Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Clinical application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a promising approach for the treatment of heart diseases. However, the tumorigenicity of hiPSC-CMs remains a concern for their clinical applications and the composition of the hiPSC-CM subtypes need to be clearly identified.

Methods

In the present study, hiPSC-CMs were induced from hiPSCs modulation of Wnt signaling followed by glucose deprivation purification. The structure, function, subpopulation composition, and tumorigenic risk of hiPSC-CMs were evaluated by single-cell RNA sequencing (scRNAseq), whole exome sequencing (WES), and integrated molecular biology, cell biology, electrophysiology, and/or animal experiments.

Results

The high purity of hiPSC-CMs, determined by flow cytometry analysis, was generated. ScRNAseq analysis of differentiation day (D) 25 hiPSC-CMs did not identify the transcripts representative of undifferentiated hiPSCs. WES analysis showed a few newly acquired confidently identified mutations and no mutations in tumor susceptibility genes. Further, no tumor formation was observed after transplanting hiPSC-CMs into NOD-SCID mice for 3 months. Moreover, D25 hiPSC-CMs were composed of subtypes of ventricular-like cells (23.19%) and atrial-like cells (66.45%) in different cell cycle stages or mature levels, based on the scRNAseq analysis. Furthermore, a subpopulation of more mature ventricular cells (3.21%) was identified, which displayed significantly up-regulated signaling pathways related to myocardial contraction and action potentials. Additionally, a subpopulation of cardiomyocytes in an early differentiation stage (3.44%) experiencing nutrient stress-induced injury and heading toward apoptosis was observed.

Conclusions

This study confirmed the biological safety of hiPSC-CMs and described the composition and expression profile of cardiac subtypes in hiPSC-CMs which provide standards for quality control and theoretical supports for the translational applications of hiPSC-CMs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X318139240621051224
2024-06-24
2025-05-05
Loading full text...

Full text loading...

References

  1. KishinoY. TohyamaS. MoritaY. SomaY. TaniH. OkadaM. KanazawaH. FukudaK. Cardiac regenerative therapy using human pluripotent stem cells for heart failure: A state-of-the-art review.J. Card. Fail.202329450351310.1016/j.cardfail.2022.10.43337059512
    [Google Scholar]
  2. BamanJ.R. AhmadF.S. Heart Failure.JAMA202032410101510.1001/jama.2020.1331032749448
    [Google Scholar]
  3. LiQ. WangJ. WuQ. CaoN. YangH.T. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair.Stem Cells Transl. Med.20209101121112810.1002/sctm.19‑034032725800
    [Google Scholar]
  4. OikonomopoulosA. KitaniT. WuJ.C. Pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: Progress and hurdles for clinical translation.Mol. Ther.20182671624163410.1016/j.ymthe.2018.02.02629699941
    [Google Scholar]
  5. ZhaoM. FanC. ErnstP.J. TangY. ZhuH. MattapallyS. OdukY. BorovjaginA.V. ZhouL. ZhangJ. ZhuW. Y-27632 preconditioning enhances transplantation of human-induced pluripotent stem cell-derived cardiomyocytes in myocardial infarction mice.Cardiovasc. Res.2019115234335610.1093/cvr/cvy20730107391
