Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266313354240807051401
2024-08-19
2025-04-16
Loading full text...

Full text loading...

References

  1. a) AsifM. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives.Int J Med Chem.2014201439563710.1155/2014/395637.
    [Google Scholar]
  2. b)YaduvanshiN. TewariS. JaiswalS. DeviM. ShuklaS. DwivediJ. SharmaS. Biogenic synthesis of Pd-Fe@ LLR nanocomposites as magnetically recyclable catalysts for CC and CN bond formation.Inorg. Chem. Commun.202411192710.1016/j.inoche.2023.111927.
    [Google Scholar]
  3. c) JoshiP. BishtA. PaliwalA. DwivediJ. SharmaS. Recent updates on clinical developments of curcumin and its derivatives.Phytother. Res.202337115109515810.1002/ptr.797437536946
    [Google Scholar]
  4. d)YaduvanshiN. DeviM. TewariS. JaiswalS. HashmiS.Z. ShuklaS. DwivediJ. SharmaS. Exploration of catalytic activity of newly developed Pd/KLR and Pd-Cu/KLR nanocomposites (NCs) for synthesis of biologically active novel heterocycles via Suzuki cross-coupling reaction.J. Mol. Struct.2023129413639510.1016/j.molstruc.2023.136395
    [Google Scholar]
  5. e) DeviM. JaiswalS. YaduvanshiN. JainS. JainS. VermaK. VermaR. KishoreD. DwivediJ. SharmaS. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine.J. Mol. Struct.2023128613557110.1016/j.molstruc.2023.135571
    [Google Scholar]
  6. f) YaduvanshiN. JaiswalS. TewariS. ShuklaS. WabaidurS.M. DwivediJ. SharmaS. Palladium Nanoparticles and their Composites: Green synthesis and applications with special emphasis to organic transformations.Inorg. Chem. Commun.2023110600
    [Google Scholar]
  7. SharmaP.C. KaurG. PahwaR. SharmaA. RajakH. Quinazolinone analogs as potential therapeutic agents.Curr. Med. Chem.201118314786481210.2174/09298671179753532621919847
    [Google Scholar]
  8. DeviM. JaiswalS. YaduvanshiN. KaurN. KishoreD. DwivediJ. SharmaS. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4‐benzodiazepine nucleus via click approach.ChemistrySelect202386e20220471010.1002/slct.202204710
    [Google Scholar]
  9. GururaniR. PatelS. BishtA. JainS. PaliwalS. DwivediJ. SharmaS. Tylophora indica (Burm. f.) Merr alleviates tracheal smooth muscle hyperresponsiveness in ovalbumin‐induced allergic‐asthma model in guinea‐pigs: Evidences from ex vivo , in silico and in vivo studies.Fundam. Clin. Pharmacol.2023
    [Google Scholar]
  10. GosaliaU.A. SrivastavaM. YaduvanshiN. JaiswalS. JainS. KishoreD. DwivediJ. SharmaS. One-pot mediated synthesis of pyrimidine and quinazoline annulated derivatives of nitrogen containing five-membered rings through their nitrile derivatives as antibacterial agents.Bull. Chem. Soc. Ethiop.20233751193120810.4314/bcse.v37i5.12
    [Google Scholar]
  11. PanchalJ. MisraN. DeviM. SharmaA. JainS. JainP. DwivediJ. SharmaS. Development of an efficient alternative synthesis of the endothelin receptor antagonist bosentan.Org. Prep. Proced. Int.202317
    [Google Scholar]
  12. KshirsagarU. RohokaleR. Advanced synthetic strategies for constructing quinazolinone scaffolds.Synthesis20164891253126810.1055/s‑0035‑1560413
    [Google Scholar]
  13. JoshiP. BishtA. JoshiS. SemwalD. NemaN.K. DwivediJ. SharmaS. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways.Phytother. Res.20223683143318010.1002/ptr.752235790042
    [Google Scholar]
  14. SinhaK. DwivediJ. SinghP. Shankar Prasad SinhaV. Spatio-temporal dynamics of water quality in river sources of drinking water in Uttarakhand with reference to human health.Environ. Sci. Pollut. Res. Int.20222943647566477410.1007/s11356‑022‑20302‑135478393
    [Google Scholar]
  15. SainS. JaiswalS. JainS. MisraN. SrivastavaA. JendraR. KishoreD. DwivediJ. WabaidurS.M. IslamM.A. SharmaS. Synthesis and theoretical studies of biologically active thieno nucleus incorporated tri and tetracyclic nitrogen containing heterocyclics scaffolds via Suzuki Cross‐Coupling Reaction.Chem. Biodivers.20221912202200540
    [Google Scholar]
  16. KhanI. IbrarA. AbbasN. SaeedA. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications.Eur. J. Med. Chem.20147619324410.1016/j.ejmech.2014.02.00524583357
    [Google Scholar]
  17. JaiswalS. DeviM. SharmaN. RathiK. DwivediJ. SharmaS. Emerging approaches for synthesis of 1, 2, 3-triazole derivatives. A review.Org. Prep. Proced. Int.202254538742210.1080/00304948.2022.2069456
    [Google Scholar]
  18. AgrawalM. DwivediJ. KishoreD. JainS. MishraA. JainS. SharmaS. An expeditious approach to the synthesis of novel quinolino and diazacino condensed analogues of azepino [3, 2-b] Carbazole-2-one of medicinal interest.J. Pharm. Educ. Res202256S89S97
    [Google Scholar]
  19. BishtA. JainS. MisraA. DwivediJ. PaliwalS. SharmaS. Cedrus deodara (Roxb. ex D.Don) G.Don: A review of traditional use, phytochemical composition and pharmacology.J. Ethnopharmacol.202127911436110.1016/j.jep.2021.11436134166738
    [Google Scholar]
  20. JoshiP. JoshiS. SemwalD.K. BishtA. SharmaS. DwivediJ. Chemical composition, antioxidative and antimicrobial activities of turmeric spent oleoresin.Ind. Crops Prod.202116211327810.1016/j.indcrop.2021.113278
    [Google Scholar]
  21. HaiderK. DasS. JosephA. YarM.S. An appraisal of anticancer activity with structure–activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review.Drug Dev. Res.202283485989010.1002/ddr.2192535297084
