Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Synthetic routes of chromene are an area of thrust research due to its wide application as pigments, agrochemicals, cosmetics, and an important nucleus scaffold for various pharmacologically active drugs. The chromene nucleus is an important moiety for the discovery of new drug candidates owing to its broad range of pharmacological actions like antitumor, anti-inflammatory, antiviral, and many others. However, traditional synthesis techniques frequently use unsafe reagents and produce hazardous waste, presenting environmental issues. The eco-friendly production of chromene derivatives utilizes sustainable raw materials, non-toxic catalysts, and gentle reaction conditions to reduce ecological consequences. Innovative methods like microwave irradiation, ultrasound synthesis, the use of environmentally friendly solvents, a catalyst-based approach with minimal environmental impact, and mechanochemistry-mediated synthesis are implemented. These approaches provide benefits in scalability, cost-effectiveness, and ease of purification. This review compiles and presents various recently reported green synthetic strategies of chromene and its derivatives and gives the reader a clear idea of the detailed and critical aspects of various synthetic protocols described.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266305231240712104736
2024-08-06
2025-04-16
Loading full text...

Full text loading...

References

  1. SinghalS. JosephJ.K. JainS.L. SainB. Synthesis of 3,4-dihydropyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound.Green Chem. Lett. Rev.201031232610.1080/17518250903490126
    [Google Scholar]
  2. LancasterM. Principles of sustainable and green chemistryHandbook of green chemistry and technology.New JerseyWiley2010
    [Google Scholar]
  3. AmarasekaraA.S. Acidic Ionic Liquids.Chem. Rev.2016116106133618310.1021/acs.chemrev.5b00763 27175515
    [Google Scholar]
  4. LiJ. LiangX. Magnetic solid acid catalyst for biodiesel synthesis from waste oil.Energy Convers. Manage.201714112613210.1016/j.enconman.2016.06.072
    [Google Scholar]
  5. JiangJ. YaghiO.M. Brønsted acidity in metal-organic frameworks.Chem. Rev.2015115146966699710.1021/acs.chemrev.5b00221 26088535
    [Google Scholar]
  6. RostamniaS. DoustkhahE. Nanoporous silica-supported organocatalyst: A heterogeneous and green hybrid catalyst for organic transformations.RSC Advances2014454282382824810.1039/C4RA03773A
    [Google Scholar]
  7. BanerjeeB. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations.ChemistrySelect2019482484250010.1002/slct.201803081
    [Google Scholar]
  8. SaikiaS. BorahR. One-pot sequential synthesis of 2-Amino-4, 6-diaryl pyrimidines involving SO3 H-functionalized piperazinium-based dicationic ionic liquids as homogeneous catalysts.ChemistrySelect20194308751875610.1002/slct.201902060
    [Google Scholar]
  9. AndradeC.K.Z. AlvesL.M. Environmentally benign solvents in organic synthesis: Current topics.Curr. Org. Chem.20059219521810.2174/1385272053369178
    [Google Scholar]
  10. LaskarS. BrahmachariG. Access to biologically relevant diverse chromene heterocyclesvia multicomponent reactions (MCRs): Recent advances.Org. Biomol. Chem.20142150
    [Google Scholar]
  11. KatritzkyA.R. RamsdenC.A. ScrivenE.F.V. TaylorR.J.K. Comprehensive Heterocyclic Chemistry III.14th edAmsterdamElsevier2008
    [Google Scholar]
  12. EllisG.P. LockhartI.M. Chromenes, chromanones, and chromones-introduction. The Chemistry of Heterocyclic Compounds.New JerseyWiley-VCH2009Vol. 31110
    [Google Scholar]
  13. NicolaouK.C. PfefferkornJ.A. RoeckerA.J. CaoG.Q. BarluengaS. MitchellH.J. Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans.J. Am. Chem. Soc.2000122419939995310.1021/ja002033k
    [Google Scholar]
  14. BatistaJ.M.Jr LopesA.A. AmbrósioD.L. RegasiniL.O. KatoM.J. BolzaniV.S. CicarelliR.M.B. FurlanM. Natural chromenes and chromene derivatives as potential anti-trypanosomal agents.Biol. Pharm. Bull.200831353854010.1248/bpb.31.538 18310927
    [Google Scholar]
