Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802662505250128121058
2025-01-28
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/5/CTMC-25-5-01.html?itemId=/content/journals/ctmc/10.2174/156802662505250128121058&mimeType=html&fmt=ahah

References

  1. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039301312
    [Google Scholar]
  2. BanerjeeB. BhardwajV. KaurA. KaurG. SinghA. Catalytic applications of saccharin and its derivatives in organic synthesis.Curr. Org. Chem.20192331913205
    [Google Scholar]
  3. KaurG. DeviP. ThakurS. KumarA. ChandelR. BanerjeeB. Magnetically separable transition metal ferrites: versatile heterogene-ous nano-catalysts for the synthesis of diverse bioactive heterocycles.ChemistrySelect2019421812199
    [Google Scholar]
  4. KaurG. SharmaA. BanerjeeB. Ultrasound and ionic liquid: An ideal combination for organic transformations.ChemistrySelect2018352835295
    [Google Scholar]
  5. BanerjeeB. SharmaA. Multicomponent synthesis of isatin-based bioactive heterocycles.Adv. Heterocycl. Chem.2024142170
    [Google Scholar]
  6. KaurM. KaurM. BandopadhyayT. SharmaA. PriyaA. SinghA. BanerjeeB. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs.Phys. Sci. Rev.2023833933446
    [Google Scholar]
  7. BanerjeeB. TajtiA. KeglevichG. Ultrasound-assisted synthesis of organophosphorus compounds. In ‘Organophosphorus chemistry: novel developments.’ Eds by György Keglevich, 2018, pp. 248-263. Berlin, Boston: De Gruyter
    [Google Scholar]
  8. BanerjeeB. SinghA. KaurM. PriyaA. SharmaA. Synthesis of biologically promising spiroheterocycles through electrolysis.Curr. Green Chem.2025 in press10.2174/0122133461332614240919091051
    [Google Scholar]
  9. Aqueous-Mediated Synthesis: Bioactive Heterocycles. Eds by Asit K. Chakraborti and Bubun Banerjee, 2024, Berlin, Boston: De Gruyter.
    [Google Scholar]
  10. Non-Conventional Synthesis: Bioactive Heterocycles. Eds by Gyorgy Keglevich and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter.
    [Google Scholar]
  11. Non-Metal Catalyzed Synthesis: Bioactive Heterocycles. Eds by Yunfei Du and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter.
    [Google Scholar]
  12. Solvent-Free Synthesis: Bioactive Heterocycles. Eds by Sreekantha B. Jonnalagadda and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter.
    [Google Scholar]
  13. Multicomponent Synthesis. Bioactive Heterocycles. Eds by Basudeb Basu and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter
    [Google Scholar]
  14. Non-conventionalSolvents. Organic Synthesis, Natural Products Isolation, Drug Design, Industry and the Environment. Eds by Chhanda Mukhopadhyay and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter,
    [Google Scholar]
  15. Non-conventionalSolvents. Ionic Liquids, Deep Eutectic Solvents, Crown Ethers, Fluorinated Solvents, Glycols and Glycerol. Eds by Chhanda Mukhopadhyay and Bubun Banerjee, 2023, Berlin, Boston: De Gruyter.
    [Google Scholar]
  16. Magnetic. Nanocatalysis Synthetic Applications. Eds by Rajender S. Varma and Bubun Banerjee, 2022, Berlin, Boston: De Gruyter.
    [Google Scholar]
  17. Organocatalysis: A green tool for sustainable developments. Eds by Bimal Krishna Banik and Bubun Banerjee, 2022, Berlin, Boston: De Gruyter.
    [Google Scholar]
  18. Aqueous mediated heterogeneous catalysis. Eds by Asit Kumar Chakraborti and Bubun Banerjee, 2022, Berlin, Boston: De Gruyter.
    [Google Scholar]
  19. Green bond forming reactions: Carbon-carbon and Carbon-heteroatom. Eds by Rakesh Kumar Sharma and Bubun Banerjee, 2022, Berlin, Boston: De Gruyter.