    [Google Scholar]
  22. AroraD. AroraS. KumarS. KishoreD. DwivediJ. Selective synthesis of novel pyridopyrimido annulated analogues of azepinones from Beckmann rearrangement of corresponding oximes by the 2, 4, 6-trichloro-1, 3, 5-triazine and dimethyl formamide reagent.J. Chem. Sci.2021133113
    [Google Scholar]
  23. MisraA. KishoreD. VermaV.P. DubeyS. ChanderS. GuptaN. BhagyawantS. DwivediJ. AlothmanZ.A. WabaidurS.M. SharmaS. Synthesis, biological evaluation and molecular docking of pyrimidine and quinazoline derivatives of 1, 5-benzodiazepine as potential anticancer agents.J. King Saud Univ. Sci.202032214861495
    [Google Scholar]
  24. MisraA. DwivediJ. ShuklaS. KishoreD. SharmaS. Bacterial cell leakage potential of newly synthesized quinazoline derivatives of 1,5‐benzodiazepines analogue.J. Heterocycl. Chem.20205741545155810.1002/jhet.3879
    [Google Scholar]
  25. KikuchiH. TasakaH. HiraiS. TakayaY. IwabuchiY. OoiH. HatakeyamaS. KimH.S. WatayaY. OshimaY. Potent antimalarial febrifugine analogues against the plasmodium malaria parasite.J. Med. Chem.200245122563257010.1021/jm010448q12036365
    [Google Scholar]
  26. GururaniR. PatelS. YaduvanshiN. DwivediJ. PaliwalS. SharmaS. Tylophora indica (Burm. f.) merr: An insight into phytochemistry and pharmacology.J. Ethnopharmacol.202026211312210.1016/j.jep.2020.113122
    [Google Scholar]
  27. SainS. KishoreD. JainS. SharmaV. SrivastavaM. SankararamakrishnanN. MishraS. DwivediJ. WabaidurS.M. SharmaS. Zeolite enslaved transition metal complexes as novel heterogeneous catalysts for synthesis of polycyclic heterocycles using suzuki--miyaura cross coupling reaction under greener conditions.Inorg. Chem. Commun.202012210823010.1016/j.inoche.2020.108230
    [Google Scholar]
  28. DewanganD. NakhateK. MishraA. ThakurA.S. RajakH. DwivediJ. SharmaS. PaliwalS. Design, synthesis, and characterization of quinoxaline derivatives as a potent antimicrobial agent.J. Heterocycl. Chem.201956256657810.1002/jhet.3431
    [Google Scholar]
  29. YangL. DingM. ShiJ. LuoN. WangY. LinD. BaoX. Design, synthesis, X-ray crystal structure, and antimicrobial evaluation of novel quinazolinone derivatives containing the 1, 2, 4-triazole Schiff base moiety and an isopropanol linker.Mol. Divers.2023110
    [Google Scholar]
  30. MisraA. JainS. KishoreD. DaveV. ReddyK.R. SadhuV. DwivediJ. SharmaS. A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their antibacterial evaluation.J. Microbiol. Methods201916310564810.1016/j.mimet.2019.10564831195033
    [Google Scholar]
  31. PatelD. NamdevK.K. VermaK. GururaniR. TiwariA. KumarP. DewanganR.P. WabaidurS.M. SharmaS. DwivediJ. HPLC-UV and spectrofluorimetric methods for simultaneous estimation of fluticasone furoate and vilanterol in rabbit plasma: A pharmacokinetic study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2019113212184210.1016/j.jchromb.2019.121842
    [Google Scholar]
  32. SainS. JainS. SrivastavaM. VishwakarmaR. DwivediJ. Application of palladium-catalyzed cross-coupling reactions in organic synthesis.Curr. Org. Synth.20201681105114210.2174/157017941666619110409353331984919
    [Google Scholar]
  33. OsarumwenseP.O. EdemaM.O. UsifohO. Synthesis and anti-inflammatory activity of 4 (3H)-quinazolinone and its 2-methyl and 2-phenyl-4 (3H)-quinazolinone derivatives.IOSR J Appl Chem2018111215
    [Google Scholar]
  34. DwivediJ. SharmaS. JainS. SinghA. The synthetic and biological attributes of pyrazole derivatives: A Review.Mini Rev. Med. Chem.2018181191894710.2174/138955751766617092716091928971774
    [Google Scholar]
  35. MisraA. SharmaS. SharmaD. DubeyS. KishoreD. DwivediJ. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1, 5-benzodiazepine as antibacterial agent.J. Chem. Sci.2018130112
    [Google Scholar]
  36. AroraD. DwivediJ. AroraS. KumarS. KishoreD. Organocatalyzed synthesis and antibacterial activity of novel quinolino annulated analogues of azepinones.J. Heterocycl. Chem.20185592178218710.1002/jhet.3260
    [Google Scholar]
  37. DhallE. JainS. MishraA. DwivediJ. SharmaS. Synthesis and evaluation of some phenyl substituted azetidine containing 1, 2, 4‐triazole derivatives as antibacterial agents.J. Heterocycl. Chem.201855122859286910.1002/jhet.3357
    [Google Scholar]
  38. MaaroufA.R. El-BendaryE.R. GodaF.E. Synthesis and evaluation of some novel quinazolinone derivatives as diuretic agents.Arch. Pharm. (Weinheim)20043371052753210.1002/ardp.200400869
    [Google Scholar]
  39. DwivediJ. PatelD. PatelK. MeshramD. Development and validation of first-order derivative spectrophotometry for simultaneous determination of indacaterol maleate and glycopyrronium bromide in pharmaceutical dosage form.Int. J. Res. Pharm. Biosci.201741218
    [Google Scholar]
  40. DwivediJ. DeviK. AsmatY. JainS. SharmaS. Synthesis, characterization, antibacterial and antiepileptic studies of some novel thiazolidinone derivatives.J. Saudi Chem. Soc.201620S16S2010.1016/j.jscs.2012.09.001
    [Google Scholar]
  41. DwivediJ. KaurN. KishoreD. KumariS. SharmaS. Synthetic and biological aspects of thiadiazoles and their condensed derivatives: An overview.Curr. Top. Med. Chem.201616262884292010.2174/156802661666616050614485927150372
    [Google Scholar]
  42. AutiP.S. GeorgeG. PaulA.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids.RSC Advances20201068413534139210.1039/D0RA06642G35516563
