.Q. ChenX. ShatskiyA. KärkäsM.D. WangX.S. Silver-mediated synthesis of substituted benzofuran- and indole-pyrroles via sequential reaction of ortho -alkynylaromatics with methylene isocyanides.J. Org. Chem.201984148998900610.1021/acs.joc.9b0052831117557
    [Google Scholar]
  20. KlumppS. FreyM. KleefeldG. SauerA. EgerK. Pyrrolo[2,3-d]pyrimidines as inhibitors of cAMP-phosphodiesterase.Biochem. Pharmacol.198938694995310.1016/0006‑2952(89)90285‑22539163
    [Google Scholar]
  21. Hassan HilmyK.M. KhalifaM.M.A. Allah HawataM.A. AboAlzeen KeshkR.M. El-TorgmanA.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents.Eur. J. Med. Chem.201045115243525010.1016/j.ejmech.2010.08.04320828885
    [Google Scholar]
  22. MohamedM.S. KamelR. FatahalaS.S. Synthesis and biological evaluation of some thio containing pyrrolo [2,3-d]Pyrimidine derivatives for their anti-inflammatory and anti-microbial activities.Eur. J. Med. Chem.20104572994300410.1016/j.ejmech.2010.03.02820399543
    [Google Scholar]
  23. FerreiraV.F. de SouzaM.C.B.V. CunhaA.C. PereiraL.O.R. FerreiraM.L.G. Recent advances in the synthesis of pyrroles.Org. Prep. Proced. Int.200133541145410.1080/00304940109356613
    [Google Scholar]
  24. IqbalS. RasheedH. AwanR.J. AwanR.J. MukhtarA. MoloneyM.G. Recent advances in the synthesis of pyrroles.Curr. Org. Chem.202024111196122910.2174/1385272824999200528125651
    [Google Scholar]
  25. Portilla ZunigaO.M. SathicqA.G. Martinez ZambranoJ.J. RomanelliG.P. Green synthesis of pyrrole derivatives.Curr. Org. Synth.201714686588210.2174/1570179414666161206124318
    [Google Scholar]
  26. MenéndezJ. LeonardiM. EstévezV. VillacampaM. The hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction.Synthesis201951481682810.1055/s‑0037‑1610320
    [Google Scholar]
  27. ArumugamN. KumarR. AlmansourA. PerumalS. Multicomponent 1,3-dipolar cycloaddition reactions in the construction of hybrid spiroheterocycles.Curr. Org. Chem.201317181929195610.2174/13852728113179990091
    [Google Scholar]
  28. HeP. QuF. HuR-F. GaoL. WuJ. ChengX-H. WangS. New and efficient synthesis of 2,3,4-trisubstituted 2H-Pyrrolo[3,4-c]quinolines via a MCR/staudinger/aza-wittig sequence.Synthesis201547233701371010.1055/s‑0035‑1560208
    [Google Scholar]
  29. JadalaC. PrasadB. PrasanthiA.V.G. ShankaraiahN. KamalA. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction.RSC Adv.2019953306593066510.1039/C9RA06778G35529397
    [Google Scholar]
  30. ThompsonB.B. MontgomeryJ. Enone-alkyne reductive coupling: A versatile entry to substituted pyrroles.Org. Lett.201113133289329110.1021/ol201133n21657241
    [Google Scholar]
  31. ZhouY. ZhouL. JesikiewiczL.T. LiuP. BuchwaldS.L. Synthesis of pyrroles through the cuh-catalyzed coupling of enynes and nitriles.J. Am. Chem. Soc.2020142229908991410.1021/jacs.0c0385932395998
    [Google Scholar]
  32. SinghN. SinghS. KohliS. SinghA. AsikiH. RatheeG. ChandraR. AndersonE.A. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020).Org. Chem. Front.20218195550557310.1039/D0QO01574A
    [Google Scholar]
  33. BauerI. KnölkerH-J. Synthesis of pyrrole and carbazole alkaloids.Alkaloid Synthesis. KnölkerH-J. Berlin, HeidelbergSpringer Berlin Heidelberg2012203253
    [Google Scholar]
  34. AbdelbasetM.S. Abdel-AzizM. Abuo-RahmaG.E-D.A. RamadanM. AbdelrahmanM.H. Pyridazinones and pyrrolones as promising scaffolds in medicinal chemistry.JABPS2019211928
    [Google Scholar]
  35. AliY. AlamM. HamidH. HussainA. 2 (3h) pyrrolone–a biologically active scaffold (a review).Orient. J. Chem.2014301011610.13005/ojc/300101
    [Google Scholar]
  36. AliY. AlamM.S. HamidH. HusainA. ShafiS. DhulapA. HussainF. BanoS. KharbandaC. NazreenS. HaiderS. Design and synthesis of butenolide‐based novel benzyl pyrrolones: Their tnf‐α based molecular docking with in vivo and in vitro anti‐inflammatory activity.Chem. Biol. Drug Des.201586461962510.1111/cbdd.1252225626351
    [Google Scholar]
  37. HusainA. AlamM.M. ShaharyarM. LalS. Antimicrobial activities of some synthetic butenolides and their pyrrolone derivatives.J. Enzyme Inhib. Med. Chem.2010251546110.3109/1475636090294086020030509
    [Google Scholar]
  38. GabrieleB. PlastinaP. VetereM. V. VeltriL. MancusoR. SalernoG. A simple and convenient synthesis of substituted furans and pyrroles by CuCl2-catalyzed heterocyclodehydration of 3- yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols.etrahedron Lett.2010512735653567
    [Google Scholar]
