Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266299112240514103048
2024-05-23
2025-06-21
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  3. MerloL.M.F. PepperJ.W. ReidB.J. MaleyC.C. Cancer as an evolutionary and ecological process.Nat. Rev. Cancer200661292493510.1038/nrc201317109012
    [Google Scholar]
  4. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.10775333259885
    [Google Scholar]
  5. NisarS. YousufP. MasoodiT. WaniN.A. HashemS. SinghM. SageenaG. MishraD. KumarR. HarisM. BhatA.A. MachaM.A. Chemokine-cytokine networks in the head and neck tumor microenvironment.Int. J. Mol. Sci.2021229458410.3390/ijms2209458433925575
    [Google Scholar]
  6. MorrisonS.J. SpradlingA.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life.Cell2008132459861110.1016/j.cell.2008.01.03818295578
    [Google Scholar]
  7. LorussoG. RüeggC. The tumor microenvironment and its contribution to tumor evolution toward metastasis.Histochem. Cell Biol.200813061091110310.1007/s00418‑008‑0530‑818987874
    [Google Scholar]
  8. TaebS. AshrafizadehM. ZarrabiA. RezapoorS. MusaA.E. FarhoodB. NajafiM. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy.Curr. Cancer Drug Targets2022221183010.2174/156800962266621122415495234951575
    [Google Scholar]
  9. AponteP.M. CaicedoA. Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment.Stem Cells Int. 20172017561947210.1155/2017/5619472
    [Google Scholar]
  10. ChuD.T. NguyenT.T. TienN.L.B. TranD.K. JeongJ.H. AnhP.G. ThanhV.V. TruongD.T. DinhT.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications.Cells20209356310.3390/cells903056332121074
    [Google Scholar]
  11. TichelliA. BeohouE. LabopinM. SociéG. RovóA. BadoglioM. van BiezenA. BaderP. DuarteR.F. BasakG. SaloojaN. Transplant Complications Working Party of the EBMT Evaluation of second solid cancers after hematopoietic stem cell transplantation in european patients.JAMA Oncol.20195222923510.1001/jamaoncol.2018.493430476975
    [Google Scholar]
  12. TaebS. Mosleh-ShiraziM.A. GhaderiA. MortazaviS.M.J. RazmkhahM. Radiation-induced bystander effects of adipose-derived mesenchymal stem cells.Cell J.202123661261834939753
    [Google Scholar]
  13. TaebS. Mosleh-ShirazM.A. GhaderiA. MortazaviS.M.J. RazmkhahM. Adipose-derived mesenchymal stem cells responses to different doses of gamma radiation.J. Biomed. Phys. Eng.2022121354210.31661/jbpe.v0i0.121235155291
    [Google Scholar]
  14. TaebS. Mosleh-ShiraziM. GhaderiA. MortazaviS.M. RazmkhahM.J.I.J.o.R.R. Effects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue.Int J Radiat Res202119117518210.29252/ijrr.19.1.175
    [Google Scholar]
  15. MaqsoodM. KangM. WuX. ChenJ. TengL. QiuL.J.L.S. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine.Life Sci.2020256118002
    [Google Scholar]
  16. UllahI. SubbaraoR.B. RhoG.J. Human mesenchymal stem cells - current trends and future prospective.Biosci. Rep.2015352e0019110.1042/BSR2015002525797907
    [Google Scholar]
  17. GaoQ. WangL. WangS. HuangB. JingY. SuJ. Bone marrow mesenchymal stromal cells: Identification, classification, and differentiation.Front. Cell Dev. Biol.2022978711810.3389/fcell.2021.78711835047499
    [Google Scholar]
  18. BunnellB.A. Adipose tissue-derived mesenchymal stem cells.Cells 202110123433
    [Google Scholar]
  19. AllanD.S. Using umbilical cord blood for regenerative therapy: Proof or promise?Stem Cells202038559059510.1002/stem.315031995251
    [Google Scholar]
  20. PetheP. KaleV. Placenta: A gold mine for translational research and regenerative medicine.Reprod. Biol.202121210050810.1016/j.repbio.2021.10050833930790
    [Google Scholar]
  21. BarJ.K. Lis-NawaraA. GrelewskiP.G. Dental pulp stem cell-derived secretome and its regenerative potential.Int. J. Mol. Sci.202122211201810.3390/ijms22211201834769446
    [Google Scholar]
  22. MaziniL. RochetteL. AmineM. MalkaG. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs).Int. J. Mol. Sci.20192010252310.3390/ijms2010252331121953
    [Google Scholar]
  23. HanY. LiX. ZhangY. HanY. ChangF. DingJ. Mesenchymal stem cells for regenerative medicine.Cells20198888610.3390/cells808088631412678
    [Google Scholar]
  24. MazziottaC. BadialeG. CervelleraC.F. TognonM. MartiniF. RotondoJ.C. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation.Theranostics202414114315810.7150/thno.8906638164139
    [Google Scholar]
  25. LinW. HuangL. LiY. FangB. LiG. ChenL. XuL. Mesenchymal stem cells and cancer: Clinical challenges and opportunities.BioMed Res. Int.2019201911210.1155/2019/282085331205939
    [Google Scholar]
  26. BanasA. TerataniT. YamamotoY. TokuharaM. TakeshitaF. QuinnG. OkochiH. OchiyaT. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.Hepatology200746121922810.1002/hep.2170417596885
    [Google Scholar]
  27. Movahedian AttarA. KhademizadehM. MessripourM. GhasemiN. Momen beikF. Differentiation of adult human mesenchymal stem cells into dopaminergic neurons.Res. Pharm. Sci.201914320921510.4103/1735‑5362.25848731160898
    [Google Scholar]
  28. SibovT.T. SeverinoP. MartiL.C. PavonL.F. OliveiraD.M. ToboP.R. CamposA.H. PaesA.T. AmaroE.Jr F GamarraL. Moreira-FilhoC.A. Mesenchymal stem cells from umbilical cord blood: Parameters for isolation, characterization and adipogenic differentiation.Cytotechnology201264551152110.1007/s10616‑012‑9428‑322328147
    [Google Scholar]
  29. RouraS. PujalJ.M. Gálvez-MontónC. Bayes-GenisA. The role and potential of umbilical cord blood in an era of new therapies: A review.Stem Cell Res. Ther.20156112310.1186/s13287‑015‑0113‑226133757
    [Google Scholar]
  30. VellasamyS. SandrasaigaranP. VidyadaranS. GeorgeE. RamasamyR. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue.World J. Stem Cells201246536110.4252/wjsc.v4.i6.5322993662
    [Google Scholar]
  31. ValkenburgK.C. de GrootA.E. PientaK.J. Targeting the tumour stroma to improve cancer therapy.Nat. Rev. Clin. Oncol.201815636638110.1038/s41571‑018‑0007‑129651130
    [Google Scholar]