    [Google Scholar]
  43. NoureldinN.A. KothayerH. LashineE.S.M. BarakaM.M. El-ErakyW. AwdanS.A.E. Synthesis, anticonvulsant activity, and SAR study of novel 4‐quinazolinone derivatives.Arch. Pharm. (Weinheim)20173502160033210.1002/ardp.20160033228177550
    [Google Scholar]
  44. IminovR.T. TverdokhlebovA.V. TolmachevA.A. VolovenkoY.M. ShishkinaS.V. ShishkinO.V. Synthesis of structurally constrained 4-quinazolinone derivatives with a tetrahedral C-2 atom present in three rings.Tetrahedron200965418582858610.1016/j.tet.2009.07.059
    [Google Scholar]
  45. KshirsagarU.A. Recent developments in the chemistry of quinazolinone alkaloids.Org. Biomol. Chem.201513369336935210.1039/C5OB01379H26278395
    [Google Scholar]
  46. WuX.F. OschatzS. BlockA. SpannenbergA. LangerP. Base mediated synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones from 2-aminobenzonitriles and aromatic aldehydes in water.Org. Biomol. Chem.201412121865187010.1039/c3ob42434k24522449
    [Google Scholar]
  47. ChauhanS.S. PandeyS. ShivahareR. RamalingamK. KrishnaS. VishwakarmaP. SiddiqiM.I. GuptaS. GoyalN. ChauhanP.M.S. Novel β-carboline–quinazolinone hybrid as an inhibitor of Leishmania donovani trypanothione reductase: Synthesis, molecular docking and bioevaluation.MedChemComm20156235135610.1039/C4MD00298A
    [Google Scholar]
  48. MahajanP.G. DigeN.C. VanjareB.D. RazaH. HassanM. SeoS.Y. KimC.H. LeeK.H. Facile synthesis of new quinazolinone benzamides as potent tyrosinase inhibitors: Comparative spectroscopic and molecular docking studies.J. Mol. Struct.2019119812691510.1016/j.molstruc.2019.126915
    [Google Scholar]
  49. PanchalJ. JaiswalS. JainS. KumawatJ. SharmaA. JainP. JainS. VermaK. DwivediJ. SharmaS. Development of novel bosentan analogues as endothelin receptor antagonists for pulmonary arterial hypertension.Eur. J. Med. Chem.202325911568110.1016/j.ejmech.2023.11568137515921
    [Google Scholar]
  50. HaoY. WangK. WangZ. LiuY. MaD. WangQ. Luotonin A and its derivatives as novel antiviral and antiphytopathogenic fungus agents.J. Agric. Food Chem.202068338764877310.1021/acs.jafc.0c0427832806124
    [Google Scholar]
  51. Ahmadizadeh ShendyS. BabazadehM. ShahverdizadehG.H. Hosseinzadeh-KhanmiriR. Es’haghiM. Synthesis of the quinazolinone derivatives using an acid-functionalized magnetic silica heterogeneous catalyst in terms of green chemistry.Mol. Divers.202125288989710.1007/s11030‑020‑10033‑132078143
    [Google Scholar]
  52. MalekiA. RahimiJ. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite.J. Porous Mater.20182561789179610.1007/s10934‑018‑0592‑5
    [Google Scholar]
  53. ZhangJ. ChengP. MaY. LiuJ. MiaoZ. RenD. FanC. LiangM. LiuL. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis.Tetrahedron Lett.201657475271527710.1016/j.tetlet.2016.10.047
    [Google Scholar]
  54. RostamiA. PourshianiO. NavasiY. DarvishiN. SaadatiS. Magnetic nanoparticle-supported DABCO tribromide: A versatile nanocatalyst for the synthesis of quinazolinones and benzimidazoles and protection/deprotection of hydroxyl groups.New J. Chem.201741179033904010.1039/C7NJ00479F
    [Google Scholar]
  55. YouS. HuangB. YanT. CaiM. A highly efficient heterogeneous palladium-catalyzed carbonylative annulation of 2-aminobenzamides with aryl iodides leading to quinazolinones.J. Organomet. Chem.2018875354510.1016/j.jorganchem.2018.09.003
    [Google Scholar]
  56. YanY. XuY. NiuB. XieH. LiuY. I2-catalyzed aerobic oxidative C (sp3)–H amination/C–N cleavage of tertiary amine: Synthesis of quinazolines and quinazolinones.J. Org. Chem.201580115581558710.1021/acs.joc.5b0047425942678
    [Google Scholar]
  57. QiuD. WangY. LuD. ZhouL. ZengQ. Potassium hydroxide-promoted transition-metal-free synthesis of 4(3H)-quinazolinones.Monatsh. Chem.201514681343134710.1007/s00706‑015‑1434‑7
    [Google Scholar]
  58. PatelT.S. BhattJ.D. DixitR.B. ChudasamaC.J. PatelB.D. DixitB.C. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4(3H)-one-sulphonamide hybrid entities distorting the malarial reductase activity in folate pathway.Bioorg. Med. Chem.201927163574358610.1016/j.bmc.2019.06.03831272837
    [Google Scholar]
  59. WeiM. ChaiW.M. WangR. YangQ. DengZ. PengY. Quinazolinone derivatives: Synthesis and comparison of inhibitory mechanisms on α-glucosidase.Bioorg. Med. Chem.20172541303130810.1016/j.bmc.2016.09.04228110817
    [Google Scholar]
  60. El-AdlK. El-HelbyA.G.A. AyyadR.R. MahdyH.A. KhalifaM.M. ElnagarH.A. MehanyA.B.M. MetwalyA.M. ElhendawyM.A. RadwanM.M. ElSohlyM.A. EissaI.H. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors.Bioorg. Med. Chem.20212911587210.1016/j.bmc.2020.11587233214036
    [Google Scholar]
  61. ManivannanE. ChaturvediS.C. Analogue-based design, synthesis and molecular docking analysis of 2,3-diaryl quinazolinones as non-ulcerogenic anti-inflammatory agents.Bioorg. Med. Chem.201119154520452810.1016/j.bmc.2011.06.01921724403
    [Google Scholar]
  62. F ZayedM. H HassanM. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents.Saudi Pharm. J.201422215716210.1016/j.jsps.2013.03.00424648828
    [Google Scholar]
  63. KumarS. AgharaJ.C. AlexA.T. AranjaniJ.M. JoesphA. Novel quinolone substituted quinazolin-4(3H)-ones as anti-inflammatory, anticancer agents: Synthesis and biological screening.2018524sS268S27610.5530/ijper.52.4s.107.