  39. AlvesD. LaraR. G. ContreiraM. E. RadatzC. S. DuarteL. F. B. PerinG. Copper- catalyzed sulfenylation of pyrroles with disulfides or thiols: directly synthesis of sulfenyl pyrroles.etrahedron Lett.2012532633643368
    [Google Scholar]
  40. ChenF. ShenT. CuiY. JiaoN. 2,4- vs 3,4-disubsituted pyrrole synthesis switched by copper and nickel catalysts.Org. Lett.201214184926492910.1021/ol302270z22946483
    [Google Scholar]
  41. PaulV.L. YakaiahT. ReddyA.R. ShekharA.C. RaoP.S. NarsaiahB. Efficient strategy for the synthesis of 4-hydroxy-1H-pyrrole-2,3-dicarboxylic ester derivatives using transition-metal-oxide catalysts.Synth. Commun.201040213152315810.1080/00397910903370675
    [Google Scholar]
  42. LiQ. FanA. LuZ. CuiY. LinW. JiaY. One-pot AgOAc-mediated synthesis of polysubstituted pyrroles from primary amines and aldehydes: application to the total synthesis of purpurone.Org. Lett.201012184066406910.1021/ol101644g20734981
    [Google Scholar]
  43. NathanielC.R. NeethaM. AnilkumarG. Silver‐catalyzed pyrrole synthesis: An overview.Appl. Organomet. Chem.2021354e614110.1002/aoc.6141
    [Google Scholar]
  44. ZhangY. ZhengJ. CuiS. Rh(III)-catalyzed C-H activation/cyclization of indoles and pyrroles: Divergent synthesis of heterocycles.J. Org. Chem.201479146490650010.1021/jo500902n24949803
    [Google Scholar]
  45. BurrowsA.D. HarringtonR.W. MahonM.F. PalmerM.T. SeniaF. VarroneM. Synthesis and reactivity of rhodium(i) complexes containing keto-functionalised N-pyrrolyl phosphine ligands.Dalton Trans.2003193717372610.1039/b306292a
    [Google Scholar]
  46. EmayavarambanB. SenM. SundararajuB. Iron-catalyzed sustainable synthesis of pyrrole.Org. Lett.20171916910.1021/acs.orglett.6b0281927958754
    [Google Scholar]
  47. MakarovA.S. FadeevA.A. UchuskinM.G. Intramolecular iron-catalyzed transannulation of furans with O -acetyl oximes: synthesis of functionalized pyrroles.Org. Chem. Front.20218236553656010.1039/D1QO01281A
    [Google Scholar]
  48. FuL. LiuY. WanJ.P. Pd-catalyzed triple-fold C(sp 2 )–H activation with enaminones and alkenes for pyrrole synthesis via hydrogen evolution.Org. Lett.202123114363436710.1021/acs.orglett.1c0130134013729
    [Google Scholar]
  49. NishibayashiY. YoshikawaM. InadaY. MiltonM.D. HidaiM. UemuraS. Novel ruthenium- and platinum-catalyzed sequential reactions: Synthesis of tri- and tetrasubstituted furans and pyrroles from propargylic alcohols and ketones.Angew. Chem. Int. Ed.200342232681268410.1002/anie.20035117012813753
    [Google Scholar]
  50. VaitlaJ. BayerA. HopmannK.H. Synthesis of indoles and pyrroles utilizing iridium carbenes generated from sulfoxonium ylides.Angew. Chem. Int. Ed.201756154277428110.1002/anie.20161052028319303
    [Google Scholar]
  51. HuangL. CaiY. ZhengC. DaiL.X. YouS.L. Iridium‐catalyzed enantioselective synthesis of pyrrole‐annulated medium‐sized‐ring compounds.Angew. Chem. Int. Ed.20175635105451054810.1002/anie.20170506828665043
    [Google Scholar]
  52. AghapoorK. MohsenzadehF. DarabiH.R. RastgarS. Microwave-induced calcium(II) chloride-catalyzed Paal–Knorr pyrrole synthesis: A safe, expeditious, and sustainable protocol.Res. Chem. Intermed.20184474063407210.1007/s11164‑018‑3355‑7
    [Google Scholar]
  53. BerrichiA. BachirR. BedraneS. Catalysts for propargylamines synthesis Via A3, AHA, and KA2 coupling : A review.Curr. Org. Chem.202327762164310.2174/1385272827666230614151935
    [Google Scholar]
  54. RanuB.C. GhoshT. AdakL. Recent advances in the synthesis of bioactive fiveand six-membered heterocycles catalyzed by heterogeneous metal catalysts.Green Synthetic Approaches for Biologically Relevant Heterocycles.Chapter 22nd ed BrahmachariG. Elsevier2021115110.1016/B978‑0‑12‑820792‑5.00003‑2
    [Google Scholar]
  55. BhaskaruniS.V.H.S. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts.Arab. J. Chem.20201311142117810.1016/j.arabjc.2017.09.016
    [Google Scholar]
  56. DarabiH.R. PoorheraviM.R. AghapoorK. MirzaeeA. MohsenzadehF. AsadollahnejadN. TaherzadehH. BalavarY. Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal–Knorr pyrrole synthesis.Environ. Chem. Lett.201210151210.1007/s10311‑011‑0321‑7
    [Google Scholar]
  57. PhanN.T.S. NguyenT.T. LuuQ.H. NguyenL.T.L. Paal–Knorr reaction catalyzed by metal–organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst.J. Mol. Catal. Chem.2012363-36417818510.1016/j.molcata.2012.06.007
    [Google Scholar]