  32. WerbZ. LuP. The role of stroma in tumor development.Cancer J.201521425025310.1097/PPO.000000000000012726222075
    [Google Scholar]
  33. De WeverO. MareelM. Role of tissue stroma in cancer cell invasion.J. Pathol.2003200442944710.1002/path.139812845611
    [Google Scholar]
  34. FosterD.S. JonesR.E. RansomR.C. LongakerM.T. NortonJ.A. The evolving relationship of wound healing and tumor stroma.JCI Insight2018318e9991110.1172/jci.insight.9991130232274
    [Google Scholar]
  35. SekiguchiR. YamadaK.M. Basement membranes in development and disease.Curr. Top. Dev. Biol.201813014319110.1016/bs.ctdb.2018.02.00529853176
    [Google Scholar]
  36. AkashiT. MinamiJ. IshigeY. EishiY. TakizawaT. KoikeM. YanagishitaM. Basement membrane matrix modifies cytokine interactions between lung cancer cells and fibroblasts.Pathobiology200572525025910.1159/00008941916374069
    [Google Scholar]
  37. GuoS. DengC.X. Effect of stromal cells in tumor microenvironment on metastasis initiation.Int. J. Biol. Sci.201814142083209310.7150/ijbs.2572030585271
    [Google Scholar]
  38. DiPietroL.A. Angiogenesis and wound repair: When enough is enough.J. Leukoc. Biol.2016100597998410.1189/jlb.4MR0316‑102R27406995
    [Google Scholar]
  39. GiatromanolakiA. SivridisE. KoukourakisM.I. The pathology of tumor stromatogenesis.Cancer Biol. Ther.20076563964510.4161/cbt.6.5.419817534144
    [Google Scholar]
  40. CrispoF. CondelliV. LeporeS. NotarangeloT. SgambatoA. EspositoF. MaddalenaF. LandriscinaM. Metabolic dysregulations and epigenetics: A bidirectional interplay that drives tumor progression.Cells20198879810.3390/cells808079831366176
    [Google Scholar]
  41. GaglianoT. BrancoliniC. Epigenetic mechanisms beyond tumour–stroma crosstalk.Cancers202113491410.3390/cancers1304091433671588
    [Google Scholar]
  42. NebbiosoA. TambaroF.P. Dell’AversanaC. AltucciL. Cancer epigenetics: Moving forward.PLoS Genet.2018146e100736210.1371/journal.pgen.100736229879107
    [Google Scholar]
  43. PanX. ZhengL. Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment.Cell. Mol. Immunol.202017994095310.1038/s41423‑020‑0505‑932699350
    [Google Scholar]
  44. NissenN.I. KarsdalM. WillumsenN. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology.J. Exp. Clin. Cancer Res.201938111510.1186/s13046‑019‑1110‑630841909
    [Google Scholar]
  45. ZeltzC. PrimacI. ErusappanP. AlamJ. NoelA. GullbergD. Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins.Semin. Cancer Biol.20206216618110.1016/j.semcancer.2019.08.00431415910
    [Google Scholar]
  46. SudhakarA. NybergP. KeshamouniV.G. MannamA.P. LiJ. SugimotoH. CosgroveD. KalluriR. Human 1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by 1 1 integrin.J. Clin. Invest.2005115102801281010.1172/JCI2481316151532
    [Google Scholar]
  47. MundelT.M. YliniemiA.M. MaeshimaY. SugimotoH. KieranM. KalluriR. Type IV collagen α6 chain-derived noncollagenous domain 1 (α6(IV)NC1) inhibits angiogenesis and tumor growth.Int. J. Cancer200812281738174410.1002/ijc.2326918074349
    [Google Scholar]
  48. WilliamsonT. AbreuM.C. TrembathD.G. BraytonC. KangB. MendesT.B. AssumpçãoP.P. CeruttiJ.M. RigginsG.J. Mebendazole disrupts stromal desmoplasia and tumorigenesis in two models of pancreatic cancer.Oncotarget202112141326133810.18632/oncotarget.2801434262644
    [Google Scholar]
  49. ShinN. SonG.M. ShinD.H. KwonM.S. ParkB.S. KimH.S. RyuD. KangC.D. Cancer-associated fibroblasts and desmoplastic reactions related to cancer invasiveness in patients with colorectal cancer.Ann. Coloproctol.2019351364610.3393/ac.2018.09.1030879282
    [Google Scholar]
  50. Gordon-WeeksA. YuzhalinA. Cancer extracellular matrix proteins regulate tumour immunity.Cancers20201211333110.3390/cancers1211333133187209
    [Google Scholar]
  51. BarrettR.L. PuréE. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy.eLife20209e5724310.7554/eLife.5724333370234
    [Google Scholar]
  52. NallanthighalS. HeisermanJ.P. CheonD.J. The role of the extracellular matrix in cancer stemness.Front. Cell Dev. Biol.201978610.3389/fcell.2019.0008631334229
    [Google Scholar]
  53. GretenF.R. GrivennikovS.I. Inflammation and cancer: Triggers, mechanisms, and consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  54. SpaethE. KloppA. DembinskiJ. AndreeffM. MariniF. Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells.Gene Ther.2008151073073810.1038/gt.2008.3918401438
    [Google Scholar]
  55. StudenyM. MariniF.C. ChamplinR.E. ZompettaC. FidlerI.J. AndreeffM. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.Cancer Res.200262133603360812097260
    [Google Scholar]
  56. KiddS. SpaethE. DembinskiJ.L. DietrichM. WatsonK. KloppA. BattulaV.L. WeilM. AndreeffM. MariniF.C. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging.Stem Cells200927102614262310.1002/stem.18719650040
    [Google Scholar]
  57. CorazzaM. Oton-GonzalezL. ScuderiV. RotondoJ.C. LanzillottiC. Di MauroG. TognonM. MartiniF. BorghiA. Tissue cytokine/chemokine profile in vulvar lichen sclerosus: An observational study on keratinocyte and fibroblast cultures.J. Dermatol. Sci.2020100322322610.1016/j.jdermsci.2020.09.00632998835
    [Google Scholar]
  58. HongH.S. LeeJ. LeeE. KwonY.S. LeeE. AhnW. JiangM.H. KimJ.C. SonY. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells.Nat. Med.200915442543510.1038/nm.190919270709
    [Google Scholar]
  59. LuZ.Y. ChenW.C. LiY.H. LiL. ZhangH. PangY. XiaoZ.F. XiaoH.W. XiaoY. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways.Mol. Med. Rep.201614164364810.3892/mmr.2016.531427221006
    [Google Scholar]
  60. GallandS. StamenkovicI. Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression.J. Pathol.2020250555557210.1002/path.535731608444
    [Google Scholar]
  61. PatsaliasA. KozovskaZ. Personalized medicine: Stem cells in colorectal cancer treatment.Biomed. Pharmacother.202114111182110.1016/j.biopha.2021.11182134144456
    [Google Scholar]