    [Google Scholar]
  6. FanC. TangY. ZhaoM. LouX. PretoriusD. MenascheP. ZhuW. ZhangJ. CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice.J. Mol. Cell. Cardiol.202014111010.1016/j.yjmcc.2020.03.00332169551
    [Google Scholar]
  7. LouX. TangY. YeL. PretoriusD. FastV.G. Kahn-KrellA.M. ZhangJ. ZhangJ. QiaoA. QinG. KampT. ThomsonJ.A. ZhangJ. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice.Cardiovasc. Res.202311941062107610.1093/cvr/cvad00436647784
    [Google Scholar]
  8. ChengY.C. HsiehM.L. LinC.J. ChangC.M.C. HuangC.Y. PuntneyR. Wu MoyA. TingC.Y. Herr ChanD.Z. NicholsonM.W. LinP.J. ChenH.C. KimG.C. ZhangJ. CoonenJ. BasuP. SimmonsH.A. LiuY.W. HackerT.A. KampT.J. HsiehP.C.H. Combined treatment of human induced pluripotent stem cell–derived cardiomyocytes and endothelial cells regenerate the infarcted heart in mice and non-human primates.Circulation2023148181395140910.1161/CIRCULATIONAHA.122.06173637732466
    [Google Scholar]
  9. JebranA.F. TiburcyM. BiermannD. BalfanzP. DidiéM. KarikkinethB.C. SchöndubeF. KutschkaI. ZimmermannW.H. Transmural myocardial repair with engineered heart muscle in a rat model of heterotopic heart transplantation : A proof-of-concept study.J. Mol. Cell. Cardiol.202216831210.1016/j.yjmcc.2022.03.01335390437
    [Google Scholar]
  10. TaoZ. LooS. SuL. TanS. TeeG. GanS.U. ZhangJ. ChenX. YeL. Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction.Cardiovasc. Res.202111761578159110.1093/cvr/cvaa21532666104
    [Google Scholar]
  11. ItoE. KawamuraA. KawamuraT. TakedaM. HaradaA. Mochizuki-OdaN. SawaY. MiyagawaS. Establishment of a protocol to administer immunosuppressive drugs for iPS cell-derived cardiomyocyte patch transplantation in a rat myocardial infarction model.Sci. Rep.20231311053010.1038/s41598‑023‑37235‑537385993
    [Google Scholar]
  12. GaoL. GregorichZ.R. ZhuW. MattapallyS. OdukY. LouX. KannappanR. BorovjaginA.V. WalcottG.P. PollardA.E. FastV.G. HuX. LloydS.G. GeY. ZhangJ. Large cardiac muscle patches engineered from human induced-pluripotent stem cell–derived cardiac cells improve recovery from myocardial infarction in swine.Circulation2018137161712173010.1161/CIRCULATIONAHA.117.03078529233823
    [Google Scholar]
  13. TanS.H. LooS.J. GaoY. TaoZ.H. SuL.P. WangC.X. ZhangS.L. MuY.H. CuiY.H. AbdurrachimD. WangW.H. LalicJ. LimK.C. BuJ. TanR.S. LeeT.H. ZhangJ. YeL. Thymosin β4 increases cardiac cell proliferation, cell engraftment, and the reparative potency of human induced-pluripotent stem cell-derived cardiomyocytes in a porcine model of acute myocardial infarction.Theranostics202111167879789510.7150/thno.5675734335970
    [Google Scholar]
  14. ChongJ.J.H. YangX. DonC.W. MinamiE. LiuY.W. WeyersJ.J. MahoneyW.M. Van BiberB. CookS.M. PalpantN.J. GantzJ.A. FugateJ.A. MuskheliV. GoughG.M. VogelK.W. AstleyC.A. HotchkissC.E. BaldessariA. PabonL. ReineckeH. GillE.A. NelsonV. KiemH.P. LaflammeM.A. MurryC.E. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts.Nature2014510750427327710.1038/nature1323324776797
    [Google Scholar]