  58. BonyasiF. HekmatiM. VeisiH. Preparation of core/shell nanostructure Fe3O4@PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature.J. Colloid Interface Sci.201749617718710.1016/j.jcis.2017.02.02328219034
    [Google Scholar]
  59. JishaK.A. SreekumarK. Dendritic amine on mesoporous silica: First organo base catalyst for paal knorr reaction under solvent free condition, a green approach.Catal. Lett.2017147496497510.1007/s10562‑017‑1975‑y
    [Google Scholar]
  60. JiangS. LuH. LiuS. ZhaoQ. HeY. DebnathA.K. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion.Antimicrob. Agents Chemother.200448114349435910.1128/AAC.48.11.4349‑4359.200415504864
    [Google Scholar]
  61. GongZ. LeiY. ZhouP. ZhangZ. One-pot synthesis of N-substituted pyrroles from nitro compounds and 2,5-hexadione over a heterogeneous cobalt catalyst.New J. Chem.20174119106131061810.1039/C7NJ01898C
    [Google Scholar]
  62. ChenC. GuoX. LuG. PedersenC.M. QiaoY. HouX. WangY. Graphene oxide: A novel acid catalyst for the synthesis of 2,5-dimethyl-N-phenyl pyrrole by the Paal–Knorr condensation.N. Carbon Mater.201732216016710.1016/S1872‑5805(17)60013‑6
    [Google Scholar]
  63. FattahiK. FarahiM. KaramiB. KeshavarzR. Design of sodium carbonate functionalized TiO2-coated Fe3O4 nanoparticles as a new heterogeneous catalyst for pyrrole synthesis.Izv. Him.20212021174
    [Google Scholar]
  64. LiuY. HuY.L. Novel and highly efficient preparation of pyrroles using supported ionic liquid ILCF3SO3@SiO2 as a heterogeneous catalyst.J. Indian Chem. Soc.20181551033104010.1007/s13738‑018‑1300‑8
    [Google Scholar]
  65. Portilla-ZúñigaO. SathicqÁ. MartínezJ. RojasH. De GeronimoE. LuqueR. RomanelliG.P. Novel bifunctional mesoporous catalysts based on preyssler heteropolyacids for green pyrrole derivative synthesis.Catalysts201881041910.3390/catal8100419
    [Google Scholar]
  66. NguyenH.T. TranP.H. Ionic liquid supported on magnetic nanoparticles (-Fe2O3@ SiO2-IL-ZnxCly) as the green catalyst for the Paal-Knorr reaction.VNUHCM J. Nat. Sci.2018256875
    [Google Scholar]
  67. ArabpourianK. BehbahaniF.K. Synthesis of pyrrole derivatives promoted by Fe(ClO4)3/SiO2 as an environmentally friendly catalyst.Russ. J. Org. Chem.201955568268510.1134/S1070428019050166
    [Google Scholar]
  68. MarviO. NahzomiH.T. Grinding solvent-free Paal-Knorr pyrrole synthesis on smectites as recyclable and green catalysts.Bull. Chem. Soc. Ethiop.201832113914710.4314/bcse.v32i1.13
    [Google Scholar]
  69. UozumiY. ShenG. Synthesis of benzoxanthenes and pyrroles on a supported lewis acidic ionic liquid.Liquid. Synfacts201915010080
    [Google Scholar]
  70. WilliamsonA.E. YliojaP.M. RobertsonM.N. Antonova-KochY. AveryV. BaellJ.B. BatchuH. BatraS. BurrowsJ.N. BhattacharyyaS. CalderonF. CharmanS.A. ClarkJ. CrespoB. DeanM. DebbertS.L. DelvesM. DennisA.S.M. DerooseF. DuffyS. FletcherS. GiaeverG. HallyburtonI. GamoF.J. GebbiaM. GuyR.K. HungerfordZ. KirkK. Lafuente-MonasterioM.J. LeeA. MeisterS. NislowC. OveringtonJ.P. PapadatosG. PatinyL. PhamJ. RalphS.A. RueckerA. RyanE. SouthanC. SrivastavaK. SwainC. TarnowskiM.J. ThomsonP. TurnerP. WallaceI.M. WellsT.N.C. WhiteK. WhiteL. WillisP. WinzelerE.A. WittlinS. ToddM.H. Open source drug discovery: Highly potent antimalarial compounds derived from the tres cantos arylpyrroles.ACS Cent. Sci.201621068770110.1021/acscentsci.6b0008627800551
    [Google Scholar]
  71. AzhdariA. AziziN. SanaeishoarH. TahanpesarE. Amidosulfonic acid supported on graphitic carbon nitride: novel and straightforward catalyst for Paal–Knorr pyrrole reaction under mild conditions.Monatsh. Chem.2021152662563410.1007/s00706‑021‑02771‑1
    [Google Scholar]
  72. TaoL. WangZ.J. YanT.H. LiuY.M. HeH.Y. CaoY. Direct synthesis of pyrroles via heterogeneous catalytic condensation of anilines with bioderived furans.ACS Catal.20177295996410.1021/acscatal.6b02953
    [Google Scholar]
  73. ManalA.K. SrivastavaR. Zr-KIT-6 catalyzed renewable synthesis of N-aryl pyrroles for producing bioactive synthetic compounds.Appl. Catal. A Gen.202365011901810.1016/j.apcata.2022.119018
    [Google Scholar]
  74. PolshettiwarV. VarmaR.S. Nano-organocatalyst: Magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis.Tetrahedron20106651091109710.1016/j.tet.2009.11.015
    [Google Scholar]
  75. CárdenasR.A.V. LealB.O.Q. ReddyA. BandyopadhyayD. BanikB.K. Microwave-assisted polystyrene sulfonate-catalyzed synthesis of novel pyrroles.Org. Med. Chem. Lett.2012212410.1186/2191‑2858‑2‑2422726766
    [Google Scholar]