  15. KeerthyH.K. GargM. MohanC.D. MadanV. KanojiaD. ShobithR. NanjundaswamyS. MasonD.J. BenderA. Basappa; Rangappa, K.S.; Koeffler, H.P. Synthesis and characterization of novel 2-amino-chromene-nitriles that target Bcl-2 in acute myeloid leukemia cell lines.PLoS One201499e10711810.1371/journal.pone.0107118 25268519
    [Google Scholar]
  16. PuppalaM. ZhaoX. CasemoreD. ZhouB. AridossG. NarayanapillaiS. XingC. 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions.Bioorg. Med. Chem.20162461292129710.1016/j.bmc.2016.01.056 26867486
    [Google Scholar]
  17. PatilS.A. PatilR. PfefferL.M. MillerD.D. Chromenes: Potential new chemotherapeutic agents for cancer.Future Med. Chem.20135141647166010.4155/fmc.13.126 24047270
    [Google Scholar]
  18. PatilS.A. WangJ. LiX.S. ChenJ. JonesT.S. Hosni-AhmedA. PatilR. SeibelW.L. LiW. MillerD.D. New substituted 4H-chromenes as anticancer agents.Bioorg. Med. Chem. Lett.201222134458446110.1016/j.bmcl.2012.04.074 22608389
    [Google Scholar]
  19. BonfieldK. AmatoE. BankemperT. AgardH. StellerJ. KeelerJ.M. RoyD. McCallumA. PaulaS. MaL. Development of a new class of aromatase inhibitors: Design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives.Bioorg. Med. Chem.20122082603261310.1016/j.bmc.2012.02.042 22444875
    [Google Scholar]
  20. WangH.J. ZhouY.Y. LiuX.L. ZhangW.H. ChenS. LiuX.W. ZhouY. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents.Bioorg. Med. Chem. Lett.202030912708712709310.1016/j.bmcl.2020.127087 32160978
    [Google Scholar]
  21. PaliwalP.K. JettiS.R. JainS. Green approach towards the facile synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological evaluation.Med. Chem. Res.20132262984299010.1007/s00044‑012‑0288‑3
    [Google Scholar]
  22. GourdeauH. LeblondL. HamelinB. DesputeauC. DongK. KianickaI. CusteauD. BoudreauC. GeertsL. CaiS.X. DreweJ. LabrecqueD. KasibhatlaS. TsengB. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4 H -chromenes, a novel series of anticancer agents.Mol. Cancer Ther.20043111375138410.1158/1535‑7163.1375.3.11 15542776
    [Google Scholar]
  23. KemnitzerW. DreweJ. JiangS. ZhangH. ZhaoJ. Crogan-GrundyC. XuL. LamotheS. GourdeauH. DenisR. TsengB. KasibhatlaS. CaiS.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions.J. Med. Chem.200750122858286410.1021/jm070216c 17497765
    [Google Scholar]
  24. KemnitzerW. DreweJ. JiangS. ZhangH. WangY. ZhaoJ. JiaS. HerichJ. LabrequeD. StorerR. MeerovitchK. BouffardD. RejR. DenisR. BlaisC. LamotheS. AttardoG. GourdeauH. TsengB. KasibhatlaS. CaiS.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group.J. Med. Chem.200447256299631010.1021/jm049640t 15566300
    [Google Scholar]
  25. ShestopalovA.M. LitvinovY.M. RodinovskayaL.A. MalyshevO.R. SemenovaM.N. SemenovV.V. Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity.ACS Comb. Sci.201214848449010.1021/co300062e 22824131
    [Google Scholar]
  26. RajT. BhatiaR.K. kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P.S. Cytotoxic activity of 3-(5-phenyl-3 H -[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4 H -chromene-3-carbothioic acid N -phenylamides.Eur. J. Med. Chem.201045279079410.1016/j.ejmech.2009.11.001 19939522
    [Google Scholar]
  27. SabryN.M. MohamedH.M. KhattabE.S.A.E.H. MotlaqS.S. El-AgrodyA.M. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities.Eur. J. Med. Chem.201146276577210.1016/j.ejmech.2010.12.015 21216502
    [Google Scholar]
  28. ShahN.K. ShahN.M. PatelM.P. PatelR.G. Synthesis of 2-amino-4H-chromene derivatives under microwave irradiation and their antimicrobial activity.J. Chem. Sci.2013125352553010.1007/s12039‑013‑0421‑y
    [Google Scholar]
  29. SanganiC.B. ShahN.M. PatelM.P. PatelR.G. Microwave-assisted synthesis of novel 4H-chromene derivatives bearing 2-aryloxyquinoline and their antimicrobial activity assessment.Med. Chem. Res.20132283831384210.1007/s00044‑012‑0381‑7
    [Google Scholar]
  30. JardoshH.H. PatelM.P. Microwave-induced CAN promoted atom-economic synthesis of 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of N-allyl quinolone and their antimicrobial activity.Med. Chem. Res.20132262954296310.1007/s00044‑012‑0301‑x
    [Google Scholar]
  31. JardoshH.H. PatelM.P. Microwave-assisted CAN-catalyzed solvent-free synthesis of N-allyl quinolone-based pyrano[4,3-b]chromene and benzopyrano[3,2-c]chromene derivatives and their antimicrobial activity.Med. Chem. Res.201322290591510.1007/s00044‑012‑0085‑z