  62. NiessH. von EinemJ.C. ThomasM.N. MichlM. AngeleM.K. HussR. GüntherC. NelsonP.J. BrunsC.J. HeinemannV. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): Study protocol of a phase I/II clinical trial.BMC Cancer201515123710.1186/s12885‑015‑1241‑x25879229
    [Google Scholar]
  63. HassR. Role of MSC in the tumor microenvironment.Cancers2020128210710.3390/cancers1208210732751163
    [Google Scholar]
  64. PickupM.W. MouwJ.K. WeaverV.M. The extracellular matrix modulates the hallmarks of cancer.EMBO Rep.201415121243125310.15252/embr.20143924625381661
    [Google Scholar]
  65. GalliF. AguileraJ.V. PalermoB. MarkovicS.N. NisticòP. SignoreA. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy.J. Exp. Clin. Cancer Res.20203918910.1186/s13046‑020‑01586‑y32423420
    [Google Scholar]
  66. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.21728117416
    [Google Scholar]
  67. ZielskeS.P. LivantD.L. LawrenceT.S. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors.Int. J. Radiat. Oncol. Biol. Phys.200975384385310.1016/j.ijrobp.2008.06.195318849123
    [Google Scholar]
  68. DingY. WangC. SunZ. WuY. YouW. MaoZ. WangW. Mesenchymal stem cells engineered by nonviral vectors: A powerful tool in cancer gene therapy.Pharmaceutics202113691310.3390/pharmaceutics1306091334205513
    [Google Scholar]
  69. SungY.K. KimS.W. Recent advances in the development of gene delivery systems.Biomater. Res.2019231810.1186/s40824‑019‑0156‑z30915230
    [Google Scholar]
  70. GantenbeinB. TangS. GuerreroJ. Higuita-CastroN. Salazar-PuertaA.I. CroftA.S. GazdharA. PurmessurD. Non-viral gene delivery methods for bone and joints.Front. Bioeng. Biotechnol.2020859846610.3389/fbioe.2020.59846633330428
    [Google Scholar]
  71. ParkJ.S. SuryaprakashS. LaoY.H. LeongK.W. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.Methods20158431610.1016/j.ymeth.2015.03.00225770356
    [Google Scholar]
  72. HellerL.C. UgenK. HellerR. Electroporation for targeted gene transfer.Expert Opin. Drug Deliv.20052225526810.1517/17425247.2.2.25516296752
    [Google Scholar]
  73. MaruyamaH. HiguchiN. KamedaS. MiyazakiJ. GejyoF. Rat liver-targeted naked plasmid DNA transfer by tail vein injection.Mol. Biotechnol.200426216517210.1385/MB:26:2:16514764941
    [Google Scholar]
  74. PlankC. SchillingerU. SchererF. BergemannC. RémyJ.S. KrötzF. AntonM. LausierJ. RoseneckerJ. The magnetofection method: Using magnetic force to enhance gene delivery.Biol. Chem.2003384573774710.1515/BC.2003.08212817470
    [Google Scholar]
  75. DinçerS. TürkM. PişkinE. Intelligent polymers as nonviral vectors.Gene Ther.200512S1Suppl. 1S139S14510.1038/sj.gt.330262816231046
    [Google Scholar]
  76. KumariA. YadavS.K. Cellular interactions of therapeutically delivered nanoparticles.Expert Opin. Drug Deliv.20118214115110.1517/17425247.2011.54793421219249
    [Google Scholar]
  77. Parker KerriganB.C. ShimizuY. AndreeffM. LangF.F. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas.Cytotherapy201719444545710.1016/j.jcyt.2017.02.00228233640
    [Google Scholar]
  78. BucherK. Rodríguez-BocanegraE. DauletbekovD. FischerM.D. Immune responses to retinal gene therapy using adeno-associated viral vectors – Implications for treatment success and safety.Prog. Retin. Eye Res.20218310091510.1016/j.preteyeres.2020.10091533069860
    [Google Scholar]
  79. LogunovD.Y. DolzhikovaI.V. ZubkovaO.V. TukhvatulinA.I. ShcheblyakovD.V. DzharullaevaA.S. GrousovaD.M. ErokhovaA.S. KovyrshinaA.V. BotikovA.G. IzhaevaF.M. PopovaO. OzharovskayaT.A. EsmagambetovI.B. FavorskayaI.A. ZrelkinD.I. VoroninaD.V. ShcherbininD.N. SemikhinA.S. SimakovaY.V. TokarskayaE.A. LubenetsN.L. EgorovaD.A. ShmarovM.M. NikitenkoN.A. MorozovaL.F. SmolyarchukE.A. KryukovE.V. BabiraV.F. BorisevichS.V. NaroditskyB.S. GintsburgA.L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia.Lancet20203961025588789710.1016/S0140‑6736(20)31866‑332896291
    [Google Scholar]
  80. WangY. BruggemanK.F. FranksS. GautamV. HodgettsS.I. HarveyA.R. WilliamsR.J. NisbetD.R. Is viral vector gene delivery more effective using biomaterials?Adv. Healthc. Mater.2021101200123810.1002/adhm.20200123833191667
    [Google Scholar]
  81. SassoE. D’AliseA.M. ZambranoN. ScarselliE. FolgoriA. NicosiaA. New viral vectors for infectious diseases and cancer.Semin. Immunol.20205010143010.1016/j.smim.2020.10143033262065
    [Google Scholar]
  82. YuX. ChenD. ZhangY. WuX. HuangZ. ZhouH. ZhangY. ZhangZ. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke.J. Neurol. Sci.20123161-214114910.1016/j.jns.2012.01.00122280945
    [Google Scholar]
  83. SatoH. KuwashimaN. SakaidaT. HatanoM. DusakJ.E. Fellows-MayleW.K. PapworthG.D. WatkinsS.C. GambottoA. PollackI.F. OkadaH. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors.Cancer Gene Ther.200512975776810.1038/sj.cgt.770082715832173
    [Google Scholar]
  84. LathropM.J. SageE.K. MacuraS.L. BrooksE.M. CruzF. BonenfantN.R. SokocevicD. MacPhersonM.B. BeuschelS.L. DunawayC.W. ShuklaA. JanesS.M. SteeleC. MossmanB.T. WeissD.J. Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma.Cancer Gene Ther.2015221445410.1038/cgt.2014.6825525034
    [Google Scholar]
  85. NakamizoA. MariniF. AmanoT. KhanA. StudenyM. GuminJ. ChenJ. HentschelS. VecilG. DembinskiJ. AndreeffM. LangF.F. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.Cancer Res.20056583307331810.1158/0008‑5472.CAN‑04‑187415833864
    [Google Scholar]
  86. MatsumotoR. OmuraT. YoshiyamaM. HayashiT. InamotoS. KohK.R. OhtaK. IzumiY. NakamuraY. AkiokaK. KitauraY. TakeuchiK. YoshikawaJ. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction.Arterioscler. Thromb. Vasc. Biol.20052561168117310.1161/01.ATV.0000165696.25680.ce15831811
    [Google Scholar]
  87. LiX. LuY. HuangW. XuH. ChenX. GengQ. FanH. TanY. XueG. JiangX. in vitro effect of adenovirus-mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia.Hematol. Oncol.200624315115810.1002/hon.77916700092
    [Google Scholar]