  76. Hosseini-SarvariM. Najafvand-DerikvandiS. JarrahpourA. HeiranR. Nano sulfated titania as a heterogeneous solid acid catalyst for the synthesis of pyrroles by clauson–kaas condensation under solvent-free conditions.Chem Heterocycl Comp2014491732173910.1007/s10593‑014‑1425‑3
    [Google Scholar]
  77. NaeimiH. DadaeiM. Functionalized multi-walled carbon nanotubes as an efficient reusable heterogeneous catalyst for green synthesis of N-substituted pyrroles in water.RSC Adv.2015593762217622810.1039/C5RA12185J
    [Google Scholar]
  78. QiuJ. LiangT. WuJ. YuF. HeX. TianY. XieL. JiangS. LiuS. LiL. N-substituted pyrrole derivative 12m inhibits HIV-1 entry by targeting Gp41 of HIV-1 envelope glycoprotein.Front. Pharmacol.20191085910.3389/fphar.2019.0085931427969
    [Google Scholar]
  79. PatilR.N. KumarA.V. Biomimetic clauson‐kass and paal‐knorr pyrrole synthesis using β ‐Cyclodextrin‐SO 3 H under aqueous and neat conditions : Application to formal synthesis of polygonatine †.ChemistrySelect20183349812981810.1002/slct.201801559
    [Google Scholar]
  80. MousaviS. NaeimiH. GhasemiA.H. KermanizadehS. Nickel ferrite nanoparticles doped on hollow carbon microspheres as a novel reusable catalyst for synthesis of N-substituted pyrrole derivatives.Sci. Rep.20231311084010.1038/s41598‑023‑37817‑337407810
    [Google Scholar]
  81. RanaS. BrownM. DuttaA. BhaumikA. MukhopadhyayC. Site-selective multicomponent synthesis of densely substituted 2-oxo dihydropyrroles catalyzed by clean, reusable, and heterogeneous TiO2 nanopowder.etrahedron Lett.2013541113711379
    [Google Scholar]
  82. AlizadehN. Hossein SayahiM. IrajiA. YazzafR. MoazzamA. MobarakiK. AdibM. AttarroshanM. LarijaniB. RastegarH. KhoshneviszadehM. MahdaviM. Evaluating the effects of disubstituted 3-hydroxy-1H-pyrrol-2(5H)-one analog as novel tyrosinase inhibitors.Bioorg. Chem.202212610587610.1016/j.bioorg.2022.10587635623142
    [Google Scholar]
  83. SoltaniM. Mohammadpoor-BaltorkI. KhosropourA.R. MoghadamM. TangestaninejadS. MirkhaniV. Convenient synthesis of polysubstituted pyrroles and symmetrical and unsymmetrical bis-pyrroles catalyzed by H3PW12O40.C. R. Chim.201619338138910.1016/j.crci.2015.11.006
    [Google Scholar]
  84. BamoniriA. MirjliliB.B.F. TarazianR. Nano-TiCl4/SiO2: An efficient catalyst for the one-pot synthesis of highly substituted dihydro-2-oxopyrroles.Monatsh. Chem.2015146122107211510.1007/s00706‑015‑1481‑0
    [Google Scholar]
  85. NickraftarM. HajivarN.N. AboonajmiJ. FereidooniE. Nano Fe3O4 as a magnetically recyclable, powerful, and stable catalyst for the multi-component synthesis of highly functionalized dihydro-2-oxopyrroles.Res. Chem. Intermed.20164242899290810.1007/s11164‑015‑2185‑0
    [Google Scholar]
  86. SharghiH. AboonajmiJ. MozaffariM. DoroodmandM.M. AberiM. Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds.Appl. Organomet. Chem.2018323e412410.1002/aoc.4124
    [Google Scholar]
  87. AtarA.B. KimJ.S. LimK.T. JeongY.T. Bridging homogeneous and heterogeneous catalysis with CAN·SiO 2 as a solid catalyst for four-component reactions for the synthesis of tetrasubstituted pyrroles.New J. Chem.201539139640210.1039/C4NJ01234H
    [Google Scholar]
  88. LennernäsH. Clinical pharmacokinetics of atorvastatin.Clin. Pharmacokinet.200342131141116010.2165/00003088‑200342130‑0000514531725
    [Google Scholar]
  89. van LeuvenS.I. KasteleinJ.J.P. Atorvastatin.Expert Opin. Pharmacother.2005671191120310.1517/14656566.6.7.119115957972
    [Google Scholar]
  90. Ghorbani-VagheiR. Davood AzarifarD.A. DaliranS. OveisiA.R. The UiO-66-SO 3 H metal–organic framework as a green catalyst for the facile synthesis of dihydro-2-oxypyrrole derivatives.RSC Advances2016635291822918910.1039/C6RA00463F
    [Google Scholar]
  91. AsadS.F. SinghS. AhmadA. KhanN.U. HadiS.M. Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: A structure–activity study.Chem. Biol. Interact.20011371597410.1016/S0009‑2797(01)00209‑511518564
    [Google Scholar]
  92. MirjaliliB.B.F. Zare ReshquiyeaR. BF 3 /nano-sawdust as a green, biodegradable and inexpensive catalyst for the synthesis of highly substituted dihydro-2-oxopyrroles.RSC Adv.2015520155661557110.1039/C4RA16625F
    [Google Scholar]
  93. AsifM. AlghamdiS. An overview on biological importance of pyrrolone and pyrrolidinone derivatives as promising scaffolds.Russ. J. Org. Chem.202157101700171810.1134/S1070428021100201
    [Google Scholar]