    [Google Scholar]
  32. SanganiC. ShahN. PatelM. PatelR. Microwave assisted synthesis of novel 4h-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assess.J. Serb. Chem. Soc.20127791165117410.2298/JSC120102030S
    [Google Scholar]
  33. KathrotiyaH.G. PatelM.P. Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity.Med. Chem. Res.201221113406341610.1007/s00044‑011‑9861‑4
    [Google Scholar]
  34. RadwanH.A.M. El-MawgoudH.K.A. El-MariahF. El-AgrodyA.M. AmrA.E. Al-OmarM.A. GhabbourH.A. Single-crystal structure and antimicrobial activity of ethyl 3-amino-1-(4-chlorophenyl)-9-hydroxy1H-benzo[f]chromene-2-carboxylate Combined with Ethyl α-Cyano-4-chlorocinnamate.Russ. J. Gen. Chem.202090229930410.1134/S107036322002022X
    [Google Scholar]
  35. FoudaA.M. HassanA.H. EliwaE.M. AhmedH.E.A. Al-DiesA.A.M. OmarA.M. NassarH.S. HalawaA.H. AljuhaniN. El-AgrodyA.M. Targeted potent antimicrobial benzochromene-based analogues: Synthesis, computational studies, and inhibitory effect against 14α-Demethylase and DNA Gyrase.Bioorg. Chem.202010510438710.1016/j.bioorg.2020.104387 33130344
    [Google Scholar]
  36. Abd El-MawgoudH.K. RadwanH.A.M. El-MariahF. El-AgrodyA.M. Synthesis, characterization, biological activity of novel 1H-benzo[f]- chromene and 12H-benzo[f]chromeno[2,3-d]pyrimidine Derivatives.Lett. Drug Des. Discov.201815885786510.2174/1570180814666171027160854
    [Google Scholar]
  37. Fridén-SaxinM. SeifertT. LandergrenM.R. SuuronenT. Lahtela-KakkonenM. JarhoE.M. LuthmanK. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors.J. Med. Chem.201255167104711310.1021/jm3005288 22746324
    [Google Scholar]
  38. KangY. MeiY. DuY. JinZ. Total synthesis of the highly potent anti-HIV natural product daurichromenic acid along with its two chromane derivatives, rhododaurichromanic acids A and B.Org. Lett.20035234481448410.1021/ol030109m 14602030
    [Google Scholar]
  39. KidwaiM. SaxenaS. Rahman KhanM.K. ThukralS.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents.Bioorg. Med. Chem. Lett.200515194295429810.1016/j.bmcl.2005.06.041 16040241
    [Google Scholar]
  40. WangY. AlenazyR. GuX. PolyakS.W. ZhangP. SykesM.J. ZhangN. VenterH. MaS. Design and structural optimization of novel 2H-benzo[h]chromene derivatives that target AcrB and reverse bacterial multidrug resistance.Eur. J. Med. Chem.202121311304911309810.1016/j.ejmech.2020.113049 33279291
    [Google Scholar]
  41. SaundaneA.R. VijaykumarK. VaijinathA.V. Synthesis of novel 2-amino-4-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents.Bioorg. Med. Chem. Lett.20132371978198410.1016/j.bmcl.2013.02.036 23454016
    [Google Scholar]
  42. KamdarN.R. HaveliwalaD.D. MistryP.T. PatelS.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles.Med. Chem. Res.201120785486410.1007/s00044‑010‑9399‑x
    [Google Scholar]
  43. MartínN. Martínez-GrauA. SeoaneC. MarcoJ.L. AlbertA. CanoF.H. Michael addition of malononitrile to α-acetylcinnamamides.Liebigs Ann. Chem.19931993780180410.1002/jlac.1993199301125
    [Google Scholar]
  44. AbdellaA.M. MoatasimY. AliM.A. ElwahyA.H.M. AbdelhamidI.A. Synthesis and anti-influenza virus activity of novel bis(4H-chromene-3-carbonitrile) derivatives.J. Heterocycl. Chem.20175431854186210.1002/jhet.2776
    [Google Scholar]
  45. Jayaprakash RaoY. Yadaiah goud, E.; Hemasri, Y.; Jain, N.; Gabriella, S. Synthesis and antiproliferative activity of 6,7-aryl/hetaryl coumarins.Russ. J. Gen. Chem.201686118418910.1134/S1070363216010291
    [Google Scholar]
  46. ParthibanA. KumaravelM. MuthukumaranJ. RukkumaniR. KrishnaR. RaoH.S.P. Synthesis, in vitro and in silico anti-proliferative activity of 4-aryl-4H-chromene derivatives.Med. Chem. Res.20162571308131510.1007/s00044‑016‑1569‑z
    [Google Scholar]
  47. AhaghM.H. DehghanG. MehdipourM. Teimuri-MofradR. PayamiE. SheibaniN. GhaffariM. AsadiM. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line.Bioorg. Chem.20199310332910.1016/j.bioorg.2019.103329 31590040
    [Google Scholar]
  48. SeifertT. MaloM. KokkolaT. EngenK. Fridén-SaxinM. WallénE.A.A. Lahtela-KakkonenM. JarhoE.M. LuthmanK. Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells.J. Med. Chem.201457239870988810.1021/jm500930h 25383691