    [Google Scholar]
  64. EwesW.A. ElmorsyM.A. El-MesseryS.M. NasrM.N.A. Synthesis, biological evaluation and molecular modeling study of [1,2,4]-Triazolo[4,3-c]quinazolines: New class of EGFR-TK inhibitors.Bioorg. Med. Chem.202028711537310.1016/j.bmc.2020.11537332085964
    [Google Scholar]
  65. López-GresaM.P. GonzálezM.C. PrimoJ. MoyaP. RomeroV. EstornellE. Circumdatin H, a new inhibitor of mitochondrial NADH oxidase, from Aspergillus ochraceus .J. Antibiot. (Tokyo)200558641641910.1038/ja.2005.5416156520
    [Google Scholar]
  66. AhmedM.F. YounsM. Synthesis and biological evaluation of a novel series of 6,8-dibromo-4(3H)quinazolinone derivatives as anticancer agents.Arch. Pharm. (Weinheim)2013346861061710.1002/ardp.20130015823873839
    [Google Scholar]
  67. RamaraoS. PothireddyM. VenkateshwarluR. MoturuK.M.V.R. SiddaiahV. KapavarapuR. DandelaR. PalM. A rapid construction of 4(3H)-quinazolinone and related ring under ultrasound irradiation: In silico/in vitro studies of compounds synthesized.J. Mol. Struct.2023127313428010.1016/j.molstruc.2022.134280
    [Google Scholar]
  68. MohammedF.F. HagarM. ParveenS. AlnomanR.B. AhmedH.A. AshryE.S.H.E. RasheedH.A. 2-(alkylthio)-3-(naphthalen-1-yl) quinazolin-4 (3 H)-ones: Ultrasonic synthesis, DFT and molecular docking aspects.Polycycl. Aromat. Compd.20224274034404810.1080/10406638.2021.1878245
    [Google Scholar]
  69. SarkarM. NathA. KumerA. MallikC. AkterF. MoniruzzamanM. AliM.A. Synthesis, molecular docking screening, ADMET and dynamics studies of synthesized 4-(4-methoxyphenyl)-8-methyl-3,4,5,6,7,8-hexahydroquinazolin-2(1H)-one and quinazolinone derivatives.J. Mol. Struct.2021124413095310.1016/j.molstruc.2021.130953
    [Google Scholar]
  70. NovannaM. KannadasanS. ShanmugamP. Phosphotungstic acid mediated, microwave assisted solvent-free green synthesis of highly functionalized 2ˈ-spiro and 2, 3-dihydro quinazolinone and 2-methylamino benzamide derivatives from aryl and heteroaryl 2-amino amides.Tetrahedron Lett.201960220120610.1016/j.tetlet.2018.12.011
    [Google Scholar]
  71. HekalM.H. Abu El-AzmF.S.M. Atta-AllahS.R. Ecofriendly and highly efficient microwave-induced synthesis of novel quinazolinone-undecyl hybrids with in vitro antitumor activity.Synth. Commun.201949202630264110.1080/00397911.2019.1637001
    [Google Scholar]
  72. RamadanS.K. ElrazazE.Z. AbouzidK.A.M. El-NaggarA.M. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors.RSC Advances20201049294752949210.1039/D0RA05943A35521104
    [Google Scholar]
  73. TeixeiraR. MenengatT. AndradeG. CotrimB. PonteC. SantosW.C. ResendeG. Microwave assisted synthesis of 4-Phenylquinazolin-2(1H)-one derivatives that inhibit vasopressor tonus in rat thoracic aorta.Molecules2020256146710.3390/molecules2506146732213966
    [Google Scholar]
  74. ShenC. ManN.Y.T. StewartS. WuX.F. Palladium-catalyzed dicarbonylative synthesis of tetracycle quinazolinones.Org. Biomol. Chem.201513154422442510.1039/C5OB00368G25783465
    [Google Scholar]
  75. LiangD. HeY. ZhuQ. Palladium-catalyzed C(sp2)-H pyridocarbonylation of N-aryl-2-aminopyridines: Dual function of the pyridyl moiety.Org. Lett.201416102748275110.1021/ol501070g24804565
    [Google Scholar]
  76. NatteK. NeumannH. WuX.F. Pd/C as an efficient heterogeneous catalyst for carbonylative four-component synthesis of 4(3H)-quinazolinones.Catal. Sci. Technol.2015594474448010.1039/C5CY00907C
    [Google Scholar]
  77. YangW. ChenJ. HuangX. DingJ. LiuM. WuH. Pd-catalyzed intramolecular aerobic oxidative C-H amination of 2-aryl-3-(arylamino)quinazolinones: Synthesis of fluorescent indazolo[3,2-b]quinazolinones.Org. Lett.201416205418542110.1021/ol502655325290066
    [Google Scholar]
  78. AwadM.K. Abdel-AalM.F. AtlamF.M. HekalH.A. Design, synthesis, molecular modeling, and biological evaluation of novel α-aminophosphonates based quinazolinone moiety as potential anticancer agents: DFT, NBO and vibrational studies.J. Mol. Struct.2018117312814110.1016/j.molstruc.2018.06.094
    [Google Scholar]
  79. KshirsagarU.A. ArgadeN.P. Copper-catalyzed intramolecular N-arylation of quinazolinones: facile convergent approach to (-)-circumdatins H and J.Org. Lett.201012163716371910.1021/ol101597p20669978
    [Google Scholar]
  80. LiF. LuL. LiuP. Acceptorless dehydrogenative coupling of o -Aminobenzamides with the activation of methanol as a C1 source for the construction of quinazolinones.Org. Lett.201618112580258310.1021/acs.orglett.6b0092527210593
    [Google Scholar]
  81. WangH. JiaoS. ChenK. ZhangX. ZhaoL. LiuD. ZhouY. LiuH. Direct access to pyrido/pyrrolo[2,1- b ]quinazolin-9(1 H )-ones through silver-mediated intramolecular alkyne hydroamination reactions.Beilstein J. Org. Chem.201511141642410.3762/bjoc.11.4725977715
    [Google Scholar]
  82. WdowiakP. MatysiakJ. KusztaP. CzarnekK. NiezabitowskaE. BajT. Quinazoline derivatives as potential therapeutic agents in urinary bladder cancer therapy.Front Chem.2021976555210.3389/fchem.2021.76555234805097
    [Google Scholar]