  94. LuckringE.J. ParkerP.D. HaniH. GraceM.H. LilaM.A. PierceJ.G. AdinC.A. In Vitro evaluation of a novel synthetic bilirubin analog as an antioxidant and cytoprotective agent for pancreatic islet transplantation.Cell Transplant.20202910.1177/096368972090641732323568
    [Google Scholar]
  95. MirjaliliB.B.F. Hakimi SaryazdiF. Nano-sawdust/Sn(IV) as an efficient bio-based nanocatalyst for the synthesis of highly substituted dihydro-2-oxopyrroles.J. Org. Chem. Res.202062202211
    [Google Scholar]
  96. SalehiN. Fatameh MirjaliliB.B. Synthesis of highly substituted dihydro-2-oxopyrroles using Fe 3 O 4 @nano-cellulose–OPO 3 H as a novel bio-based magnetic nanocatalyst.RSC Advances2017748303033030910.1039/C7RA04101B
    [Google Scholar]
  97. KanganiM. HazeriN. MaghsoodlouM.T. Pectin; hetero polysaccharide as a green and natural catalyst for the synthesis of dihydro-2-oxopyrroles and 3, 4, 5-trisubstituted furan-2 (5H)-ones.J. Chil. Chem. Soc.20186344168417210.4067/S0717‑97072018000404168
    [Google Scholar]
  98. SinghH. RajputJ.K. Chelation and calcination promoted preparation of perovskite-structured BiFeO3 nanoparticles: A novel magnetic catalyst for the synthesis of dihydro-2-oxypyrroles.J. Mater. Sci.20185353163318810.1007/s10853‑017‑1790‑2
    [Google Scholar]
  99. MirjaliliB.B.F. AraqiR. MohajeriS.A. A simple and green approach for the synthesis of substituted dihydro-2-oxypyrroles catalyzed by nano-Fe3O4@SiO2/SnCl4 superparamagnetic nanoparticles.Iran. J. Catal.2019911119
    [Google Scholar]
  100. GhashangM. ZhengY.S. ShaterianH.R. A convenient method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1 H ‐pyrrol‐2(5 H )‐ones.Chin. J. Chem.20112991851185510.1002/cjoc.201180323
    [Google Scholar]
  101. ShahvelayatiA.S. SabbaghanM. BanihashemS. Sonochemically assisted synthesis of N-substituted pyrroles catalyzed by ZnO nanoparticles under solvent-free conditions.Monatsh. Chem.201714861123112910.1007/s00706‑016‑1904‑6
    [Google Scholar]
  102. NiknamK. SharghiH. KhataminejadM. Synthesis of 2,3,4,5-tetrasubstituted pyrroles and 1,4-dihydro-tetraarylpyrazines using acidic alumina as a heterogeneous catalyst.J. Indian Chem. Soc.201613111953196110.1007/s13738‑016‑0912‑0
    [Google Scholar]
  103. BiftuT. FengD. PonpipomM. GirotraN. LiangG.B. QianX. BugianesiR. SimeoneJ. ChangL. GurnettA. LiberatorP. DulskiP. LeavittP.S. CrumleyT. MisuraA. MurphyT. RattrayS. SamarasS. TamasT. MathewJ. BrownC. ThompsonD. SchmatzD. FisherM. WyvrattM. Synthesis and SAR of 2,3-diarylpyrrole inhibitors of parasite cGMP-dependent protein kinase as novel anticoccidial agents.Bioorg. Med. Chem. Lett.200515133296330110.1016/j.bmcl.2005.04.06015922595
    [Google Scholar]
  104. LiangG.B. QianX. BiftuT. FengD. FisherM. CrumleyT. Darkin-RattrayS.J. DulskiP.M. GurnettA. LeavittP.S. LiberatorP.A. MisuraA.S. SamarasS. TamasT. SchmatzD.M. WyvrattM. Hydroxylated N-alkyl-4-piperidinyl-2,3-diarylpyrrole derivatives as potent broad-spectrum anticoccidial agents.Bioorg. Med. Chem. Lett.200515204570457310.1016/j.bmcl.2005.06.09616087336
    [Google Scholar]
  105. AbbaspourT. Firouzzadeh PashaG. TajbakhshM. Synthesis of novel pyrrole derivatives from the multicomponent reaction using the new N ‐sulfonic acid modified poly (styrene‐diethylenetriamine) as a solid acid catalyst.Appl. Organomet. Chem.2023371e693310.1002/aoc.6933
    [Google Scholar]
  106. BharateJ.B. SharmaR. AravindaS. GuptaV.K. SinghB. BharateS.B. VishwakarmaR.A. Montmorillonite clay catalyzed synthesis of functionalized pyrroles through domino four-component coupling of amines, aldehydes, 1,3-dicarbonyl compounds and nitroalkanes.RSC Adv.2013344217362174210.1039/c3ra43324b
    [Google Scholar]
  107. LiB.L. ZhangM. HuH.C. DuX. ZhangZ.H. Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles.New J. Chem.20143862435244210.1039/c3nj01368e
    [Google Scholar]
  108. NandeeshK.N. RaghavendraG.M. RevannaC.N. Jenifer VijayT.A. RangappaK.S. MantelinguK. Recyclable, graphite-catalyzed, four-component synthesis of functionalized pyrroles.Synth. Commun.20144481103111010.1080/00397911.2013.848368
    [Google Scholar]
  109. AnariM.S. BehbahaniF.K. Four components synthesis of 1, 2, 3, 4- tetrasubstituted pyrroles using iron (III) phosphate as a green activator.Leban. Sci. J.201718221910.22453/LSJ‑018.2.219‑225
    [Google Scholar]
  110. FakhreeA.A. GhasemiZ. ShahrisaA. MostafaviH. Magnesium incorporated white sandstone as a green and efficient heterogeneous catalyst for one‐pot synthesis of 1,2,3,4‐tetrasubstituted pyrroles.ChemistrySelect20194102959296610.1002/slct.201803794