    [Google Scholar]
  49. VenkateshamA. RaoR.S. NagaiahK. YadavJ.S. RoopaJones, G.; Basha, S.J.; Sridhar, B.; Addlagatta, A. Synthesis of new chromeno-annulated cis-fused pyrano[3,4-c]pyran derivatives via domino Knoevenagel-hetero-Diels-Alder reactions and their biological evaluation towards antiproliferative activity.MedChemComm20123665265810.1039/c2md20023f
    [Google Scholar]
  50. FuZ.Y. JinQ.H. QuY.L. GuanL.P. Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities.Bioorg. Med. Chem. Lett.201929151909191210.1016/j.bmcl.2019.05.051 31160177
    [Google Scholar]
  51. SinghN. SatputeS. PolkamN. KantR. AnireddyJ.S. PanhekarD. PandeyJ. Design, synthesis and evaluation of 4H-Chromene-4-one analogues as potential Anti-bacterial and Anti-fungal agents.Chem. Bio. Lett.2020712735
    [Google Scholar]
  52. KeriR.S. BudagumpiS. PaiR.K. BalakrishnaR.G. Chromones as a privileged scaffold in drug discovery: A review.Eur. J. Med. Chem.20147834037410.1016/j.ejmech.2014.03.047 24691058
    [Google Scholar]
  53. SilambarasanS.S. Abdul NasserA.J. A benign synthesis of 2-amino-3-cyano-4h-benzopyrans via domino reaction.J. Drug Deliv. Ther.201994-A27127910.22270/jddt.v9i4‑A.3417
    [Google Scholar]
  54. MachadoN.F.L. MarquesM.P.M. Bioactive chromone derivatives - structural diversity.Curr. Bioact. Compd.201062768910.2174/157340710791184859
    [Google Scholar]
  55. MalikovV.M. YuldashevM.P. Phenolic compounds of plants of the scutellaria l. genus. distribution, structure, and properties.Chem. Nat. Compd.200238435840610.1023/A:1021638411150
    [Google Scholar]
  56. DintznerM.R. WuckaP.R. LyonsT.W. Microwave-assisted synthesis of a natural insecticide on basic montmorillonite K10 clay.J. Chem. Educ.200683227027710.1021/ed083p270
    [Google Scholar]
  57. PanditK.S. KupwadeR.V. ChavanP.V. DesaiU.V. WadgaonkarP.P. KodamK.M. Problem Solving and environmentally benign approach toward diversity oriented synthesis of novel 2-amino-3-phenyl (or alkyl) sulfonyl-4 H -chromenes at ambient temperature.ACS Sustain. Chem. Eng.2016463450346410.1021/acssuschemeng.6b00484
    [Google Scholar]
  58. KonkoyC.S. FickD.B. CaiS.X. LanN.C. KeanaJ.F.W. Substituted 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans and benzothiopyrans and the use thereof as potentiators of AMPA. U.S. Patent 6680332B1,2004
    [Google Scholar]
  59. DehkordiM.F. DehghanG. MahdaviM. FeiziM.A.H. Multispectral studies of DNA binding, antioxidant and cytotoxic activities of a new pyranochromene derivative.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514535335910.1016/j.saa.2015.03.026
    [Google Scholar]
  60. SchmittF. GoldM. RothemundM. AndronacheI. BiersackB. SchobertR. MuellerT. New naphthopyran analogues of LY290181 as potential tumor vascular-disrupting agents.Eur. J. Med. Chem.201916316016810.1016/j.ejmech.2018.11.055 30503940
    [Google Scholar]
  61. AlblewiF. OkashaR. EskandraniA. AfifiT. MohamedH. HalawaA. FoudaA. Al-DiesA.A. MoraA. El-AgrodyA. Design and synthesis of novel heterocyclic-based 4H-benzo[h]chromene Moieties: Targeting antitumor caspase 3/7 activities and cell cycle analysis.Molecules20192461060107610.3390/molecules24061060 30889862
    [Google Scholar]
  62. AhmedH.E.A. El-NassagM.A.A. HassanA.H. OkashaR.M. IhmaidS. FoudaA.M. AfifiT.H. AljuhaniA. El-AgrodyA.M. Introducing novel potent anticancer agents of 1H -benzo[ f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect.J. Enzyme Inhib. Med. Chem.20183311074108810.1080/14756366.2018.1476503 29923425
    [Google Scholar]
  63. PiazziL. CavalliA. BellutiF. BisiA. GobbiS. RizzoS. BartoliniM. AndrisanoV. RecanatiniM. RampaA. Extensive SAR and computational studies of 3-4-[(Benzylmethylamino)] methyl]phenyl-6,7-dimethoxy-2 H -2-chromenone (AP2238) Derivatives.J. Med. Chem.200750174250425410.1021/jm070100g 17655212
    [Google Scholar]
  64. FoudaA.M. AssiriM.A. MoraA. AliT.E. AfifiT.H. El-AgrodyA.M. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II.Bioorg. Chem.20199310328910329910.1016/j.bioorg.2019.103289 31586716
    [Google Scholar]