  88. YuY. ZhongJ. ChenC. GouY. ZhaoG. ZhaoP. WangY. ZengW. WangA. WagstaffW.D.Jr HaydonR.C. HeT.C. ReidR.R. LeeM.J. LuuH.H. FanJ. SV40 large T antigen-induced immortalization reprograms mouse cardiomyocyte progenitors with mesenchymal stem cell characteristics and osteogenic potential.Genes Dis.20231041161116410.1016/j.gendis.2022.10.00837397535
    [Google Scholar]
  89. HungS.C. YangD.M. ChangC.F. LinR.J. WangJ.S. Low-Tone HoL. YangW.K. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes.Int. J. Cancer2004110331331910.1002/ijc.2012615095294
    [Google Scholar]
  90. VoloshinT. FremderE. ShakedY. Small but mighty: Microparticles as mediators of tumor progression.Cancer Microenviron.201471-2112110.1007/s12307‑014‑0144‑824705797
    [Google Scholar]
  91. BanerjeeD. MishraP.J. MishraP.J. GaoH. GlodJ Reconstituted tumor microenvironment for anticancer drug development.U.S. Patent 201202137062012
  92. CastellsM. ThibaultB. MeryE. GolzioM. PasquetM. HennebelleI. BourinP. MirshahiM. DelordJ.P. QuerleuD. CoudercB. Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages.Cancer Lett.20123261596810.1016/j.canlet.2012.07.02022824244
    [Google Scholar]
  93. CastellsM. ThibaultB. DelordJ.P. CoudercB. Implication of tumor microenvironment in chemoresistance: Tumor-associated stromal cells protect tumor cells from cell death.Int. J. Mol. Sci.20121389545957110.3390/ijms1308954522949815
    [Google Scholar]
  94. AkimotoK. KimuraK. NaganoM. TakanoS. To’a SalazarG. YamashitaT. OhnedaO. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation.Stem Cells Dev.20132291370138610.1089/scd.2012.048623231075
    [Google Scholar]
  95. CiavarellaS. DominiciM. DammaccoF. SilvestrisF. Mesenchymal stem cells: A new promise in anticancer therapy.Stem Cells Dev.201120111010.1089/scd.2010.022320670160
    [Google Scholar]
  96. PapaitA. StefaniF.R. CargnoniA. MagattiM. ParoliniO. SiliniA.R. The multifaceted roles of MSCs in the tumor microenvironment: Interactions with immune cells and exploitation for therapy.Front. Cell Dev. Biol.2020844710.3389/fcell.2020.0044732637408
    [Google Scholar]
  97. ZhuW. XuW. JiangR. QianH. ChenM. HuJ. CaoW. HanC. ChenY. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo .Exp. Mol. Pathol.200680326727410.1016/j.yexmp.2005.07.00416214129
    [Google Scholar]
  98. YuJ.M. JunE.S. BaeY.C. JungJ.S. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo .Stem Cells Dev.200817346347410.1089/scd.2007.018118522494
    [Google Scholar]
  99. GolinelliG. MastroliaI. AraminiB. MascialeV. PinelliM. PacchioniL. CasariG. Dall’OraM. SoaresM.B.P. DamascenoP.K.F. SilvaD.N. DominiciM. GrisendiG. Arming mesenchymal stromal/stem cells against cancer: Has the time come?Front. Pharmacol.20201152992110.3389/fphar.2020.52992133117154
    [Google Scholar]
  100. NowakB. RogujskiP. JanowskiM. LukomskaB. AndrzejewskaA. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all.Biochim. Biophys. Acta Rev. Cancer20211876118858210.1016/j.bbcan.2021.18858234144129
    [Google Scholar]
  101. GaoY. MenK. PanC. LiJ. WuJ. ChenX. LeiS. GaoX. DuanX. Functionalized DMP-039 hybrid nanoparticle as a novel mRNA vector for efficient cancer suicide gene therapy.Int. J. Nanomedicine2021165211523210.2147/IJN.S31909234366664
    [Google Scholar]
  102. LorenzettiF. CRISPR/Cpf1 and suicide gene as personalized approach for patients with TP53-mutated Chronic Lymphocytic Leukemia.CLL2021
    [Google Scholar]
  103. JeongS.N. YooS.Y. Novel oncolytic virus armed with cancer suicide gene and normal vasculogenic gene for improved anti-tumor activity.Cancers2020125107010.3390/cancers1205107032344903
    [Google Scholar]
  104. ThoidingjamS. SriramuluS. FreytagS. BrownS.L. KimJ.H. ChettyI.J. SiddiquiF. MovsasB. NyatiS. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health.Transl. Med. Commun.2023811110.1186/s41231‑023‑00144‑w37065938
    [Google Scholar]
  105. FinocchiaroL.M.E. BumaschnyV.F. KararaA.L. FiszmanG.L. CasaisC.C. GlikinG.C. Herpes simplex virus thymidine kinase/ganciclovir system in multicellular tumor spheroids.Cancer Gene Ther.200411533334510.1038/sj.cgt.770068215107812
    [Google Scholar]
  106. WangJ. LuX.X. ChenD.Z. LiS.F. ZhangL.S. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer.World J. Gastroenterol.200410340040310.3748/wjg.v10.i3.40014760766
    [Google Scholar]
  107. VassauxG. Martin-DuqueP. Use of suicide genes for cancer gene therapy: Study of the different approaches.Expert Opin. Biol. Ther.20044451953010.1517/14712598.4.4.51915102601
    [Google Scholar]
  108. ZischekC. NiessH. IschenkoI. ConradC. HussR. JauchK.W. NelsonP.J. BrunsC. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma.Ann. Surg.2009250574775310.1097/SLA.0b013e3181bd62d019826249
    [Google Scholar]
  109. MatuskovaM. HlubinovaK. PastorakovaA. HunakovaL. AltanerovaV. AltanerC. KucerovaL. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells.Cancer Lett.20102901586710.1016/j.canlet.2009.08.02819765892
    [Google Scholar]
  110. NiessH. BaoQ. ConradC. ZischekC. NotohamiprodjoM. SchwabF. SchwarzB. HussR. JauchK.W. NelsonP.J. BrunsC.J. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma.Ann. Surg.2011254576777510.1097/SLA.0b013e3182368c4f22042469
    [Google Scholar]
  111. TanL. LiangC. WangY. JiangY. ZengS. TanR. Pharmacodynamic effect of luteolin micelles on alleviating cerebral ischemia reperfusion injury.Pharmaceutics201810424810.3390/pharmaceutics1004024830501051
    [Google Scholar]
  112. KosztowskiT. ZaidiH.A. Quiñones-HinojosaA. Applications of neural and mesenchymal stem cells in the treatment of gliomas.Expert Rev. Anticancer Ther.20099559761210.1586/era.09.2219445577
    [Google Scholar]
  113. ShiM. LiJ. LiaoL. ChenB. LiB. ChenL. JiaH. ZhaoR.C. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice.Haematologica200792789790410.3324/haematol.1066917606439
    [Google Scholar]
  114. LeyK. LaudannaC. CybulskyM.I. NoursharghS. Getting to the site of inflammation: The leukocyte adhesion cascade updated.Nat. Rev. Immunol.20077967868910.1038/nri215617717539
    [Google Scholar]