  15. LiuY.W. ChenB. YangX. FugateJ.A. KaluckiF.A. Futakuchi-TsuchidaA. CoutureL. VogelK.W. AstleyC.A. BaldessariA. OgleJ. DonC.W. SteinbergZ.L. SeslarS.P. TuckS.A. TsuchidaH. NaumovaA.V. DuprasS.K. LyuM.S. LeeJ. HaileyD.W. ReineckeH. PabonL. FryerB.H. MacLellanW.R. ThiesR.S. MurryC.E. Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates.Nat. Biotechnol.201836759760510.1038/nbt.416229969440
    [Google Scholar]
  16. KawamuraT. ItoY. ItoE. TakedaM. MikamiT. TaguchiT. Mochizuki-OdaN. SasaiM. ShimamotoT. NittaY. YoshiokaD. KawamuraM. KawamuraA. MisumiY. SakataY. SawaY. MiyagawaS. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports.Front. Cardiovasc. Med.202310118220910.3389/fcvm.2023.118220937781295
    [Google Scholar]
  17. BurridgeP.W. MatsaE. ShuklaP. LinZ.C. ChurkoJ.M. EbertA.D. LanF. DieckeS. HuberB. MordwinkinN.M. PlewsJ.R. AbilezO.J. CuiB. GoldJ.D. WuJ.C. Chemically defined generation of human cardiomyocytes.Nat. Methods201411885586010.1038/nmeth.299924930130
    [Google Scholar]
  18. DunnK.K. PalecekS.P. Engineering scalable manufacturing of high-quality stem cell-derived cardiomyocytes for cardiac tissue repair.Front. Med.2018511010.3389/fmed.2018.0011029740580
    [Google Scholar]
  19. LianX. HsiaoC. WilsonG. ZhuK. HazeltineL.B. AzarinS.M. RavalK.K. ZhangJ. KampT.J. PalecekS.P. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling.Proc. Natl. Acad. Sci.201210927E1848E185710.1073/pnas.120025010922645348
    [Google Scholar]
  20. TohyamaS. HattoriF. SanoM. HishikiT. NagahataY. MatsuuraT. HashimotoH. SuzukiT. YamashitaH. SatohY. EgashiraT. SekiT. MuraokaN. YamakawaH. OhginoY. TanakaT. YoichiM. YuasaS. MurataM. SuematsuM. FukudaK. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes.Cell Stem Cell201312112713710.1016/j.stem.2012.09.01323168164
    [Google Scholar]
  21. YamanakaS. Pluripotent stem cell-based cell therapy—promise and challenges.Cell Stem Cell202027452353110.1016/j.stem.2020.09.01433007237
    [Google Scholar]
  22. SkorikC. MullinN.K. ShiM. ZhangY. HunterP. TangY. HiltonB. SchlaegerT.M. Xeno-free reprogramming of peripheral blood mononuclear erythroblasts on laminin-521.Curr. Protoc. Stem Cell Biol.2020521e10310.1002/cpsc.10331977148
    [Google Scholar]
  23. LuJ.Z. ZhangL. ZhuH. QiY. BaiZ. JiaW.W. LiuZ.M. An induced pluripotent stem cell line (EHTJUi002-A) derived from a neonate with c.678G>A mutation in the gene FZD4 causing exudative vitreoretinopathy.Stem Cell Res.20204810193210.1016/j.scr.2020.10193232889247
    [Google Scholar]
  24. JiaW.W. LuJ.Z. ZhangL. CaoH.X. QiY.Y. ZhuH.Y. BaiZ.H. ZhangS.M. QiaoZ.B. BaoY. LiuZ.M. An induced pluripotent stem cell line (EHTJUi003-A) generated from a neonate with c.1377delC mutation in the gene MYBPC3 causing hypertrophic cardiomyopathy.Stem Cell Res.20215310232810.1016/j.scr.2021.10232834087980
    [Google Scholar]
  25. CaoN. LiuZ. ChenZ. WangJ. ChenT. ZhaoX. MaY. QinL. KangJ. WeiB. WangL. JinY. YangH.T. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells.Cell Res.201222121923610.1038/cr.2011.19522143566
    [Google Scholar]
  26. SlovinS. CarissimoA. PanarielloF. GrimaldiA. BouchéV. GambardellaG. CacchiarelliD. Single-Cell RNA sequencing analysis: A step-by-step overview.Methods Mol. Biol.2021228434336510.1007/978‑1‑0716‑1307‑8_1933835452
    [Google Scholar]