    [Google Scholar]
  111. RostamiH. ShiriL. Fe3O4@SiO2—CPTMS—guanidine—so3h-catalyzed one-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions.Russ. J. Org. Chem.20195581204121110.1134/S1070428019080207
    [Google Scholar]
  112. BiancoM. D. MarinhoD. I. HoelzL. V. BastosM. M. BoechatN. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors.Pharmaceuticals202114989310.3390/ph14090893
    [Google Scholar]
  113. GajengiA.L. FernandesC.S. BhanageB.M. Synthesis of Cu 2 O/Ag nanocomposite and their catalytic application for the one pot synthesis of substituted pyrroles.Molecular Catalysis2018451131910.1016/j.mcat.2017.10.010
    [Google Scholar]
  114. BardajeeG. R. MahmoodianH. BoraghiS. A. AghazadehF. RezanejadZ. A facile and efficient synthesis of highly functionalized pyrroles via a four-component one-pot reaction in the presence of Ni (II) Schiff base/SBA 15 heterogeneous catalyst.Res. Sq.2022
    [Google Scholar]
  115. ThwinM. MahmoudiB. IvaschukO.A. YousifQ.A. An efficient and recyclable nanocatalyst for the green and rapid synthesis of biologically active polysubstituted pyrroles and 1,2,4,5-tetrasubstituted imidazole derivatives.RSC Adv.2019928159661597510.1039/C9RA02325A35521369
    [Google Scholar]
  116. BiavaM. PorrettaG. ManettiF. New derivatives of BM212: A class of antimycobacterial compounds based on the pyrrole ring as a scaffold.Mini Rev. Med. Chem.200771657810.2174/13895570777931778617266639
    [Google Scholar]
  117. La RosaV. PoceG. CansecoJ.O. BuroniS. PascaM.R. BiavaM. RajuR.M. PorrettaG.C. AlfonsoS. BattilocchioC. JavidB. SorrentinoF. IoergerT.R. SacchettiniJ.C. ManettiF. BottaM. De LoguA. RubinE.J. De RossiE. MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212.Antimicrob. Agents Chemother.201256132433110.1128/AAC.05270‑1122024828
    [Google Scholar]
  118. Rezanejade BardajeeG. GhaediA. HazratiH. JafarpourF. An efficient synthesis of highly substituted functionalized pyrroles via a four-component coupling reaction catalyzed by Fe(III)-Schiff base/SBA-15.Inorg. Nano-Met.Chem2020501212131220
    [Google Scholar]
  119. BiavaM. BM 212 and its derivatives as a new class of antimycobacterial active agents.Curr. Med. Chem.20029211859186910.2174/092986702336895312369872
    [Google Scholar]
  120. MoghaddamF.M. Koushki ForoushaniB. RezvaniH.R. Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles.RSC Advances2015523180921809610.1039/C4RA09348H
    [Google Scholar]
  121. BhosaleJ.D. ShirolkarA.R. PeteU.D. ZadeC.M. MahajanD.P. HadoleC.D. PawarS.D. PatilU.D. DaburR. BendreR.S. Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives.J. Pharm. Res.20137758258710.1016/j.jopr.2013.07.022
    [Google Scholar]
  122. AtarA. B. JeongY. T. Heterogenized tungsten complex: an efficient and high yielding catalyst for the synthesis of structurally diverse tetra substituted pyrrole derivatives via four-component assembly.etrahedron Lett.201354415624
    [Google Scholar]
  123. Rezanejade BardajeeG. MahmoodianH. BoraghiS.A. AghazadehF. RezanejadZ. A facile and efficient synthesis of highly functionalized pyrroles via a four-component one-pot reaction in the presence of Ni(II) Schiff base/SBA-15 heterogeneous catalyst.Res. Chem. Intermed.20234951959198210.1007/s11164‑023‑04953‑4
    [Google Scholar]
  124. TiwariD.K. PogulaJ. SridharB. TiwariD.K. LikharP.R. Nano-copper catalysed highly regioselective synthesis of 2,4-disubstituted pyrroles from terminal alkynes and isocyanides.Chem. Commun.20155171136461364910.1039/C5CC04166J26226177
    [Google Scholar]
  125. DwivediK.D. KumarB. ReddyM.S. BorahB. Nagendra BabuJ. ChowhanL.R. Acetyl oxime/azirine 1, 3-dipole and strategy for the regioselective synthesis of polysubstituted pyrroles via [3 + 2] cycloaddition with alkyne utilizing Fe2O3@cellulose catalyst.Results Chem.2021310020110.1016/j.rechem.2021.100201
    [Google Scholar]
  126. YangT.-H. HsuR.-J. HuangW.-H. LeeA.-R. Pyrrole indolin-2-one based kinase inhibitor as anti-cancer agents.J. cancer Treatment and Diagnosis2018232529
    [Google Scholar]
  127. Kisan RasalN. Bhaskar SonawaneR. Vijay JagtapS. Synthesis, characterization, and biological study of 3‐trifluoromethylpyrazole tethered chalcone‐pyrrole and pyrazoline‐pyrrole derivatives.Chem. Biodivers.20211810e210050410.1002/cbdv.20210050434409724
    [Google Scholar]