  65. FoudaA.M. OkashaR.M. AlblewiF.F. MoraA. AfifiT.H. El-AgrodyA.M. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules.Bioorg. Chem.20209510354910356010.1016/j.bioorg.2019.103549 31887476
    [Google Scholar]
  66. DelostM.D. SmithD.T. AndersonB.J. NjardarsonJ.T. From Oxiranes to Oligomers: Architectures of U.S. FDA Approved Pharmaceuticals Containing Oxygen Heterocycles.J. Med. Chem.20186124109961102010.1021/acs.jmedchem.8b00876 30024747
    [Google Scholar]
  67. PatelA. PanchalI. ParmarI. MishtryB. Synthesis Of new flavanoid and chalcone derivatives as antimicrobial agent by green chemistry approach.Int. J. Pharma Sci.2017862725273010.13040/IJPSR.0975‑8232.8
    [Google Scholar]
  68. PatelA. ShahJ. PatelK. PatelK. PatelH. DobariaD. ShahU. PatelM. ChokshiA. PatelS. ParekhN. ShahH. PatelH. BambharoliyaT. Ultrasound-assisted one-pot synthesis of tetrahydropyrimidne derivatives through biginelli condensation: A catalyst free green chemistry approach.Lett. Org. Chem.202118974975610.2174/1570178617999201105162851
    [Google Scholar]
  69. KappeC.O. Controlled microwave heating in modern organic synthesis.Angew. Chem. Int. Ed.200443466250628410.1002/anie.200400655 15558676
    [Google Scholar]
  70. RobertsB.A. StraussC.R. Toward rapid, “green”, predictable microwave-assisted synthesis.Acc. Chem. Res.200538865366110.1021/ar040278m 16104688
    [Google Scholar]
  71. BrahmachariG. Green synthetic approaches for biologically relevant 2-amino-4h-pyrans and 2-amino-4h-pyran-annulated heterocycles in aqueous media.Green Synthetic Approaches for Biologically Relevant Heterocycles.AmsterdamElsevier2015
    [Google Scholar]
  72. ZarnegarZ. SafariJ. Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multicomponent strategy.New J. Chem.20164097986799510.1039/C6NJ01631F
    [Google Scholar]
  73. RaoV.K. KaswanP. ParangK. KumarA. Indium triflate catalyzed microwave-assisted alkenylation of methoxyphenols: Synthesis of indenes and chromenes.Org. Biomol. Chem.20151345110721107710.1039/C5OB01734C 26395017
    [Google Scholar]
  74. MahmoodiN.O. KhazaeiZ. ZeydiM.M. Preparation, characterization and use of sulfonylbis(1,4-phenylene)bis(sulfamic acid) as an eco-benign, efficient, reusable and heterogeneous catalyst for the synthesis of mono- and bis-chromenes.J. Indian Chem. Soc.20171491889189810.1007/s13738‑017‑1128‑7
    [Google Scholar]
  75. HaibaM.E. Al-AbdullahE.S. GhabbourH.A. RiyadhS.M. Abdel-KaderR.M. Inhibitory activity of benzo[h]quinoline and benzo[h]chromene in human glioblastoma cells.Trop. J. Pharm. Res.201615112337234310.4314/tjpr.v15i11.6
    [Google Scholar]
  76. OkashaR. AlblewiF. AfifiT. NaqviA. FoudaA. Al-DiesA.A. El-AgrodyA. Design of new benzo[h]chromene derivatives: Antitumor activities and structure-activity relationships of the 2,3-positions and fused rings at the 2,3-positions.Molecules201722347910.3390/molecules22030479 28335470
    [Google Scholar]
  77. NeamaniS. MoradiL. Loading of g-C3N4 on core-shell magnetic mesoporous silica nanospheres as a solid base catalyst for the green synthesis of some chromene derivatives under different conditions.ChemistryOpen2022117e20220004110.1002/open.202200041 35778825
    [Google Scholar]
  78. PagadalaR. KasiV. ShabalalaN.G. JonnalagaddaS.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water - A review.Arab. J. Chem.202215110354410.1016/j.arabjc.2021.103544
    [Google Scholar]
  79. BanerjeeB. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 201715Pt A153510.1016/j.ultsonch.2016.10.0102777126
    [Google Scholar]
  80. SafariJ. JavadianL. Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst.Ultrason. Sonochem.20152234134810.1016/j.ultsonch.2014.02.002 24835021
    [Google Scholar]
  81. MohammadiR. EsmatiS. Gholamhosseini-NazariM. Teimuri-MofradR. Synthesis and characterization of a novel Fe 3 O 4 @SiO 2 -BenzIm-Fc[Cl]/BiOCl nano-composite and its efficient catalytic activity in the ultrasound-assisted synthesis of diverse chromene analogs.New J. Chem.201943113514510.1039/C8NJ04938F
    [Google Scholar]
  82. SafariJ. HeydarianM. ZarnegarZ. Synthesis of 2-amino-7-hydroxy-4H-chromene derivatives under ultrasound irradiation: A rapid procedure without catalyst.Arab. J. Chem.201710S2994S300010.1016/j.arabjc.2013.11.038
    [Google Scholar]