  83. DohleW. JourdanF.L. MenchonG. ProtaA.E. FosterP.A. MannionP. HamelE. ThomasM.P. KasprzykP.G. FerrandisE. SteinmetzM.O. LeeseM.P. PotterB.V.L. Quinazolinone-based anticancer agents: Synthesis, antiproliferative SAR, antitubulin activity, and tubulin co-crystal structure.J. Med. Chem.20186131031104410.1021/acs.jmedchem.7b0147429227648
    [Google Scholar]
  84. QaziA.K. HussainA. KhanS. AgaM.A. BehlA. AliS. SinghS.K. TanejaS.C. ShahB.A. SaxenaA.K. MondheD.M. HamidA. Quinazoline based small molecule exerts potent tumour suppressive properties by inhibiting PI3K/Akt/FoxO3a signalling in experimental colon cancer.Cancer Lett.20153591475610.1016/j.canlet.2014.12.03425554016
    [Google Scholar]
  85. LiZ. ZhaoC. HeG. WangY. WangY. MaX. Identification of PI3K/HDAC Dual-targeted inhibitors with subtype selectivity as potential therapeutic agents against solid Tumors: Building HDAC6 potency in a Quinazolinone-based PI3Kδ-selective template.Bioorg. Med. Chem.20227311702810.1016/j.bmc.2022.11702836182802
    [Google Scholar]
  86. HieuD.T. AnhD.T. HaiP.T. ThuanN.T. HuongL.T.T. ParkE.J. Young JiA. Soon KangJ. Phuong DungP.T. HanS.B. NamN.H. Quinazolin‐4(3 H )‐one‐Based Hydroxamic Acids: Design, synthesis and evaluation of histone deacetylase inhibitory effects and cytotoxicity.Chem. Biodivers.2019164e180050210.1002/cbdv.20180050230653817
    [Google Scholar]
  87. NerkarA.G. SaxenaA.K. GhoneS.A. ThakerA.K. In silico screening, synthesis and in vitro evaluation of some quinazolinone and pyridine derivatives as dihydrofolate reductase inhibitors for anticancer activity.J. Chem.20096S97S102
    [Google Scholar]
  88. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  89. AzabM. El-HashashM. MorsyJ. MahmoudN. Design, synthesis and anticancer activity of novel 2, 3-and 2, 4-disubstituted quinazoline and quinazolinone derivatives.Heterocycles201692231632910.3987/COM‑15‑13389
    [Google Scholar]
  90. ZouM. JinB. LiuY. ChenH. ZhangZ. ZhangC. ZhaoZ. ZhengL. Synthesis and biological evaluation of some novel thiophene-bearing quinazoline derivatives as EGFR inhibitors.Lett. Drug Des. Discov.201816210211010.2174/1570180815666180803125935
    [Google Scholar]
  91. KhairnarN.S. PatilA.V. NoolviM.N. Synthesis and biological evaluation of novel triazolylquinazolin‐4‐one derivatives as anticancer agents.Eur. J. Mol. Clin. Med.202071152015214
    [Google Scholar]
  92. ElZahabiH.S.A. NafieM.S. OsmanD. ElghazawyN.H. SolimanD.H. EL-HelbyA.A.H. ArafaR.K. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity.Eur. J. Med. Chem.202122211360910.1016/j.ejmech.2021.11360934119830
    [Google Scholar]
  93. ThakurA. TawaG.J. HendersonM.J. DanchikC. LiuS. ShahP. WangA.Q. DunnG. KabirM. PadilhaE.C. XuX. SimeonovA. KharbandaS. StoneR. GrewalG. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors.J. Med. Chem.20206384256429210.1021/acs.jmedchem.0c0019332212730
    [Google Scholar]
  94. NoserA.A. El-NaggarM. DoniaT. AbdelmonsefA.H. Synthesis, in silico and in vitro assessment of new quinazolinones as anticancer agents via potential AKT inhibition.Molecules20202520478010.3390/molecules2520478033080996
    [Google Scholar]
  95. RakeshK.P. KumaraH.K. ManukumarH.M. Channe GowdaD. Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking.Bioorg. Chem.20198725226410.1016/j.bioorg.2019.03.03830908968
    [Google Scholar]
  96. El-HashashM.A.E.A.M. SalemM.S. Al-MabrookS.A.M. Synthesis and anticancer activity of novel quinazolinone and benzamide derivatives.Res. Chem. Intermed.20184442545255910.1007/s11164‑017‑3245‑4
    [Google Scholar]
  97. El-SayedS. MetwallyK. El-ShanawaniA.A. Abdel-AzizL.M. PratsinisH. KletsasD. Synthesis and anticancer activity of novel quinazolinone-based rhodanines.Chem. Cent. J.201711110210.1186/s13065‑017‑0333‑x29086906
    [Google Scholar]
  98. YangH. LiQ. SuM. LuoF. LiuY. WangD. FanY. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition.Bioorg. Med. Chem.20214611634610.1016/j.bmc.2021.11634634403956
    [Google Scholar]
  99. WaniZ.A. PathaniaA.S. MahajanG. BehlA. MintooM.J. GuruS.K. ViswanathA. MalikF. KamalA. MondheD.M. Anticancer activity of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line.J. Solid Tumors201552738510.5430/jst.v5n2p73
    [Google Scholar]
  100. WaniZ.A. GuruS.K. RaoA.V.S. SharmaS. MahajanG. BehlA. KumarA. SharmaP.R. KamalA. BhushanS. MondheD.M. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells.Food Chem. Toxicol.20168711110.1016/j.fct.2015.11.01626615871
    [Google Scholar]
  101. LuC.C. YangJ.S. ChiangJ.H. HourM.J. AmagayaS. LuK.W. LinJ.P. TangN.Y. LeeT.H. ChungJ.G. Inhibition of invasion and migration by newly synthesized quinazolinone MJ-29 in human oral cancer CAL 27 cells through suppression of MMP-2/9 expression and combined down-regulation of MAPK and AKT signaling.Anticancer Res.20123272895290322753753
    [Google Scholar]
  102. HourM.J. TsaiS.C. WuH.C. LinM.W. ChungJ.G. WuJ.B. ChiangJ.H. TsuzukiM. YangJ.S. Antitumor effects of the novel quinazolinone MJ-33: Inhibition of metastasis through the MAPK, AKT, NF-κB and AP-1 signaling pathways in DU145 human prostate cancer cells.Int. J. Oncol.20124141513151910.3892/ijo.2012.156022825655