  115. PonteA.L. MaraisE. GallayN. LangonnéA. DelormeB. HéraultO. CharbordP. DomenechJ. The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities.Stem Cells20072571737174510.1634/stemcells.2007‑005417395768
    [Google Scholar]
  116. FishbeinA. HammockB.D. SerhanC.N. PanigrahyD. Carcinogenesis: Failure of resolution of inflammation?Pharmacol. Ther.202121810767010.1016/j.pharmthera.2020.10767032891711
    [Google Scholar]
  117. ZuJ. TanL. YangL. WangQ. QinJ. PengJ. JiangH. TanR. GuJ. Hypoxia engineered bone marrow mesenchymal stem cells targeting system with tumor microenvironment regulation for enhanced chemotherapy of breast cancer.Biomedicines20219557510.3390/biomedicines905057534069607
    [Google Scholar]
  118. JainR.K. di TomasoE. DudaD.G. LoefflerJ.S. SorensenA.G. BatchelorT.T. Angiogenesis in brain tumours.Nat. Rev. Neurosci.20078861062210.1038/nrn217517643088
    [Google Scholar]
  119. GhaediM. SoleimaniM. TaghvaieN.M. SheikhfatollahiM. AzadmaneshK. LotfiA.S. WuJ. Mesenchymal stem cells as vehicles for targeted delivery of anti-angiogenic protein to solid tumors.J. Gene Med.201113317118010.1002/jgm.155221449040
    [Google Scholar]
  120. Mohammadi NajafabadiM. ShamsasenjanK. AkbarzadehlalehP. The angiogenic chemokines expression profile of myeloid cell lines co-cultured with bone marrow-derived mesenchymal stem cells.Cell J.2018201192429308614
    [Google Scholar]
  121. BisacchiD. BenelliR. VanzettoC. FerrariN. TosettiF. AlbiniA. Anti-angiogenesis and angioprevention: Mechanisms, problems and perspectives.Cancer Detect. Prev.200327322923810.1016/S0361‑090X(03)00030‑812787731
    [Google Scholar]
  122. KatayamaD. YanagawaM. MatsunagaK. WatabeH. WatabeT. KatoH. KijimaT. TakedaY. KumanogohA. ShimosegawaE. HatazawaJ. TomiyamaN. Greater reductions in blood flow after anti-angiogenic treatment in non-small cell lung cancer patients are associated with shorter progression-free survival.Sci. Rep.2021111680510.1038/s41598‑021‑86405‑w33762653
    [Google Scholar]
  123. SamantR.S. ShevdeL.A. Recent advances in anti-angiogenic therapy of cancer.Oncotarget20112312213410.18632/oncotarget.23421399234
    [Google Scholar]
  124. KongD.H. KimM. JangJ. NaH.J. LeeS. A review of anti-angiogenic targets for monoclonal antibody cancer therapy.Int. J. Mol. Sci.2017188178610.3390/ijms1808178628817103
    [Google Scholar]
  125. TengX. ChenL. ChenW. YangJ. YangZ. ShenZ. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation.Cell. Physiol. Biochem.20153762415242410.1159/00043859426646808
    [Google Scholar]
  126. LeeJ.K. ParkS.R. JungB.K. JeonY.K. LeeY.S. KimM.K. KimY.G. JangJ.Y. KimC.W. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells.PLoS One2013812e8425610.1371/journal.pone.008425624391924
    [Google Scholar]
  127. RaJ.C. ShinI.S. KimS.H. KangS.K. KangB.C. LeeH.Y. KimY.J. JoJ.Y. YoonE.J. ChoiH.J. KwonE. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans.Stem Cells Dev.20112081297130810.1089/scd.2010.046621303266
    [Google Scholar]
  128. RiordanN.H. HincapiéM.L. MoralesI. FernándezG. AllenN. LeuC. MadrigalM. Paz RodríguezJ. NovarroN. Allogeneic human umbilical cord mesenchymal stem cells for the treatment of autism spectrum disorder in children: Safety profile and effect on cytokine levels.Stem Cells Transl. Med.20198101008101610.1002/sctm.19‑001031187597
    [Google Scholar]
  129. RussoF.P. AlisonM.R. BiggerB.W. AmofahE. FlorouA. AminF. Bou-GhariosG. JefferyR. IredaleJ.P. ForbesS.J. The bone marrow functionally contributes to liver fibrosis.Gastroenterology200613061807182110.1053/j.gastro.2006.01.03616697743
    [Google Scholar]
  130. EhteshamM. KabosP. GutierrezM.A. ChungN.H. GriffithT.S. BlackK.L. YuJ.S. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand.Cancer Res.200262247170717412499252
    [Google Scholar]
  131. JiangT. ZhouC. RenS. Role of IL-2 in cancer immunotherapy.OncoImmunology201656e116346210.1080/2162402X.2016.116346227471638
    [Google Scholar]
  132. ClarkJ.I. CurtiB. DavisE.J. KaufmanH. AminA. AlvaA. LoganT.F. HaukeR. MiletelloG.P. VaishampayanU. JohnsonD.B. WhiteR.L. WiernikP.H. DutcherJ.P. Long-term progression-free survival of patients with metastatic melanoma or renal cell carcinoma following high-dose interleukin-2.J. Investig. Med.202169488889210.1136/jim‑2020‑00165033542072
    [Google Scholar]
  133. BaeJ. LiuL. MooreC. HsuE. ZhangA. RenZ. SunZ. WangX. ZhuJ. ShenJ. QiaoJ. FuY.X. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer.Nat. Cell Biol.202224121754176510.1038/s41556‑022‑01024‑536474070
    [Google Scholar]
  134. RazeghianE. MargianaR. ChupraditS. BokovD.O. AbdelbassetW.K. MarofiF. ShariatzadehS. TosanF. JarahianM. Mesenchymal stem/stromal cells as a vehicle for cytokine delivery: An emerging approach for tumor immunotherapy.Front. Med.2021872117410.3389/fmed.2021.72117434513882
    [Google Scholar]
  135. ChulpanovaD.S. SolovyevaV.V. JamesV. ArkhipovaS.S. GomzikovaM.O. GaraninaE.E. AkhmetzyanovaE.R. TazetdinovaL.G. KhaiboullinaS.F. RizvanovA.A. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro.Bioengineering2020725910.3390/bioengineering702005932560387
    [Google Scholar]
  136. SchaperF. Rose-JohnS. Interleukin-6: Biology, signaling and strategies of blockade.Cytokine Growth Factor Rev.201526547548710.1016/j.cytogfr.2015.07.00426189695
    [Google Scholar]
  137. ReehH. RudolphN. BillingU. ChristenH. StreifS. BullingerE. Schliemann-BullingerM. FindeisenR. SchaperF. HuberH.J. DittrichA. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling.Cell Commun. Signal.20191714610.1186/s12964‑019‑0356‑031101051
    [Google Scholar]
  138. DorronsoroA. LangV. FerrinI. Fernández-RuedaJ. ZabaletaL. Pérez-RuizE. SepúlvedaP. TriguerosC. Intracellular role of IL-6 in mesenchymal stromal cell immunosuppression and proliferation.Sci. Rep.20201012185310.1038/s41598‑020‑78864‑433318571
    [Google Scholar]
  139. KrasikovaL.S. KarshievaS.S. CheglakovI.B. BelyavskyA.V. Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo .Mol. Biol.20154961007101526710783