  83. AziziK. KarimiM. ShaterianH.R. HeydariA. Ultrasound irradiation for the green synthesis of chromenes using L -arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst.RSC Advances2014479422204222510.1039/C4RA06198E
    [Google Scholar]
  84. ManakeA.P. PatilS.R. PatilV. Ultrasonic synthesis of substituted chromenes by utilizing potassium titanium oxalate.Mater. Today Proc.20202633487349110.1016/j.matpr.2020.03.144
    [Google Scholar]
  85. Safaei-GhomiJ. EshteghalF. Shahbazi-AlaviH. A facile one-pot ultrasound assisted for an efficient synthesis of benzo[g]chromenes using Fe3O4/polyethylene glycol (PEG) core/shell nanoparticles.Ultrason. Sonochem.2016339910510.1016/j.ultsonch.2016.04.025 27245961
    [Google Scholar]
  86. SafaeiH.R. ShekouhyM. ShirinfeshanA. RahmanpurS. CaCl2 as a bifunctional reusable catalyst: Diversity-oriented synthesis of 4H-pyran library under ultrasonic irradiation.Mol. Divers.201216466968310.1007/s11030‑012‑9392‑z 22968516
    [Google Scholar]
  87. MaddilaS.N. MaddilaS. KhumaloM. BhaskaruniS.V.H.S. JonnalagaddaS.B. An eco-friendly approach for synthesis of novel substituted 4H-chromenes in aqueous ethanol under ultra-sonication with 94% atom economy.J. Mol. Struct.2019118535736010.1016/j.molstruc.2019.03.006
    [Google Scholar]
  88. NaiduB.R. SruthiT. MittyR. VenkateswarluK. Catalyst-free mechanochemistry as a versatile tool in synthetic chemistry: A review.Green Chem.202325166120614810.1039/D3GC01229H
    [Google Scholar]
  89. BanerjeeM. PanjikarP.C. DasD. IyerS. BhosleA.A. ChatterjeeA. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles.Tetrahedron202211213275310.1016/j.tet.2022.132753
    [Google Scholar]
  90. DekaminM.G. EslamiM. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans under mechanochemical ball milling.Green Chem.201416124914492110.1039/C4GC00411F
    [Google Scholar]
  91. QareaghajO.H. MashkouriS. Naimi-JamalM.R. KauppG. Ball milling for the quantitative and specific solvent-free Knoevenagel condensation + Michael addition cascade in the synthesis of various 2-amino-4-aryl-3-cyano-4 H -chromenes without heating.RSC Advances2014489481914820110.1039/C4RA06603K
    [Google Scholar]
  92. AmirnejadM. Naimi-JamalM.R. TouraniH. GhafuriH. A facile solvent-free one-pot three-component method for the synthesis of 2-amino-4H-pyrans and tetrahydro-4H-chromenes at ambient temperature.Monatsh. Chem.201314481219122510.1007/s00706‑013‑0938‑2
    [Google Scholar]
  93. SrivastavaM. RaiP. SinghJ. SinghJ. Bmim(OH)/chitosan/C 2 H 5 OH synergy: Grinding induced, a new route for the synthesis of spiro-oxindole and its derivatives.RSC Advances2014458305923059710.1039/C4RA03483J
    [Google Scholar]
  94. NajarA.H. HossainiZ. AbdolmohammadiS. Green synthesis and investigation of biological activity of chromene derivatives.Polycycl. Aromat. Compd.20214285104512210.1080/10406638.2021.1926295
    [Google Scholar]
  95. BeraS. MajiA. PatraS. MahantyD.S. SamantaS. SamantaS.K. BiswasB. PatraP. Recent advances in the synthesis of chromenone fused pyrrolo[2,1- a]isoquinoline derivatives.New J. Chem.20234748222462226810.1039/D3NJ03713D
    [Google Scholar]
  96. KiyaniH. GhorbaniF. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates.J. Saudi Chem. Soc.201418568970110.1016/j.jscs.2014.02.004
    [Google Scholar]
  97. AkocakS. ŞenB. LolakN. ŞavkA. KocaM. KuzuS. ŞenF. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst.Nano-Struc Nano-Obj201711253110.1016/j.nanoso.2017.06.002
    [Google Scholar]
  98. ŞenB. LolakN. ParalıÖ. KocaM. ŞavkA. AkocakS. ŞenF. Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives.Nano-Struc Nano-Obj20171212334010.1016/j.nanoso.2017.08.013
    [Google Scholar]
  99. AzarifarD. Khaleghi-AbbasabadiM. Fe3O4-supported N-pyridin-4-amine-grafted graphene oxide as efficient and magnetically separable novel nanocatalyst for green synthesis of 4H-chromenes and dihydropyrano[2,3-c]pyrazole derivatives in water.Res. Chem. Intermed.201945219922210.1007/s11164‑018‑3597‑4
    [Google Scholar]
  100. ChaskarA. Catalyst free one-pot three-component synthesis of 2-amino-4hchromene derivatives in aqueous deep eutectic mixture at room temperature.Lett. Org. Chem.201411748048610.2174/1570178611666140210213413