    [Google Scholar]
  20. Green bond forming reactions: Synthesis of bioactive scaffolds. Eds by Rakesh Kumar Sharma and Bubun Banerjee, 2022, Berlin, Boston: De Gruyter;
    [Google Scholar]
  21. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part I).Curr. Org. Chem.202327557558
    [Google Scholar]
  22. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part II).Curr. Org. Chem.202327983984
    [Google Scholar]
  23. BanerjeeB. Microwave-assisted synthesis of bioactive heterocycles.Curr. Microwave. Chem.2023106769
    [Google Scholar]
  24. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1B.Curr. Green Chem.20231034
    [Google Scholar]
  25. BanerjeeB. Role of the heterocycles to design anti-cancer agents.Anticancer. Agents Med. Chem.20222231943195
    [Google Scholar]
  26. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1A.Curr. Green Chem.20229124126
    [Google Scholar]
  27. BanerjeeB. Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 1A.Curr. Microwave. Chem.2020734
    [Google Scholar]
  28. BanerjeeB. Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 1B.Curr. Microwave. Chem.202078485
    [Google Scholar]
  29. BanerjeeB. Carbon-carbon and carbon-heteroatom bond-forming reactions under greener conditions-part 1B.Curr. Org. Chem.20202423
    [Google Scholar]
  30. BanerjeeB. Organic Transformations by Following Green Credentials-part 1B.Curr. Green Chem.2020734
    [Google Scholar]
  31. BanerjeeB. Organic transformations by following green credentials-Part 1A.Curr. Green Chem.20196154
    [Google Scholar]
  32. BanerjeeB. Synthesis of biorelevant scaffolds under greener conditions (Part: 1).Curr. Top. Med. Chem.20252523
    [Google Scholar]
  33. PellissierH. Green synthesis of biorelevant scaffolds through organocatalytic/enzymatic dynamic kinetic resolution. Curr. Top. Med. Chem., 2025, 25, 4-34.[34] Geszke-Moritz, M.; Nowak, G.; Moritz, M.; Feist, B.; Nycz, J.E. Role of plant materials with anti-inflammatory effects in phytotherapy of osteoarthritis.Curr. Top. Med. Chem.2025253546
    [Google Scholar]
  34. FarooqS. NgainiZ. Facile synthesis and applications of flavonoid-heterocyclic derivatives.Curr. Top. Med. Chem.2025254762
    [Google Scholar]
  35. MajhiS. Recent advances in nanocatalyzed one-pot sustainable synthesis of bioactive N,N-heterocycles with anticancer activities: An outlook of medicinal chemistry.Curr. Top. Med. Chem.2025256395
    [Google Scholar]
  36. BanerjeeB. SharmaA. SinghA. KaurM. PriyaA. Synthesis of isatin-derived heterocycles with promising anticancer activities.Curr. Top. Med. Chem.20252596123
    [Google Scholar]
  37. GhoshT. SantraS. ZyryanovG.V. RanuB.C. ‘Recent developments on the synthesis of oxygen- and sulfur-containing heterocycles and their derivatives under visible light induced reactions.Curr. Top. Med. Chem.202525124140
    [Google Scholar]
  38. VianaL.P.S. PinheiroL.R. PetrilloL.W. MedeirosI.G. RizoT.G. ModoloL.V. da SilvaC.M. de FátimaÂ. Hydroxamic acids derivatives: Greener synthesis, antiureolytic properties and potential medicinal chemistry applications - A concise review.Curr. Top. Med. Chem.202525141161
    [Google Scholar]
  39. PatelV. BambharoliyaT. ShahD. PatelD. PatelM. ShahU. PatelM. PatelS. SolankiN. MahavarA. NaganiA. PatelH. RathodM. BhimaniB. BhavsarV. PadhiyarS. KoradiaS. ChandaranaC. PatelB. DabhiR.C. PatelA. Eco-friendly approaches to chromene derivatives: A comprehensive review of green synthesis strategies.Curr. Top. Med. Chem.202525437460
    [Google Scholar]
  40. AminaB. RedouaneB. Green synthesis of bioactive pyrrole derivatives via heterogeneous catalysts since 2010.Curr. Top. Med. Chem.202525461492
    [Google Scholar]
  41. JaiswalS. VermaK. SrivastvaA. AryaN. DwivediJ. SharmaS. Green synthetic and pharmacological developments in the hybrid quinazolinone moiety: An updated review.Curr. Top. Med. Chem.202525493532
    [Google Scholar]
  42. Heterocyclic anticancer agents. Eds by Banik, B.K.; Banerjee, B. 2022, Berlin, Boston: De Gruyter
    [Google Scholar]
  43. MirM.A. BanikB.K. Heterocyclic phytochemicals as anticancer agents.Curr. Top. Med. Chem.202525533553
    [Google Scholar]
  44. DasA. RayD. AshrafM.W. BanikB.K. Microwave-induced synthesis of bioactive nitrogen heterocycles.Curr. Top. Med. Chem.202525554580
    [Google Scholar]
  45. SahaN. KumarA. DebnathB.B. SarkarA. ChakrabortiA.K. Recent advances in the development of greener methodologies for the synthesis of benzothiazoles.Curr. Top. Med. Chem.202525581644
    [Google Scholar]
  46. OrlandoP.R. TavaresH.G. de Souza PereiraR.R. SilvaG. CarvalhoJ.d.C.L. MachadoA.R.T. DobbssL.B. PeixotoM.F.D. Perei-raL.J. AndradeE.F. Humic acid derived from agricultural biomass mitigates alveolar bone loss and modulates systemic inflammatory cytokines in rats with periodontitis.Curr. Top. Med. Chem.202525645656
    [Google Scholar]
/content/journals/ctmc/10.2174/156802662505250128121058
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test