    [Google Scholar]
  140. YuanZ. KolluriK.K. SageE.K. GowersK.H.C. JanesS.M. Mesenchymal stromal cell delivery of full-length tumor necrosis factor–related apoptosis-inducing ligand is superior to soluble type for cancer therapy.Cytotherapy201517788589610.1016/j.jcyt.2015.03.60325888191
    [Google Scholar]
  141. CiavarellaS. CaselliA. TammaA.V. SavonarolaA. LoverroG. PaganelliR. TucciM. SilvestrisF. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression.Stem Cells Dev.201524121457147010.1089/scd.2014.025425758779
    [Google Scholar]
  142. GauthamanK. FongC.Y. SuganyaC.A. SubramanianA. BiswasA. ChoolaniM. BongsoA. Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells.Reprod. Biomed. Online201224223524610.1016/j.rbmo.2011.10.00722196893
    [Google Scholar]
  143. KimS.M. LimJ.Y. ParkS.I. JeongC.H. OhJ.H. JeongM. OhW. ParkS.H. SungY.C. JeunS.S. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma.Cancer Res.200868239614962310.1158/0008‑5472.CAN‑08‑045119047138
    [Google Scholar]
  144. CaoY. LuetkensT. KoboldS. HildebrandtY. GordicM. LajmiN. MeyerS. BartelsK. ZanderA.R. BokemeyerC. KrögerN. AtanackovicD. The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients.Exp. Hematol.2010381086086710.1016/j.exphem.2010.06.01220619313
    [Google Scholar]
  145. HoffmannE. AshouriJ. WolterS. DoerrieA. Dittrich-BreiholzO. SchneiderH. WagnerE.F. TroppmairJ. MackmanN. KrachtM. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway.J. Biol. Chem.200828318121201212810.1074/jbc.M80058320018281687
    [Google Scholar]
  146. CafforioP. ViggianoL. MannavolaF. PellèE. CaporussoC. MaioranoE. FeliciC. SilvestrisF. pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo .Stem Cell Res. Ther.20178120610.1186/s13287‑017‑0655‑628962646
    [Google Scholar]
  147. BentzonJ.F. StenderupK. HansenF.D. SchroderH.D. AbdallahB.M. JensenT.G. KassemM. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene.Biochem. Biophys. Res. Commun.2005330363364010.1016/j.bbrc.2005.03.07215809044
    [Google Scholar]
  148. HotteS.J. HirteH.W. ChenE.X. SiuL.L. LeL.H. CoreyA. IacobucciA. MacLeanM. LoL. FoxN.L. OzaA.M. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies.Clin. Cancer Res.200814113450345510.1158/1078‑0432.CCR‑07‑141618519776
    [Google Scholar]
  149. ChoiS.A. YunJ.W. JooK.M. LeeJ.Y. KwakP.A. LeeY.E. YouJ.R. KwonE. KimW.H. WangK.C. PhiJ.H. KangB.C. KimS.K. Preclinical biosafety evaluation of genetically modified human adipose tissue-derived mesenchymal stem cells for clinical applications to brainstem glioma.Stem Cells Dev.2016251289790810.1089/scd.2015.032427151205
    [Google Scholar]
  150. ZhouL. ZhuH. BaiX. HuangJ. ChenY. WenJ. LiX. WuB. TanY. TianM. RenJ. LiM. YangQ. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke.Stem Cell Res. Ther.202213119510.1186/s13287‑022‑02876‑235551643
    [Google Scholar]
  151. ZengZ. ZhangY. JiangW. HeL. QuH. Modulation of autophagy in traumatic brain injury.J. Cell. Physiol.202023531973198510.1002/jcp.2917331512236
    [Google Scholar]
  152. ZhaoC. PuY. ZhangH. HuX. ZhangR. HeS. ZhaoQ. MuB. IL10-modified human mesenchymal stem cells inhibit pancreatic cancer growth through angiogenesis inhibition.J. Cancer202011185345535210.7150/jca.3806232742480
    [Google Scholar]
  153. ZwirnerN.W. ZiblatA. Regulation of NK cell activation and effector functions by the IL-12 family of cytokines: The case of IL-27.Front. Immunol.201782510.3389/fimmu.2017.0002528154569
    [Google Scholar]
  154. BhagyarajE. WangH. YangX. HoffmanC. AkgulA. GoodwinZ.I. PascualD.W. Mucosal Vaccination PrimesNK Mucosal vaccination primes nk cell-dependent CD8+ T cells against development pulmonary of brucella infection.Front Immunol.202112697953
    [Google Scholar]
  155. FlorouD.T. MavropoulosA. DardiotisE. TsimourtouV. SiokasV. AloizouA.M. LiaskosC. TsigalouC. KatsiariC. SakkasL.I. HadjigeorgiouG. BogdanosD.P. Tetracyclines diminish in vitro IFN-γ and IL-17-producing adaptive and innate immune cells in multiple sclerosis.Front. Immunol.20211273918610.3389/fimmu.2021.73918634899697
    [Google Scholar]
  156. NguyenK.G. VrabelM.R. MantoothS.M. HopkinsJ.J. WagnerE.S. GabaldonT.A. ZaharoffD.A. Localized interleukin-12 for cancer immunotherapy.Front. Immunol.20201157559710.3389/fimmu.2020.57559733178203
    [Google Scholar]
  157. HanJ. ZhaoJ. XuJ. WenY. Mesenchymal stem cells genetically modified by lentivirus-mediated interleukin-12 inhibit malignant ascites in mice.Exp. Ther. Med.2014841330133410.3892/etm.2014.191825187849
    [Google Scholar]
  158. HuY.L. MiaoP.H. HuangB. ZhangT.Y. HuZ.J. TabataY. GaoJ.Q. Reversal of tumor growth by gene modification of mesenchymal stem cells using spermine-pullulan/DNA nanoparticles.J. Biomed. Nanotechnol.201410229930810.1166/jbn.2014.171224738338
    [Google Scholar]
  159. HongX. MillerC. Savant-BhonsaleS. KalkanisS.N. Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model.Neurosurgery20096461139114710.1227/01.NEU.0000345646.85472.EA19487894
    [Google Scholar]
  160. FörnvikK. Novel treatments of glioblastoma in experimental models.Lund University2020
    [Google Scholar]
  161. Keshavarz ShahbazS. MansourabadiA.H. JafariD. Genetically engineered mesenchymal stromal cells as a new trend for treatment of severe acute graft-versus-host disease.Clin. Exp. Immunol.20222081122410.1093/cei/uxac01635274673
    [Google Scholar]
  162. TsujiY. AdachiS. KoyamaK. TamaokiT.H. IemotoA. FuruyamaJ-I. TamaokiT.H. HasegawaA. FuruyamaJ.I. KoyamaK. TamaokiT.H. KashiwamuraS-I. UedaH. MuranakaJ. FuruyamaJ-I. OkamuraH. Expression of interleukin-18 and its receptor in mouse ovary.Am. J. Reprod. Immunol.200146534935710.1034/j.1600‑0897.2001.d01‑23.x11712764
    [Google Scholar]
  163. IhimS.A. AbubakarS.D. ZianZ. SasakiT. SaffariounM. MalekniaS. AziziG. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment.Front. Immunol.20221391997310.3389/fimmu.2022.91997336032110
    [Google Scholar]