    [Google Scholar]
  101. YousefiM.R. Goli-JolodarO. ShiriniF. Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium.Bioorg. Chem.20188132633310.1016/j.bioorg.2018.08.026 30179795
    [Google Scholar]
  102. SafarifardV. BeheshtiS. MorsaliA. An interpenetrating amine-functionalized metal-organic framework as an efficient and reusable catalyst for the selective synthesis of tetrahydro-chromenes.CrystEngComm20151771680168510.1039/C4CE02141J
    [Google Scholar]
  103. BrahmachariG. BanerjeeB. Facile and One-pot access to diverse and densely functionalized 2-amino-3-cyano-4 H -pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst.ACS Sustain. Chem.& Eng.20142341142210.1021/sc400312n
    [Google Scholar]
  104. HeraviM.M. MirzaeiM. BeheshtihaS.Y.S. ZadsirjanV. Mashayekh AmeliF. BazarganM.H. 5 BW 12 O 40 as a green and efficient homogeneous but recyclable catalyst in the synthesis of 4 H-Pyrans via multicomponent reaction.Appl. Organomet. Chem.2018329e447910.1002/aoc.4479
    [Google Scholar]
  105. MadasamyK. KumaraguruS. SankarV. MannathanS. KathiresanM. A Zn based metal organic framework as a heterogeneous catalyst for C-C bond formation reactions.New J. Chem.20194393793380010.1039/C8NJ05953E
    [Google Scholar]
  106. HajiashrafiT. KarimiM. HeydariA. TehraniA.A. Erbium-organic framework as heterogeneous lewis acid catalysis for hantzsch coupling and tetrahydro-4H-chromene synthesis.Catal. Lett.2017147245346210.1007/s10562‑016‑1913‑4
    [Google Scholar]
  107. RameshR. VadivelP. MaheswariS. LalithaA. Click and facile access of substituted tetrahydro-4H-chromenes using 2-aminopyridine as a catalyst.Res. Chem. Intermed.201642107625763610.1007/s11164‑016‑2557‑0
    [Google Scholar]
  108. DekaminM.G. EslamiM. MalekiA. Potassium phthalimide-N-oxyl: A novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water.Tetrahedron20136931074108510.1016/j.tet.2012.11.068
    [Google Scholar]
  109. JoshiV.M. MagarR.L. ThroatP.B. TekaleS.U. PatilB.R. KaleM.P. PawarR.P. Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst.Chin. Chem. Lett.201425345545810.1016/j.cclet.2013.12.016
    [Google Scholar]
  110. MasesaneI.B. MihigoS.O. Efficient and green preparation of 2-amino-4h-chromenes by a room-temperature, Na 2 CO 3 -catalyzed, three-component reaction of malononitrile, benzaldehydes, and phloroglucinol or resorcinol in aqueous medium.Synth. Commun.201545131546155110.1080/00397911.2015.1031249
    [Google Scholar]
  111. DeK. BhanjaP. BhaumikA. MukhopadhyayC. An expeditioussynthesis of spiro[chromeno[2,3-c]pyrazole-4,3′-indolin]-2′5-diones catalysed by recyclableSpinel ZnFe 2 O 4 Nanopowder.ChemistrySelect20172174857486510.1002/slct.201700643
    [Google Scholar]
  112. Hosseini-SarvariM. Shafiei-HaghighiS. Multi-component synthesis of 2-amino-4H-chromenes catalyzed by nano ZnO in water.Collect. Czech. Chem. Commun.201176111285129810.1135/cccc2011050
    [Google Scholar]
  113. AbroukiY. AnouzlaA. LoukiliH. ChakirA. IdrissiM. AbroukiA. Aqua mediated synthesis of substituted 2-aminochromenes catalyzed by expanded perlite.J. Biol. Chem. Pharm. Sci201312834
    [Google Scholar]
  114. ShrivasP. PratapU. Biocatalytic one-pot three-component synthesis of 4H-chromene derivatives in non-aqueous medium.Chem. Pap.20197351301130710.1007/s11696‑018‑00679‑5
    [Google Scholar]
  115. GongK. WangH.L. FangD. LiuZ.L. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media.Catal. Commun.20089565065310.1016/j.catcom.2007.07.010
    [Google Scholar]
  116. SrinivasV. RaoV.R. One-Pot Synthesis of 2-Amino-5,10-dihydro-5,10-dioxo-4-phenyl-4 H -benzo[g]chromene Derivatives Catalyzed by ZnCl 2.Synth. Commun.201141680681110.1080/00397911003642666
    [Google Scholar]
  117. KhalafyJ. IlkhanizadehS. RanjbarM. A green, organometallic catalyzed synthesis of a series of novel functionalized 4-aroyl-4] H -benzo[ g]chromenes through one-pot, three component reaction.J. Heterocycl. Chem.201855495195610.1002/jhet.3124
    [Google Scholar]
  118. SadjadiS. HeraviM.M. ZadsirjanV. EbrahimizadehM. SBA-15@methenamine-HPA: A novel, simple, and efficient catalyst for one-pot three-component synthesis of 2-amino-4H-chromene derivatives in aqueous medium.Res. Chem. Intermed.201743105467548310.1007/s11164‑017‑2940‑5