  27. TrapnellC. CacchiarelliD. GrimsbyJ. PokharelP. LiS. MorseM. LennonN.J. LivakK.J. MikkelsenT.S. RinnJ.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol.201432438138610.1038/nbt.285924658644
    [Google Scholar]
  28. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  29. Ronaldson-BouchardK. MaS.P. YeagerK. ChenT. SongL. SirabellaD. MorikawaK. TelesD. YazawaM. Vunjak-NovakovicG. Advanced maturation of human cardiac tissue grown from pluripotent stem cells.Nature2018556770023924310.1038/s41586‑018‑0016‑329618819
    [Google Scholar]
  30. LiW. ShiG. How CaV1.2-bound verapamil blocks Ca2+ influx into cardiomyocyte: Atomic level views.Pharmacol. Res.201913915315710.1016/j.phrs.2018.11.01730447294
    [Google Scholar]
  31. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  32. ItoE. MiyagawaS. TakedaM. KawamuraA. HaradaA. IseokaH. YajimaS. SougawaN. Mochizuki-OdaN. YasudaS. SatoY. SawaY. Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application.Sci. Rep.201991188110.1038/s41598‑018‑38325‑530760836
    [Google Scholar]
  33. Martínez-JiménezF. MuiñosF. SentísI. Deu-PonsJ. Reyes-SalazarI. Arnedo-PacC. MularoniL. PichO. BonetJ. KranasH. Gonzalez-PerezA. Lopez-BigasN. A compendium of mutational cancer driver genes.Nat. Rev. Cancer2020201055557210.1038/s41568‑020‑0290‑x32778778
    [Google Scholar]
  34. DeLaughterD.M. BickA.G. WakimotoH. McKeanD. GorhamJ.M. KathiriyaI.S. HinsonJ.T. HomsyJ. GrayJ. PuW. BruneauB.G. SeidmanJ.G. SeidmanC.E. Single-cell resolution of temporal gene expression during heart development.Dev. Cell201639448049010.1016/j.devcel.2016.10.00127840107
    [Google Scholar]
  35. WeiQ. LiJ. LiuT. TongX. YeX. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation.J. Biol. Chem.201328827197151972510.1074/jbc.M112.44965223720738
    [Google Scholar]
  36. ÁlvarezV. ViñasL. Gallego-SánchezA. AndrésS. SacristánM.P. BuenoA. Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA.Sci. Rep.2016612551310.1038/srep2551327151298
    [Google Scholar]
  37. Lara-GonzalezP. MoyleM.W. BudrewiczJ. Mendoza-LopezJ. OegemaK. DesaiA. The G2-to-M transition is ensured by a dual mechanism that protects cyclin B from degradation by Cdc20-activated APC/C.Dev. Cell2019513313325.e1010.1016/j.devcel.2019.09.00531588029
    [Google Scholar]
  38. UxaS. Castillo-BinderP. KohlerR. StangnerK. MüllerG.A. EngelandK. Ki-67 gene expression.Cell Death Differ.202128123357337010.1038/s41418‑021‑00823‑x34183782
    [Google Scholar]
  39. YangD. Gomez-GarciaJ. FunakoshiS. TranT. FernandesI. BaderG.D. LaflammeM.A. KellerG.M. Modeling human multi-lineage heart field development with pluripotent stem cells.Cell Stem Cell202229913821401.e810.1016/j.stem.2022.08.00736055193
    [Google Scholar]
  40. LiewL.C. PohB.M. AnO. HoB.X. LimC.Y.Y. PangJ.K.S. BehL.Y. YangH.H. SohB.S. JAK2 as a surface marker for enrichment of human pluripotent stem cells-derived ventricular cardiomyocytes.Stem Cell Res. Ther.202314136710.1186/s13287‑023‑03610‑238093391
    [Google Scholar]
  41. DongJ. BuradaguntaC.S. ZhangT. SpellmanS. BolonY.T. DeZernA.E. GadallaS.M. DeegH.J. NazhaA. CutlerC. ChengC. UrrutiaR. AuerP. SaberW. Prognostic landscape of mitochondrial genome in myelodysplastic syndrome after stem- cell transplantation.J. Hematol. Oncol.20231612110.1186/s13045‑023‑01418‑436899395