  128. SudtaP. KirkN. BezosA. GurlicaA. MitchellR. WeberT. WillisA.C. PrabpaiS. KongsaereeP. ParishC.R. SuksamrarnS. KelsoM.J. Synthesis, structural characterisation, and preliminary evaluation of non-indolin-2-one-based angiogenesis inhibitors related to sunitinib (Sutent®).Aust. J. Chem.201366886487310.1071/CH13219
    [Google Scholar]
  129. TiwariD.K. PhanindruduM. AravilliV.K. SridharB. LikharP.R. TiwariD.K. Magnetically recoverable Cu 0 /Fe 3 O 4 catalyzed highly regioselective synthesis of 2,3,4-trisubstituted pyrroles from unactivated terminal alkynes and isocyanides.Chem. Commun.201652254675467810.1039/C6CC00459H26952882
    [Google Scholar]
  130. BattersbyA.R. LeeperF.J. Biosynthesis of the pigments of life: Mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen III.Chem. Rev.19909071261127410.1021/cr00105a009
    [Google Scholar]
  131. BanwellG. Convergent syntheses of the pyrrolic marine natural products lamellarin-O, lamellarin-Q, lukianol-A and some more highly oxygenated congeners.ChemComm.19972207208
    [Google Scholar]
  132. TakamuraK. MatsuoH. TanakaA. TanakaJ. FukudaT. IshibashiF. IwaoM. Total synthesis of the marine natural products lukianols A and B.Tetrahedron201369132782278810.1016/j.tet.2013.01.077
    [Google Scholar]
  133. IwaoM. FukudaT. IshibashiF. Synthesis and biological activity of lamellarin alkaloids: An overview.Heterocycles201183349110.3987/REV‑10‑686
    [Google Scholar]
  134. PanjaD. SauA. BalasubramaniamB. DharaP. GuptaR.K. KunduS. Utilization of caffeine carbon supported cobalt catalyst in the tandem synthesis of pyrroles from nitroarenes and alkenyl diols.J. Catal.202140224425410.1016/j.jcat.2021.08.020
    [Google Scholar]
  135. JoshiS.D. VagdeviH.M. VaidyaV.P. GadaginamathG.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents.Eur. J. Med. Chem.20084391989199610.1016/j.ejmech.2007.11.01618207286
    [Google Scholar]
  136. JoshiS.D. MoreU.A. PansuriyaK. AminabhaviT.M. GadadA.K. Synthesis and molecular modeling studies of novel pyrrole analogs as antimycobacterial agents.J. Saudi Chem. Soc.2017211425710.1016/j.jscs.2013.09.002
    [Google Scholar]
  137. SaberikhahE. MamaghaniM. MahmoodiN.O. γ‐Fe 2 O 3 @ HAp @ PBABMD @Cu magnetic nanoparticles: Efficient, green, and recyclable novel nanocatalyst for the synthesis of densely functionalized pyrrole‐pyrido[2,3‐ d ]pyrimidine hybrids.J. Chin. Chem. Soc.202168590291610.1002/jccs.202000310
    [Google Scholar]
  138. DadaşY. CoşkunG.P. Bingöl-ÖzakpınarÖ. ÖzsavcıD. KüçükgüzelŞ.G. Synthesis and anticancer activity of tolmetin thiosemicarbazides.Marmara Pharm. J.201519325926710.12991/mpj.201519328306
    [Google Scholar]
  139. RamezanzadehF. MamaghaniM. Fallah-Bagher ShaidaeiH. SheykhanM. Synthesis and application of imidazolium-based ionic liquid supported on hydroxyapatite encapsulated γ-Fe 2 O 3 nanocatalyst in preparation of pyrido[2,3- d] pyrimidines.Polycycl. Aromat. Compd.20214191925194310.1080/10406638.2019.1705360
    [Google Scholar]
  140. SiddiquiS. RatherR.A. SiddiquiZ.N. Bovine serum albumin‐silica functionalized γ‐Fe 2 O 3 nanoparticles (BSA‐Si@Fe 2 O 3 ): A highly efficient and magnetically recoverable heterogeneous catalyst for the synthesis of substituted pyrrole derivatives.Appl. Organomet. Chem.2021357e623210.1002/aoc.6232
    [Google Scholar]
  141. MateevE. GeorgievaM. ZlatkovA. Pyrrole as an essential scaffold of anticancer drugs: recent advances.J. Pharm. Pharm. Sci.202225244010.18433/jpps3241734995473
    [Google Scholar]
  142. XieA.-N. ZhangZ. WangH.-H. AliA. ZhangD.-X. WangH. JiL.-N. LiuH.-Y. DNA-binding, photocleavage and anti-cancer activity of tin (IV) corrole.JPP20182209n10739750
    [Google Scholar]
  143. JiJ. SajjadF. YouQ. XingD. FanH. ReddyA.G.K. HuW. DongS. Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents.Arch. Pharm.202035312200013610.1002/ardp.20200013632776576
    [Google Scholar]
  144. FermiV. RegulskaE. WolframA. WesslingP. RomingerF. Herold-MendeC. Romero-NietoC. Luminescent pyrrole‐based phosphaphenalene gold complexes: Versatile anticancer tools with wide applicability.Chemistry20222834e20210453510.1002/chem.20210453535293640
    [Google Scholar]
  145. ZhouQ. JiaL. DuF. DongX. SunW. WangL. ChenG. Design, synthesis and biological activities of pyrrole-3-carboxamide derivatives as EZH2 (enhancer of zeste homologue 2) inhibitors and anticancer agents.New J. Chem.20204462247225510.1039/C9NJ04713A
    [Google Scholar]