    [Google Scholar]
  103. YuC.W. HungP.Y. YangH.T. HoY.H. LaiH.Y. ChengY.S. ChernJ.W. Quinazolin-2, 4-dione-based hydroxamic acids as selective histone deacetylase-6 inhibitors for treatment of non-small cell lung cancer.J. Med. Chem.201962285787410.1021/acs.jmedchem.8b0159030525585
    [Google Scholar]
  104. ZhangH. XinM.H. XieX.X. MaoS. ZuoS.J. LuS.M. ZhangS.Q. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety.Bioorg. Med. Chem.201523247765777610.1016/j.bmc.2015.11.02726652969
    [Google Scholar]
  105. MahdyH.A. IbrahimM.K. MetwalyA.M. BelalA. MehanyA.B.M. El-GamalK.M.A. El-SharkawyA. ElhendawyM.A. RadwanM.M. ElsohlyM.A. EissaI.H. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers.Bioorg. Chem.20209410342210.1016/j.bioorg.2019.10342231812261
    [Google Scholar]
  106. LeY. GanY. FuY. LiuJ. LiW. ZouX. ZhouZ. WangZ. OuyangG. YanL. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment.J. Enzyme Inhib. Med. Chem.202035155556410.1080/14756366.2020.171538931967481
    [Google Scholar]
  107. PatelH.M. BariP. KarpoormathR. NoolviM. ThapliyalN. SuranaS. JainP. Design and synthesis of VEGFR-2 tyrosine kinase inhibitors as potential anticancer agents by virtual based screening.RSC Advances2015570567245677110.1039/C5RA05277G
    [Google Scholar]
  108. PathakP. ShuklaP.K. KumarV. KumarA. VermaA. Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity.Inflammopharmacology20182661441145310.1007/s10787‑018‑0471‑329663100
    [Google Scholar]
  109. El-AzabA.S. Al-DhfyanA. Abdel-AzizA.A.M. Abou-ZeidL.A. AlkahtaniH.M. Al-ObaidA.M. Al-GendyM.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline–isatin conjugates: Epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies.J. Enzyme Inhib. Med. Chem.201732193594410.1080/14756366.2017.134498128718672
    [Google Scholar]
  110. Siqueira-NetoJ.L. WichtK.J. ChibaleK. BurrowsJ.N. FidockD.A. WinzelerE.A. Antimalarial drug discovery: Progress and approaches.Nat. Rev. Drug Discov.2023221080782610.1038/s41573‑023‑00772‑937652975
    [Google Scholar]
  111. BirhanY.S. BekhitA.A. HymeteA. In vivo antimalarial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives.BMC Res. Notes20158158910.1186/s13104‑015‑1578‑x26486987
    [Google Scholar]
  112. Haredi AbdelmonsefA. Eldeeb MohamedM. El-NaggarM. TemairkH. Mohamed MosallamA. Novel quinazolin-2, 4-dione hybrid molecules as possible inhibitors against malaria: Synthesis and in silico molecular docking studies.Front. Mol. Biosci.2020710510.3389/fmolb.2020.0010532582763
    [Google Scholar]
  113. MehriziA.A. TahghighiA. ZakeriS. In vitro anti-plasmodial activity of new synthetic derivatives of 1-(heteroaryl)-2- ((5-nitroheteroaryl)methylene) hydrazine.Asian Pac. J. Trop. Med.202114312813810.4103/1995‑7645.306740
    [Google Scholar]
  114. PatelT.S. VanpariaS.F. GandhiS.A. PatelU.H. DixitR.B. ChudasamaC.J. DixitB.C. Novel stereoselective 2,3-disubstituted quinazoline-4(3H)-one derivatives derived from glycine as a potent antimalarial lead.New J. Chem.201539118638864910.1039/C5NJ01408E
    [Google Scholar]
  115. SeifuG.W. BirhanY.S. BeshayB.Y. HymeteA. BekhitA.A. Synthesis, antimalarial, antileishmanial evaluation, and molecular docking study of some 3-aryl-2-styryl substituted-4(3H)-quinazolinone derivatives.BMC Chem.202216110710.1186/s13065‑022‑00903‑036461074
    [Google Scholar]
  116. IbrahimZ.Y. UzairuA. ShallangwaG.A. AbechiS.E. IsyakuS. Virtual screening and molecular dynamic simulations of the antimalarial derivatives of 2-anilino 4-amino substituted quinazolines docked against a Pf-DHODH protein target.Egypt. J. Med. Hum. Genet.202223111910.1186/s43042‑022‑00329‑237521844
    [Google Scholar]
  117. ShaoL. ZhaoS. YangS. ZhouX. LiY. LiC. ChenD. LiZ. OuyangG. WangZ. Design, synthesis, antibacterial evaluation, three-dimensional quantitative structure–activity relationship, and mechanism of novel quinazolinone derivatives.J. Agric. Food Chem.20237193939394910.1021/acs.jafc.2c0726436807581
    [Google Scholar]
  118. Al-SehemiA.G. IrfanA. AlrummanS.A. HeshamA.E. Antibacterial activities, DFT and QSAR studies of quinazolinone compounds.Bull. Chem. Soc. Ethiop.201630230731610.4314/bcse.v30i2.15
    [Google Scholar]
  119. ZhanX. XuY. QiQ. WangY. ShiH. MaoZ. Synthesis, cytotoxic, and antibacterial evaluation of quinazolinone derivatives with substituted amino moiety.Chem. Biodivers.2018153e170051310.1002/cbdv.20170051329333734
    [Google Scholar]
  120. WangX. YinJ. ShiL. ZhangG. SongB. Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one.Eur. J. Med. Chem.201477657410.1016/j.ejmech.2014.02.05324607590
    [Google Scholar]
  121. GatadiS. LakshmiT.V. NanduriS. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads.Eur. J. Med. Chem.201917015717210.1016/j.ejmech.2019.03.01830884322
    [Google Scholar]
  122. JaiswalS. AryaN. YaduvanshiN. DeviM. JainS. JainS. DwivediJ. SharmaS. Current updates on green synthesis and biological properties of 4-quinolone derivatives.J. Mol. Struct.2023129413656510.1016/j.molstruc.2023.136565