    [Google Scholar]
  42. HarrisonP.J. HusainS.M. LeeH. Los AngelesA.D. ColbourneL. MouldA. HallN.A.L. HaertyW. TunbridgeE.M. CACNA1C (CaV1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology.Neuropharmacology202222010926210.1016/j.neuropharm.2022.10926236154842
    [Google Scholar]
  43. SteinbergC. RostonT.M. van der WerfC. SanataniS. ChenS.R.W. WildeA.A.M. KrahnA.D. RYR2-ryanodinopathies: From calcium overload to calcium deficiency.Europace2023256euad15610.1093/europace/euad15637387319
    [Google Scholar]
  44. LuF. MaQ. XieW. LiouC.L. ZhangD. SweatM.E. JardinB.D. NayaF.J. GuoY. ChengH. PuW.T. CMYA5 establishes cardiac dyad architecture and positioning.Nat. Commun.2022131218510.1038/s41467‑022‑29902‑435449169
    [Google Scholar]
  45. Ceyhan-BirsoyO. AgrawalP.B. HidalgoC. Schmitz-AbeK. DeCheneE.T. SwansonL.C. SoemediR. VasliN. IannacconeS.T. ShiehP.B. ShurN. DennisonJ.M. LawlorM.W. LaporteJ. MarkianosK. FairbrotherW.G. GranzierH. BeggsA.H. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy.Neurology201381141205121410.1212/WNL.0b013e3182a6ca6223975875
    [Google Scholar]
  46. MaZ. HuebschN. KooS. MandegarM.A. SiemonsB. BoggessS. ConklinB.R. GrigoropoulosC.P. HealyK.E. Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload.Nat. Biomed. Eng.201821295596710.1038/s41551‑018‑0280‑431015724
    [Google Scholar]
  47. GrossP. JohnsonJ. RomeroC.M. EatonD.M. PouletC. Sanchez-AlonsoJ. LucarelliC. RossJ. GibbA.A. GarbinciusJ.F. LambertJ. VarolE. YangY. WallnerM. FeldsottE.A. KuboH. BerrettaR.M. YuD. RizzoV. ElrodJ. SabriA. GorelikJ. ChenX. HouserS.R. Interaction of the joining region in junctophilin-2 with the L-Type Ca 2+ channel is pivotal for cardiac dyad assembly and intracellular Ca 2+ Dynamics.Circ. Res.202112819211410.1161/CIRCRESAHA.119.31571533092464
    [Google Scholar]
  48. KaneC. CouchL. TerraccianoC.M.N. Excitation–contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes.Front. Cell Dev. Biol.201535910.3389/fcell.2015.0005926484342
    [Google Scholar]
  49. WangY. GaoH. CaoX. LiZ. KuangY. JiY. LiY. Role of GADD45A in myocardial ischemia/reperfusion through mediation of the JNK/p38 MAPK and STAT3/VEGF pathways.Int. J. Mol. Med.202250614410.3892/ijmm.2022.520036331027
    [Google Scholar]
  50. CaiZ.L. ShenB. YuanY. LiuC. XieQ.W. HuT.T. YaoQ. WuQ.Q. TangQ.Z. The effect of HMGA1 in LPS-induced myocardial inflammation.Int. J. Biol. Sci.202016111798181010.7150/ijbs.3994732398950
    [Google Scholar]
  51. TanC.T. ChangH.C. ZhouQ. YuC. FuN.Y. SabapathyK. YuV.C. MOAP-1-mediated dissociation of p62/SQSTM1 bodies releases Keap1 and suppresses Nrf2 signaling.EMBO Rep.2021221e5085410.15252/embr.20205085433393215
    [Google Scholar]
  52. LiuY. XiongR. XiaoT. XiongL. WuJ. LiJ. FengG. SongG. LiuK. SCARA5 induced ferroptosis to effect ESCC proliferation and metastasis by combining with Ferritin light chain.BMC Cancer2022221130410.1186/s12885‑022‑10414‑936513999
    [Google Scholar]
  53. SchreuderG.M. HurleyC.K. MarshS.G.E. LauM. MaiersM. KollmanC. NoreenH. The HLA dictionary 1999: A summary of HLA-A, -B, -C, -DRB1/3/4/5, -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR and -DQ antigens.Tissue Antigens199954440943710.1034/j.1399‑0039.1999.540412.x10551426