  146. Said FatahalaS. HasabelnabyS. GoudahA. MahmoudG. Helmy Abd-El HameedR. Pyrrole and fused pyrrole compounds with bioactivity against inflammatory mediators.Molecules201722346110.3390/molecules2203046128304349
    [Google Scholar]
  147. MohamedM.S. KamelR. FathallahS.S. Synthesis of new pyrroles of potential anti-inflammatory activity.Arch. Pharm.20113441283083910.1002/ardp.20110005621956581
    [Google Scholar]
  148. HarrakY. RosellG. DaidoneG. PlesciaS. SchillaciD. PujolM.D. Synthesis and biological activity of new anti-inflammatory compounds containing the 1,4-benzodioxine and/or pyrrole system.Bioorg. Med. Chem.200715144876489010.1016/j.bmc.2007.04.05017517512
    [Google Scholar]
  149. AhmadiA. SolatiJ. HajikhaniR. PakzadS. Synthesis and analgesic effects of new pyrrole derivatives of phencyclidine in mice.Arzneimittelforschung201161529630010.1055/s‑0031‑129620221755813
    [Google Scholar]
  150. El-SharkawyK.A. AlBrattyM.M. AlhazmiH.A. Synthesis of some novel pyrimidine, thiophene, coumarin, pyridine and pyrrole derivatives and their biological evaluation as analgesic, antipyretic and anti-inflammatory agents.Braz. J. Pharm. Sci.2018544e0015310.1590/s2175‑97902018000400153
    [Google Scholar]
  151. AssandriA. TarziaG. BellasioE. CiabattiR. TuanG. FerrariP. ZerilliL. LanfranchiM. PelizziG. Metabolic oxidation of the pyrrole ring: structure and origin of some urinary metabolites of the anti-hypertensive pyrrolylpyridazinamine, mopidralazine.: III: Studies with the 13 C-labelled drug.Xenobiotica198717555957310.3109/004982587090439633604261
    [Google Scholar]
  152. DemirayakS. KaraburunA.C. BeisR. Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities.Eur. J. Med. Chem.200439121089109510.1016/j.ejmech.2004.09.00515571871
    [Google Scholar]
  153. ZhangS.G. LiangC.G. SunY.Q. TengP. WangJ.Q. ZhangW.H. Design, synthesis and antifungal activities of novel pyrrole- and pyrazole-substituted coumarin derivatives.Mol. Divers.201923491592510.1007/s11030‑019‑09920‑z30694410
    [Google Scholar]
  154. ZhangS. TanX. LiangC. ZhangW. Design, synthesis, and antifungal evaluation of novel coumarin‐pyrrole hybrids.J. Heterocycl. Chem.202158245045810.1002/jhet.4180
    [Google Scholar]
  155. TzankovaD. VladimirovaS. AluaniD. YordanovY. PeikovaL. GeorgievaM. Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones.Acta Pharm.202070330332410.2478/acph‑2020‑002632074071
    [Google Scholar]
  156. TzankovaD. AluaniD. Kondeva-BurdinaM. GeorgievaM. VladimirovaS. PeikovaL. TzankovaV. Antioxidant properties, neuroprotective effects and in vitro safety evaluation of new pyrrole derivatives.Pharm. Chem. J.202255121310131910.1007/s11094‑022‑02577‑3
    [Google Scholar]
  157. BaralN. MishraD.R. MishraN.P. MohapatraS. RaiguruB.P. PandaP. NayakS. NayakM. KumarP.S. Microwave‐assisted rapid and efficient synthesis of chromene‐fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation.J. Heterocycl. Chem.202057257558910.1002/jhet.3773
    [Google Scholar]
  158. ZemanováI. GašparováR. BoháčA. MaliarT. KraicF. AddováG. Synthesis and antibacterial activity of furo[3,2-b]pyrrole derivatives.ARKIVOC20172017520421510.24820/ark.5550190.p010.240
    [Google Scholar]
  159. FatahalaS.S. NofalS. MahmoudE. Abd El-hameedR.H. Pyrrolopyrazoles: Synthesis, evaluation and pharmacological screening as antidepressant agents.Med. Chem.201915891192210.2174/157340641466618110809032130406741
    [Google Scholar]
  160. DraffanA.G. FreyB. FraserB.H. PoolB. GannonC. TyndallE.M. CianciJ. HardingM. LillyM. HuftonR. HalimR. JahangiriS. BondS. JeynesT.P. NguyenV.T.T. WirthV. LuttickA. TilmanisD. PryorM. PorterK. MortonC.J. LinB. DuanJ. BethellR.C. KukoljG. SimoneauB. TuckerS.P. Derivatives of imidazotriazine and pyrrolotriazine C-nucleosides as potential new anti-HCV agents.Bioorg. Med. Chem. Lett.201424214984498810.1016/j.bmcl.2014.09.03025288185
    [Google Scholar]
  161. GholapS.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents.Eur. J. Med. Chem.2016110133110.1016/j.ejmech.2015.12.01726807541
    [Google Scholar]
  162. SemenyaD. TouitouM. MasciD. RibeiroC.M. PavanF.R. Dos Santos FernandesG.F. GianibbiB. ManettiF. CastagnoloD. Tapping into the antitubercular potential of 2,5-dimethylpyrroles: A structure-activity relationship interrogation.Eur. J. Med. Chem.202223711440410.1016/j.ejmech.2022.11440435486992
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266307696240708115422
Loading
/content/journals/ctmc/10.2174/0115680266307696240708115422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test