  164. PiligamS.P. SudhakarG. Interleukin-18 and breast cancer: A review.
    [Google Scholar]
  165. ShojaeiS. HashemiS.M. GhanbarianH. SalehiM. Mohammadi-YeganehS. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression.J. Cell. Physiol.201923443394340910.1002/jcp.2732630362503
    [Google Scholar]
  166. LiuX. HuJ. SunS. LiF. CaoW. WangY. MaZ. YuZ. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Exp. Ther. Med.2015941192120010.3892/etm.2015.228625780408
    [Google Scholar]
  167. LiuX. HuJ. LiY. CaoW. WangY. MaZ. LiF. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model.Oncol. Lett.20181556265627410.3892/ol.2018.816629725393
    [Google Scholar]
  168. KendallR.L. WangG. ThomasK.A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR.Biochem. Biophys. Res. Commun.1996226232432810.1006/bbrc.1996.13558806634
    [Google Scholar]
  169. YeC. FengC. WangS. WangK.Z.Q. HuangN. LiuX. LinY. LiM. sFlt-1 gene therapy of follicular thyroid carcinoma.Endocrinology2004145281782210.1210/en.2003‑110614605010
    [Google Scholar]
  170. KrishnanB. TortiF.M. GallagherP.E. TallantE.A. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1.Prostate2013731607010.1002/pros.2254022644934
    [Google Scholar]
  171. OwenL.A. UeharaH. CahoonJ. HuangW. SimonisJ. AmbatiB.K. Morpholino-mediated increase in soluble Flt-1 expression results in decreased ocular and tumor neovascularization.PLoS One201273e3357610.1371/journal.pone.003357622438952
    [Google Scholar]
  172. DasS.K. MenezesM.E. BhatiaS. WangX.Y. EmdadL. SarkarD. FisherP.B. Gene therapies for cancer: Strategies, challenges and successes.J. Cell. Physiol.2015230225927110.1002/jcp.2479125196387
    [Google Scholar]
  173. GonçalvesG.A.R. PaivaR.M.A. Gene therapy: Advances, challenges and perspectives.Einstein201715336937510.1590/s1679‑45082017rb402429091160
    [Google Scholar]
  174. PittengerM.F. DischerD.E. PéaultB.M. PhinneyD.G. HareJ.M. CaplanA.I. Mesenchymal stem cell perspective: cell biology to clinical progress.NPJ Regen. Med.2019412210.1038/s41536‑019‑0083‑631815001
    [Google Scholar]
  175. LeibacherJ. HenschlerR. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells.Stem Cell Res. Ther.201671710.1186/s13287‑015‑0271‑226753925
    [Google Scholar]
  176. LiG. MiaoF. ZhuJ. ChenY. Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1.Mol. Med. Rep.20171655799580610.3892/mmr.2017.731028849176
    [Google Scholar]
  177. YangJ. YanJ. LiuB. Targeting VEGF/VEGFR to modulate antitumor immunity.Front. Immunol.2018997810.3389/fimmu.2018.0097829774034
    [Google Scholar]
  178. ShibuyaM. Claesson-WelshL. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis.Exp. Cell Res.2006312554956010.1016/j.yexcr.2005.11.01216336962
    [Google Scholar]
  179. MashimaT. WakatsukiT. KawataN. JangM.K. NagamoriA. YoshidaH. NakamuraK. MigitaT. SeimiyaH. YamaguchiK. Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo .Sci. Rep.20211111512510.1038/s41598‑021‑94584‑934302038
    [Google Scholar]
  180. SitohyB. NagyJ.A. DvorakH.F. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target.Cancer Res.20127281909191410.1158/0008‑5472.CAN‑11‑340622508695
    [Google Scholar]
  181. TakeiY. MizukamiH. SagaY. YoshimuraI. HasumiY. TakayamaT. KohnoT. MatsushitaT. OkadaT. KumeA. SuzukiM. OzawaK. Suppression of ovarian cancer by muscle-mediated expression of soluble VEGFR-1/Flt-1 using adeno-associated virus serotype 1-derived vector.Int. J. Cancer2007120227828410.1002/ijc.2230717066424
    [Google Scholar]
  182. MiyakeT. KumasawaK. SatoN. TakiuchiT. NakamuraH. KimuraT. Soluble VEGF receptor 1 (sFLT1) induces non-apoptotic death in ovarian and colorectal cancer cells.Sci. Rep.2016612485310.1038/srep2485327103202
    [Google Scholar]
  183. DesgrosellierJ.S. ChereshD.A. Integrins in cancer: Biological implications and therapeutic opportunities.Nat. Rev. Cancer201010192210.1038/nrc274820029421
    [Google Scholar]
  184. AvraamidesC.J. Garmy-SusiniB. VarnerJ.A. Integrins in angiogenesis and lymphangiogenesis.Nat. Rev. Cancer20088860461710.1038/nrc235318497750
    [Google Scholar]
  185. RochaL.A. LearmonthD.A. SousaR.A. SalgadoA.J. αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine?Biotechnol. Adv.201836120822710.1016/j.biotechadv.2017.11.00429155160
    [Google Scholar]
  186. SchmohlK.A. MüllerA.M. WechselbergerA. RühlandS. SalbN. SchwenkN. HeuerH. CarlsenJ. GökeB. NelsonP.J. SpitzwegC. Thyroid hormones and tetrac: New regulators of tumour stroma formation via integrin αvβ3.Endocr. Relat. Cancer201522694195210.1530/ERC‑15‑024526307023
    [Google Scholar]
  187. BronckaersA. HilkensP. MartensW. GervoisP. RatajczakJ. StruysT. LambrichtsI. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis.Pharmacol. Ther.2014143218119610.1016/j.pharmthera.2014.02.01324594234
    [Google Scholar]
  188. DavisP.J. LeonardJ.L. LinH.Y. LeinungM. MousaS.A. Molecular basis of nongenomic actions of thyroid hormone.Vitam. Horm.2018106679610.1016/bs.vh.2017.06.00129407448
    [Google Scholar]
  189. SchmohlK.A. NelsonP.J. SpitzwegC. Tetrac as an anti-angiogenic agent in cancer.Endocr. Relat. Cancer2019266R287R30410.1530/ERC‑19‑005831063970
    [Google Scholar]
  190. CayrolF. Díaz FlaquéM.C. FernandoT. YangS.N. SterleH.A. BolontradeM. AmorósM. IsseB. FaríasR.N. AhnH. TianY.F. TabbòF. SinghA. InghiramiG. CerchiettiL. CremaschiG.A. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells.Blood2015125584185110.1182/blood‑2014‑07‑58733725488971
    [Google Scholar]
  191. BexellD. SchedingS. BengzonJ. Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors.Mol. Ther.20101861067107510.1038/mt.2010.5820407426
    [Google Scholar]
  192. GrisendiG. BussolariR. CafarelliL. PetakI. RasiniV. VeronesiE. De SantisG. SpanoC. TagliazzucchiM. Barti-JuhaszH. ScarabelliL. BambiF. FrassoldatiA. RossiG. CasaliC. MorandiU. HorwitzE.M. PaolucciP. ConteP. DominiciM. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy.Cancer Res.20107093718372910.1158/0008‑5472.CAN‑09‑186520388793
    [Google Scholar]
  193. LahaD. GrantR. MishraP. NilubolN. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment.Front. Immunol.20211265690810.3389/fimmu.2021.65690833986746
    [Google Scholar]
  194. ShahrokhiS. DaneshmandiS. MenaaF. Tumor necrosis factor-α/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice.Hum. Gene Ther.201425324025310.1089/hum.2013.19324372569
    [Google Scholar]
  195. ZhaoC.Y. ChengR. YangZ. TianZ.M. Nanotechnology for cancer therapy based on chemotherapy.Molecules201823482610.3390/molecules2304082629617302
    [Google Scholar]
  196. FuX. ChenL. ChooJ. Optical nanoprobes for ultrasensitive immunoassay.Anal. Chem.201789112413710.1021/acs.analchem.6b0225128105817
    [Google Scholar]
  197. ZhuR. ZhangF. PengY. XieT. WangY. LanY. Current progress in cancer treatment using nanomaterials.Front. Oncol.20221293012510.3389/fonc.2022.93012535912195
    [Google Scholar]
  198. FangJ. IslamW. MaedaH. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers.Adv. Drug Deliv. Rev.202015714216010.1016/j.addr.2020.06.00532553783