    [Google Scholar]
  54. BowersS.L.K. MengQ. KuwabaraY. HuoJ. MinerathR. YorkA.J. SargentM.A. PrasadV. SaviolaA.J. GalindoD.C. HansenK.C. VagnozziR.J. YutzeyK.E. MolkentinJ.D. Col1a2-deleted mice have defective type i collagen and secondary reactive cardiac fibrosis with altered hypertrophic dynamics.Cells20231217217410.3390/cells1217217437681905
    [Google Scholar]
  55. LauD.H. Roberts-ThomsonK.C. SandersP. Sinus node revisited.Curr. Opin. Cardiol.2011261555910.1097/HCO.0b013e32834138f421102315
    [Google Scholar]
  56. HerrmannH. SadovnikI. EisenwortG. RülickeT. BlattK. HerndlhoferS. WillmannM. StefanzlG. BaumgartnerS. GreinerG. SchulenburgA. MuellerN. RabitschW. BilbanM. HoermannG. StreubelB. ValleraD.A. SperrW.R. ValentP. Delineation of target expression profiles in CD34+/CD38− and CD34+/CD38+ stem and progenitor cells in AML and CML.Blood Adv.20204205118513210.1182/bloodadvances.202000174233085758
    [Google Scholar]
  57. HollandC.H. TanevskiJ. Perales-PatónJ. GleixnerJ. KumarM.P. MereuE. JoughinB.A. StegleO. LauffenburgerD.A. HeynH. SzalaiB. Saez-RodriguezJ. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.Genome Biol.20202113610.1186/s13059‑020‑1949‑z32051003
    [Google Scholar]
  58. EbeltH. HufnagelN. NeuhausP. NeuhausH. GajawadaP. SimmA. Müller-WerdanU. WerdanK. BraunT. Divergent Siblings.Circ. Res.200596550951710.1161/01.RES.0000159705.17322.5715718499
    [Google Scholar]
  59. ChenS. ZhuX. OuW. KangL. SituJ. LiaoZ. HuangL. QiW. NiS. ETS2 overexpression ameliorates cartilage injury in osteoarthritis by the ETS2/miR-155/STAT1/DNMT1 feedback loop pathway.Biochim. Biophys. Acta. Gene Regul. Mech.20231866419496510.1016/j.bbagrm.2023.19496537524226
    [Google Scholar]
  60. WortelI.M.N. van der MeerL.T. KilbergM.S. van LeeuwenF.N. Surviving Stress: Modulation of ATF4-mediated stress responses in normal and malignant cells.Trends Endocrinol. Metab.2017281179480610.1016/j.tem.2017.07.00328797581
    [Google Scholar]
  61. BourgeoisB. MadlT. Regulation of cellular senescence via the FOXO 4-p53 axis.FEBS Lett.2018592122083209710.1002/1873‑3468.1305729683489
    [Google Scholar]
  62. HanL. HeH. YangY. MengQ. YeF. ChenG. ZhangJ. Distinctive clinical and pathologic features of immature teratomas arising from induced pluripotent stem cell-derived beta cell injection in a diabetes patient.Stem Cells Dev.2022315-69710110.1089/scd.2021.025535018826
    [Google Scholar]
  63. Biendarra-TiegsS.M. SecretoF.J. NelsonT.J. Addressing variability and heterogeneity of induced pluripotent stem cell-derived cardiomyocytes.Adv. Exp. Med. Biol.2020121212930850960
    [Google Scholar]
  64. MarchianoS. NakamuraK. ReineckeH. NeidigL. LaiM. KadotaS. PerbelliniF. YangX. KlaimanJ.M. BlakelyL.P. KarbassiE. FieldsP.A. FenixA.M. BeussmanK.M. JayabaluA. KaluckiF.A. PotterJ.C. Futakuchi-TsuchidaA. WeberG.J. DuprasS. TsuchidaH. PabonL. WangL. KnollmannB.C. KattmanS. ThiesR.S. SniadeckiN. MacLellanW.R. BerteroA. MurryC.E. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy.Cell Stem Cell2023304396414.e910.1016/j.stem.2023.03.01037028405
    [Google Scholar]