    [Google Scholar]
  123. ZhangL. ChenQ. LiX.Q. WuS.Q. WanJ.L. OuyangG.P. Synthesis and Antibacterial Activity of 2‐substitued‐(3‐pyridyl)‐quinazolinone derivatives.J. Heterocycl. Chem.201855374374910.1002/jhet.3099
    [Google Scholar]
  124. WangH.X. LiuH.Y. LiW. ZhangS. WuZ. LiX. LiC.W. LiuY.M. ChenB.Q. Design, synthesis, antiproliferative and antibacterial evaluation of quinazolinone derivatives.Med. Chem. Res.201928220321410.1007/s00044‑018‑2276‑8
    [Google Scholar]
  125. GarberG. An overview of fungal infections.Drugs20016111210.2165/00003495‑200161001‑0000111219546
    [Google Scholar]
  126. ZengR. HuangC. WangJ. ZhongY. FangQ. XiaoS. NieX. ChenS. PengD. Synthesis, crystal structure, and antifungal activity of quinazolinone derivatives.Crystals (Basel)2023138125410.3390/cryst13081254
    [Google Scholar]
  127. PengJ.W. YinX.D. LiH. MaK.Y. ZhangZ.J. ZhouR. WangY.L. HuG.F. LiuY.Q. Design, synthesis, and structure–activity relationship of quinazolinone derivatives as potential fungicides.J. Agric. Food Chem.202169164604461410.1021/acs.jafc.0c0547533872004
    [Google Scholar]
  128. EttahiriW. SalimR. AdardourM. Ech-chihbiE. YunusaI. AlanaziM.M. LahmidiS. BarnossiA.E. MerzoukiO. Iraqi HousseiniA. RaisZ. BaouidA. TalebM. Synthesis, characterization, antibacterial, antifungal and anticorrosion activities of 1,2,4-Triazolo[1,5-a]quinazolinone.Molecules20232814534010.3390/molecules2814534037513216
    [Google Scholar]
  129. ÖztürkS. OkayS. YıldırımA. Synthesis, anticorrosion, antibacterial, and antifungal activity of new amphiphilic compounds possessing quinazolin-4(3H)-one scaffold.Russ. Chem. Bull.202069112205221410.1007/s11172‑020‑3023‑0
    [Google Scholar]
  130. IghachaneH. SedraM.H. LazrekH. Synthesis and evaluation of antifungal activities of (3H)-quinazolin-4-one derivatives against tree plant fungi.J. Mater. Environ. Sci.201781134143
    [Google Scholar]
  131. ZhangJ. LiuJ. MaY. RenD. ChengP. ZhaoJ. ZhangF. YaoY. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety.Bioorg. Med. Chem. Lett.20162692273227710.1016/j.bmcl.2016.03.05227040656
    [Google Scholar]
  132. LahariyaC. PradhanS.K. Emergence of chikungunya virus in Indian subcontinent after 32 years: A review.J. Vector Borne Dis.200643415116017175699
    [Google Scholar]
  133. DinakaranM. SelvamP. DeClercqE. SridharS.K. Synthesis, antiviral and cytotoxic activity of 6-bromo-2,3-disubstituted-4(3H)-quinazolinones.Biol. Pharm. Bull.20032691278128210.1248/bpb.26.127812951471
    [Google Scholar]
  134. KumarK.S. GangulyS. VeerasamyR. De ClercqE. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones.Eur. J. Med. Chem.201045115474547910.1016/j.ejmech.2010.07.05820724039
    [Google Scholar]
  135. GaoX. CaiX. YanK. SongB. GaoL. ChenZ. Synthesis and antiviral bioactivities of 2-aryl- or 2-methyl-3-(substituted- benzalamino)-4(3H)-quinazolinone derivatives.Molecules200712122621264210.3390/1212262118259148
    [Google Scholar]
  136. AbbasS.Y. El-BayoukiK.A.M. BasyouniW.M. MostafaE.A. New series of 4(3H)-quinazolinone derivatives: syntheses and evaluation of antitumor and antiviral activities.Med. Chem. Res.201827257158210.1007/s00044‑017‑2083‑7
    [Google Scholar]
  137. SwarupN. NayakS. LeeJ. Pai RaikarS. HouD. SockalingamS. LeeK. Forming a support group for people affected by inflammatory bowel disease.Patient Prefer. Adherence20171127728110.2147/PPA.S12307328255233
    [Google Scholar]
  138. RajputC.S. SinghalS. Synthesis, characterization, and anti-inflammatory activity of newer quinazolinone analogs.J Pharm (Cairo).2013201390752510.1155/2013/907525
    [Google Scholar]
  139. Abdel-AzizA.A.M. Abou-ZeidL.A. ElTahirK.E.H. MohamedM.A. Abu El-EninM.A. El-AzabA.S. Design, synthesis of 2,3-disubstitued 4(3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents: COX-1/2 inhibitory activities and molecular docking studies.Bioorg. Med. Chem.201624163818382810.1016/j.bmc.2016.06.02627344214
    [Google Scholar]
  140. YeşiladaA. KoyunoğluS. SaygiliaN. KupeliE. YeşiladaE. BedirE. KhancI. Synthesis, anti-inflammatory and analgesic activity of some new 4(3H)-quinazolinone derivatives.Arch. Pharm. (Weinheim)200433729610410.1002/ardp.20020075214981666
    [Google Scholar]
  141. RakeshK.P. ManukumarH.M. GowdaD.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants.Bioorg. Med. Chem. Lett.20152551072107710.1016/j.bmcl.2015.01.01025638040
    [Google Scholar]
  142. PoojariS. KrishnamurthyG. Anti-inflammatory, antibacterial and molecular docking studies of novel spiro-piperidine quinazolinone derivatives.J. Taibah Univ. Sci.201711349751110.1016/j.jtusci.2016.10.003
    [Google Scholar]
  143. AroraD. KumarH. MalhotraD. MalhotraM. Current trends in anticonvulsant 4 (3H)-quinazolinone: A review.Pharmacologyonline20113659668
    [Google Scholar]
  144. TokalıF.S. TaslimiP. TuzunB. KarakuşA. SadeghianN. Gulçinİ. Novel quinazolinone derivatives: Potential synthetic analogs for the treatment of glaucoma, alzheimer’s disease and diabetes mellitus.Chem. Biodivers.20232010e20230113410.1002/cbdv.20230113437695993