    [Google Scholar]
  199. ThakurS. In Green-Based Nanocomposite Materials and Applications.Springer202329531510.1007/978‑3‑031‑18428‑4_15
    [Google Scholar]
  200. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  201. Roma-RodriguesC. MendesR. BaptistaP. FernandesA. Targeting tumor microenvironment for cancer therapy.Int. J. Mol. Sci.201920484010.3390/ijms2004084030781344
    [Google Scholar]
  202. RajS. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy..Semin Cancer Biol202169166177
    [Google Scholar]
  203. ZhangC. ZhouX. ZhangH. HanX. LiB. YangR. ZhouX. Recent progress of novel nanotechnology challenging the multidrug resistance of cancer.Front. Pharmacol.20221377689510.3389/fphar.2022.77689535237155
    [Google Scholar]
  204. MehtaS. SureshA. NayakY. NarayanR. NayakU.Y. Hybrid nanostructures: Versatile systems for biomedical applications.Coord. Chem. Rev.202246021448210.1016/j.ccr.2022.214482
    [Google Scholar]
  205. SánchezA. Rodríguez-VisoP. DomeneA. OrozcoH. VélezD. DevesaV. Dietary microplastics: Occurrence, exposure and health implications.Environ. Res.2022212Pt A11315010.1016/j.envres.2022.11315035341751
    [Google Scholar]
  206. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  207. YazbeckV. AlesiE. MyersJ. HackneyM.H. CuttinoL. GewirtzD.A. An overview of chemotoxicity and radiation toxicity in cancer therapy.Adv. Cancer Res.202215512710.1016/bs.acr.2022.03.00735779872
    [Google Scholar]
  208. StaffN.P. GrisoldA. GrisoldW. WindebankA.J. Chemotherapy-induced peripheral neuropathy: A current review.Ann. Neurol.201781677278110.1002/ana.2495128486769
    [Google Scholar]
  209. HeM. WangN. ZhengW. CaiX. QiD. ZhangY. HanC. Ameliorative effects of ginsenosides on myelosuppression induced by chemotherapy or radiotherapy.J. Ethnopharmacol.202126811358110.1016/j.jep.2020.11358133189841
    [Google Scholar]
  210. HoB.N. PfefferC.M. SinghA.T.K. Update on nanotechnology-based drug delivery systems in cancer treatment.Anticancer Res.201737115975598129061776
    [Google Scholar]
  211. MorganC.E. WassermanM.A. KibbeM.R. Targeted nanotherapies for the treatment of surgical diseases.Ann. Surg.2016263590090710.1097/SLA.000000000000160526756763
    [Google Scholar]
  212. WakaskarR.R. Passive and active targeting in tumor microenvironment.Int. J. Drug Discov. Res.20173741
    [Google Scholar]
  213. KumarS. ChandaD. PonnazhaganS. Therapeutic potential of genetically modified mesenchymal stem cells.Gene Ther.2008151071171510.1038/gt.2008.3518356815
    [Google Scholar]
  214. WeiW. HuangY. LiD. GouH.F. WangW. Improved therapeutic potential of MSCs by genetic modification.Gene Ther.201825853854710.1038/s41434‑018‑0041‑830254305
    [Google Scholar]
  215. GreenM.R. ManikhasG.M. OrlovS. AfanasyevB. MakhsonA.M. BharP. HawkinsM.J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer.Ann. Oncol.20061781263126810.1093/annonc/mdl10416740598
    [Google Scholar]
  216. HuJ. FuS. PengQ. HanY. XieJ. ZanN. ChenY. FanJ. Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: in vitro and in vivo evaluation.Int. J. Pharm.20175161-231332210.1016/j.ijpharm.2016.11.04727884713
    [Google Scholar]
  217. PrabhaS. SharmaB. LabhasetwarV. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice.Cancer Gene Ther.201219853053710.1038/cgt.2012.2622595792
    [Google Scholar]
  218. VasirJ. LabhasetwarV. Biodegradable nanoparticles for cytosolic delivery of therapeutics.Adv. Drug Deliv. Rev.200759871872810.1016/j.addr.2007.06.00317683826
    [Google Scholar]
  219. GaoZ. ZhangL. HuJ. SunY. Mesenchymal stem cells: A potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles.Nanomedicine20139217418410.1016/j.nano.2012.06.00322772046
    [Google Scholar]
  220. SadhukhaT. O’BrienT.D. PrabhaS. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers.J. Control. Release201419624325110.1016/j.jconrel.2014.10.01525456830
    [Google Scholar]
  221. LayekB. SadhukhaT. PanyamJ. PrabhaS. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting.Mol. Cancer Ther.20181761196120610.1158/1535‑7163.MCT‑17‑068229592881
    [Google Scholar]
  222. ChangD.Y. YooS.W. HongY. KimS. KimS.J. YoonS.H. ChoK.G. PaekS.H. LeeY.D. KimS.S. Suh-KimH. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase.Int. J. Cancer201012781975198310.1002/ijc.2538320473873
    [Google Scholar]
  223. CihovaM. AltanerovaV. AltanerC. Stem cell based cancer gene therapy.Mol. Pharm.2011851480148710.1021/mp200151a21755953
    [Google Scholar]
  224. ZhangY. DaquinagA.C. Amaya-ManzanaresF. SirinO. TsengC. KoloninM.G. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment.Cancer Res.201272205198520810.1158/0008‑5472.CAN‑12‑029423071132
    [Google Scholar]
  225. KimJ.H. LeeH.J. SongY.S. Stem cell based gene therapy in prostate cancer.BioMed Res. Int.201420141810.1155/2014/54913625121103
    [Google Scholar]
  226. HallB. AndreeffM. MariniF. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles.Handb. Exp. Pharmacol.200718018026328310.1007/978‑3‑540‑68976‑8_1217554513
    [Google Scholar]
  227. PoggiA. VaresanoS. ZocchiM.R. How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive.Front. Immunol.2018926210.3389/fimmu.2018.0026229515580
    [Google Scholar]
  228. López de AndrésJ. Griñán-LisónC. JiménezG. MarchalJ.A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment.J. Hematol. Oncol.202013113610.1186/s13045‑020‑00966‑333059744
    [Google Scholar]
  229. DuW.J. ChiY. YangZ.X. LiZ.J. CuiJ.J. SongB.Q. LiX. YangS.G. HanZ.B. HanZ.C. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta.Stem Cell Res. Ther.20167116310.1186/s13287‑016‑0418‑927832825
    [Google Scholar]
  230. RussellK.A. ChowN.H.C. DukoffD. GibsonT.W.G. LaMarreJ. BettsD.H. KochT.G. Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells.PLoS One20161112e016744210.1371/journal.pone.016744227907211
    [Google Scholar]
  231. KhakooA.Y. PatiS. AndersonS.A. ReidW. ElshalM.F. RoviraI.I. NguyenA.T. MalideD. CombsC.A. HallG. ZhangJ. RaffeldM. RogersT.B. Stetler-StevensonW. FrankJ.A. ReitzM. FinkelT. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma.J. Exp. Med.200620351235124710.1084/jem.2005192116636132
    [Google Scholar]
  232. HungS.C. DengW.P. YangW.K. LiuR.S. LeeC.C. SuT.C. LinR.J. YangD.M. ChangC.W. ChenW.H. WeiH.J. GelovaniJ.G. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging.Clin. Cancer Res.200511217749775610.1158/1078‑0432.CCR‑05‑087616278396
    [Google Scholar]
  233. SpanoC. GrisendiG. GolinelliG. RossignoliF. PrapaM. BestagnoM. CandiniO. PetrachiT. RecchiaA. MiselliF. RovestiG. OrsiG. MaioranaA. ManniP. VeronesiE. PiccinnoM.S. MurgiaA. PinelliM. HorwitzE.M. CascinuS. ConteP. DominiciM. Soluble TRAIL armed human MSC as gene therapy for pancreatic cancer.Sci. Rep.201991178810.1038/s41598‑018‑37433‑630742129
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266299112240514103048
Loading
/content/journals/ctmc/10.2174/0115680266299112240514103048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test