    [Google Scholar]
  119. HeraviM.M. HosseinnejadT. FaghihiZ. ShiriM. VazinfardM. Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: Computational study on substituent effects.J. Indian Chem. Soc.201714482383210.1007/s13738‑016‑1032‑6
    [Google Scholar]
  120. ShindeS. DamateS. MorbaleS. PatilM. PatilS.S. Aegle marmelos in heterocyclization: Greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes.RSC Advances20177127315732810.1039/C6RA28779D
    [Google Scholar]
  121. AnaikuttiP. SelvarajM. PrabhakaranJ. PooventhiranT. JeyakumarT.C. ThomasR. MakamP. Indolyl-4H-chromenes: Multicomponent one-pot green synthesis, in vitro and in silico, anticancer and antioxidant studies.J. Mol. Struct.2022126613346410.1016/j.molstruc.2022.133464
    [Google Scholar]
  122. MaddahiM. AsghariS. PashaG.F. A facile one-pot green synthesis of novel 2-amino-4H-chromenes: Antibacterial and antioxidant evaluation.Res. Chem. Intermed.202349125327210.1007/s11164‑022‑04893‑5
    [Google Scholar]
  123. DhavariaS. DhimanM. A facile one-pot four-component green synthesis of 4-(1h-indol-2-yl)-4h-chromenes conjugated with phthalazine-1,4-diones.Russ. J. Org. Chem.202359472673210.1134/S1070428023040231
    [Google Scholar]
  124. Eivazzadeh-KeihanR. BahramiS. Ghafori GorabM. SadatZ. MalekiA. Functionalization of magnetic nanoparticles by creatine as a novel and efficient catalyst for the green synthesis of 2-amino-4H-chromene derivatives.Sci. Rep.20221211066410.1038/s41598‑022‑14844‑0 35739165
    [Google Scholar]
  125. RezaeiF. AlinezhadH. MalekiB. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one-pot multicomponent synthesis of 2-amino-4H-chromene and 1,2,3,6-tetrahydropyrimidine.Sci. Rep.20231312056210.1038/s41598‑023‑47794‑2 37996476
    [Google Scholar]
  126. KhaliliD. RamjerdiA.A. BoostaniH.R. GhaderiA. Biochar: A high performance and renewable basic carbocatalyst for facilitating room temperature synthesis of 4H-benzo[h]chromene and pyranopyrazoles in water.Biochar202461610.1007/s42773‑023‑00286‑y
    [Google Scholar]
  127. KunduS.K. BhaumikA. A triazine-based porous organic polymer: A novel heterogeneous basic organocatalyst for facile one-pot synthesis of 2-amino-4H-chromenes.RSC Advances2015541327303273910.1039/C5RA00951K
    [Google Scholar]
  128. GhorbaniM. NouraS. OftadehM. ZolfigolM.A. SoleimaniM.H. BehbodiK. Preparation of neutral ionic liquid [2-Eim] OAc with dual catalytic-solvent system roles for the synthesis of 2-amino-3-cyano-7-hydroxy-4-(aryl)-4H-chromene derivatives.J. Mol. Liq.201521229130010.1016/j.molliq.2015.09.024
    [Google Scholar]
  129. AziziN. MariamiM. EdrisiM. Greener construction of 4H-chromenes based dyes in deep eutectic solvent.Dyes Pigments201410021522110.1016/j.dyepig.2013.09.007
    [Google Scholar]
  130. RaoM.S. ChhikaraB.S. TiwariR. ShiraziA.N. ParangK. KumarA. A greener synthesis of 2-aminochromenes in ionic liquid and evaluation of their antiproliferative activities.Chem. Biol. Interact.20122362372
    [Google Scholar]
  131. ShaikhM.A. FarooquiM. AbedS. Novel task-specific ionic liquid [Et2NH(CH2)2CO2H][AcO] as a robust catalyst for the efficient synthesis of some pyran-annulated scaffolds under solvent-free conditions.Res. Chem. Intermed.20194531595161710.1007/s11164‑018‑3696‑2
    [Google Scholar]
  132. PatelA. ShahD. PatelN. PatelK. SoniN. NaganiA. ParikhV. ShahH. BambharoliyaT. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches.Mini Rev. Org. Chem.20211881064108510.2174/1570193X17999201211194908
    [Google Scholar]
  133. PatelA. ShahD. PatelN. PatelK. SoniN. NagaiA. ShahU. PatelM. PatelS. BhimaniB. BambharoliyaT. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches.Curr. Org. Chem.202125243004301610.2174/1385272825666211125102145
    [Google Scholar]
  134. BhimaniB. PatelA. ShahD. An update with recent green synthetic approaches to coumarins.Mini Rev. Org. Chem.2024211223910.2174/1570193X19666220701111051
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266305231240712104736
Loading
/content/journals/ctmc/10.2174/0115680266305231240712104736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test