    [Google Scholar]
  145. HaghighijooZ. FiruziO. HemmateenejadB. EmamiS. EdrakiN. MiriR. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease.Bioorg. Chem.20177412613310.1016/j.bioorg.2017.07.01428780149
    [Google Scholar]
  146. DashB. DashS. LalooD. Design and synthesis of 4-substituted quinazoline derivatives for their anticonvulsant and CNS depressant activities.Int. J. Pharm. Pharm. Sci.20169116517210.22159/ijpps.2017v9i1.15492
    [Google Scholar]
  147. ZhangH.J. WangS.B. QuanZ.S. Synthesis and antidepressant activities of 4-(substituted-phenyl)tetrazolo[1,5-a]quinazolin-5(4H)-ones and their derivatives.Mol. Divers.201519481782810.1007/s11030‑015‑9623‑126251313
    [Google Scholar]
  148. AmirM. AliI. HassanM.Z. Design and synthesis of some new quinazolin-4-(3H)-ones as anticonvulsant and antidepressant agents.Arch. Pharm. Res.2013361616810.1007/s12272‑013‑0004‑y23325491
    [Google Scholar]
  149. HughesA.N. RafiI. GriffinM.J. CalvertA.H. NewellD.R. CalveteJ.A. JohnstonA. ClendeninnN. BoddyA.V. Phase I studies with the nonclassical antifolate nolatrexed dihydrochloride (AG337, THYMITAQ) administered orally for 5 days.Clin. Cancer Res.1999511111189918208
    [Google Scholar]
  150. OchiaiT. IshidaR. Pharmacological studies on 6-amino-2-fluoromethyl-3-(O-tolyl)-4(3H)-quinazolinone (afloqualone), a new centrally acting muscle relaxant. (II) Effects on the spinal reflex potential and the rigidity.Jpn. J. Pharmacol.198232342743810.1016/S0021‑5198(19)52663‑47109348
    [Google Scholar]
  151. SundrudM.S. KoralovS.B. FeuererM. CaladoD.P. KozhayaA.E. Rhule-SmithA. LefebvreR.E. UnutmazD. MazitschekR. WaldnerH. WhitmanM. KellerT. RaoA. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response.Science200932459321334133810.1126/science.117263819498172
    [Google Scholar]
  152. International Nonproprietary Names for pharmaceutical sciences (INN).WHO Drug Inf.2010242177
    [Google Scholar]
  153. HoellenriegelJ. MeadowsS.A. SivinaM. WierdaW.G. KantarjianH. KeatingM.J. GieseN. O’BrienS. YuA. MillerL.L. LannuttiB.J. BurgerJ.A. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia.Blood2011118133603361210.1182/blood‑2011‑05‑35249221803855
    [Google Scholar]
  154. ChengC.M. LeeY.J. WangW.T. HsuC.T. TsaiJ.S. WuC.M. OuK.L. YangT.S. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers.Biochem. Biophys. Res. Commun.2011404129730110.1016/j.bbrc.2010.11.11021130075
    [Google Scholar]
  155. MyintK.Z. WangL. TongQ. XieX.Q. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions.Mol. Pharm.20129102912292310.1021/mp300237z22937990
    [Google Scholar]
  156. CorreiaJ. ResendeT. BaptistaD. RochaM. Artificial intelligence in biological activity prediction.Practical Applications of Computational Biology and Bioinformatics, 13th International Conference202016417210.1007/978‑3‑030‑23873‑5_20.
    [Google Scholar]
  157. El-NaggarM. MohamedM.E. MosallamA.M. SalemW. RashdanH.R.M. AbdelmonsefA.H. Synthesis, characterization, antibacterial activity, and computer-aided design of novel quinazolin-2, 4-dione derivatives as potential inhibitors against Vibrio cholerae .Evol. Bioinform. Online20201610.1177/117693431989759631933518
    [Google Scholar]
  158. IbrahimM.T. UzairuA. ShallangwaG.A. UbaS. Computer-aided molecular modeling studies of some 2, 3-dihydro-[1, 4] dioxino [2, 3-f] quinazoline derivatives as EGFR WT inhibitors.Beni. Suef Univ. J. Basic Appl. Sci.20209110
    [Google Scholar]
  159. Abou-SeriS.M. AbouzidK. Abou El EllaD.A. Molecular modeling study and synthesis of quinazolinone-arylpiperazine derivatives as α1-adrenoreceptor antagonists.Eur. J. Med. Chem.201146264765810.1016/j.ejmech.2010.11.04521193252
    [Google Scholar]
  160. SancinetoL. IraciN. MassariS. AttanasioV. CorazzaG. BarrecaM.L. SabatiniS. ManfroniG. AvanziN.R. CecchettiV. PannecouqueC. MarcelloA. TabarriniO. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity.ChemMedChem20138121941195310.1002/cmdc.20130028724150998
    [Google Scholar]
  161. ZhengD. YangC. LiX. LiuD. WangY. WangX. ZhangX. TanY. ZhangY. LiY. XuJ. Design, synthesis, antitumour evaluation, and in silico studies of pyrazolo-[1,5-c]quinazolinone derivatives targeting potential cyclin-dependent kinases.Molecules20232818660610.3390/molecules2818660637764382
    [Google Scholar]
  162. HuangS. FengK. RenY. Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques.MedChemComm201910110111510.1039/C8MD00375K30774858
    [Google Scholar]
  163. PengX.X. FengK.R. RenY.J. Molecular modeling studies of quinazolinone derivatives as novel PI3Kδ selective inhibitors.RSC Advances2017789563445635810.1039/C7RA10870B
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266313354240807051401
Loading
/content/journals/ctmc/10.2174/0115680266313354240807051401
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biological properties; Green synthesis; Molecular docking; Quinazolione; SAR; Therapeutic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test