  65. LeeJ.H. ProtzeS.I. LaksmanZ. BackxP.H. KellerG.M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations.Cell Stem Cell2017212179194.e410.1016/j.stem.2017.07.00328777944
    [Google Scholar]
  66. CyganekL. TiburcyM. SekeresK. GerstenbergK. BohnenbergerH. LenzC. HenzeS. StauskeM. SalinasG. ZimmermannW.H. HasenfussG. GuanK. Deep phenotyping of human induced pluripotent stem cell–derived atrial and ventricular cardiomyocytes.JCI Insight2018312e9994110.1172/jci.insight.9994129925689
    [Google Scholar]
  67. Nakanishi-KoakutsuM. TakakiT. MikiK. YoshidaY. Characterization of ventricular and atrial cardiomyocyte subtypes from human-induced pluripotent stem cells.Methods Mol. Biol.2021232013514910.1007/978‑1‑0716‑1484‑6_1434302655
    [Google Scholar]
  68. LuoX.L. ZhangP. LiuX. HuangS. RaoS.L. DingQ. YangH.T. Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells.Pflugers Arch.20214737991100710.1007/s00424‑021‑02578‑334031754
    [Google Scholar]
  69. DaltonS. Linking the cell cycle to cell fate decisions.Trends Cell Biol.2015251059260010.1016/j.tcb.2015.07.00726410405
    [Google Scholar]
  70. SinghA.M. ChappellJ. TrostR. LinL. WangT. TangJ. WuH. ZhaoS. JinP. DaltonS. JinP. DaltonS. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells.Stem Cell Reports20131653254410.1016/j.stemcr.2013.10.00924371808
    [Google Scholar]
  71. TohyamaS. FukudaK. Safe and effective cardiac regenerative therapy with human-induced pluripotent stem cells.Circ. Res.2017120101558156010.1161/CIRCRESAHA.116.31032828495993
    [Google Scholar]
  72. NiX. XuK. ZhaoY. LiJ. WangL. YuF. LiG. Single-cell analysis reveals the purification and maturation effects of glucose starvation in hiPSC-CMs.Biochem. Biophys. Res. Commun.202153436737310.1016/j.bbrc.2020.11.07633279112
    [Google Scholar]
  73. OrdoñoJ. Pérez-AmodioS. BallK. AguirreA. EngelE. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes.Biomat. Adv.202213921303510.1016/j.bioadv.2022.21303535907761
    [Google Scholar]
  74. van BerloJ.H. MolkentinJ.D. An emerging consensus on cardiac regeneration.Nat. Med.201420121386139310.1038/nm.376425473919
    [Google Scholar]
  75. GuoY. CaoY. JardinB.D. ZhangX. ZhouP. GuatimosimS. LinJ. ChenZ. ZhangY. MazumdarN. LuF. MaQ. LuY.W. ZhaoM. WangD.Z. DongE. PuW.T. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation.Cardiovasc. Res.202235576474
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X318139240621051224
Loading
/content/journals/cscr/10.2174/011574888X318139240621051224
Loading

Data & Media loading...

Supplements

Fig. () Characterization of the three established hiPSC lines at passage 15; Fig. (). The analysis of the residual of Sendai virus vectors and the short tandem repeats assay of the 3 established hiPSC lines; Fig. () Flow cytometry analysis and immunofluorescence staining for ANB_D25 and AOF_D25 hiPSC-CMs; Fig. () Violin plot of the expression of gene in all the six samples; Fig. () scRNA-seq analysis on D25 hiPSC-CMs; Fig. () Feature plot of the expression of fibroblast marker genes; Table : Primers for qPCR; Table : Action potential items of D50 hiPSC-CMs; Table : The numbers of and cells in 6 samples. Table : The detailed cell numbers and frequencies of the 7 cardiac subtypes. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test