Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Aims

The aim of this study was to investigate the role of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) in regulating the intestinal type 2 immune response for either protection or therapy.

Background

hUCMSC-Exo was considered a novel cell-free therapeutic product that shows promise in the treatment of various diseases. Type 2 immunity is a protective immune response classified as T-helper type 2 (Th2) cells and is associated with helminthic infections and allergic diseases. The effect of hUCMSC-Exo on intestinal type 2 immune response is not clear.

Methods

C57BL/6 mice were used to establish intestinal type 2 immune response by administering of and treated with hUCMSC-Exo before or after infection. Intestinal organoids were isolated and co-cultured with IL-4 and hUCMSC-Exo. Then, we monitored the influence of hUCMSC-Exo on type 2 immune response by checking adult worms, the hyperplasia of tuft and goblet cells.

Results

hUCMSC-Exo significantly delays the colonization of in subserosal layer of duodenum on day 7 post-infection and promotes the hyperplasia of tuft cells and goblet cells on day 14 post-infection. HUCMSC-Exo enhances the expansion of tuft cells in IL-4 treated intestinal organoids, and promotes lytic cell death.

Conclusion

Our study demonstrates hUCMSC-Exo may benefit the host by increasing the tolerance at an early infection stage and then enhancing the intestinal type 2 immune response to impede the helminth during Th2 priming. Our results show hUCMSC-Exo may be a positive regulator of type 2 immune response, suggesting hUCMSC-Exo has a potential therapeutic effect on allergic diseases.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X314032240429113240
2024-05-22
2025-05-01
Loading full text...

Full text loading...

References

  1. MatricardiP.M. BoniniS. High microbial turnover rate preventing atopy: A solution to inconsistencies impinging on the Hygiene hypothesis?Clin. Exp. Allergy200030111506151010.1046/j.1365‑2222.2000.00994.x11069557
    [Google Scholar]
  2. PaulW.E. ZhuJ. How are TH2-type immune responses initiated and amplified?Nat. Rev. Immunol.201010422523510.1038/nri273520336151
    [Google Scholar]
  3. ZhuJ. YamaneH. PaulW.E. Differentiation of effector CD4 T cell populations (*).Annu. Rev. Immunol.201028144548910.1146/annurev‑immunol‑030409‑10121220192806
    [Google Scholar]
  4. LambrechtB.N. HammadH. Lung dendritic cells in respiratory viral infection and asthma: From protection to immunopathology.Annu. Rev. Immunol.201230124327010.1146/annurev‑immunol‑020711‑07502122224777
    [Google Scholar]
  5. PulendranB. TangH. ManicassamyS. Programming dendritic cells to induce TH2 and tolerogenic responses.Nat. Immunol.201011864765510.1038/ni.189420644570
    [Google Scholar]
  6. SmallwoodT.B. GiacominP.R. LoukasA. MulvennaJ.P. ClarkR.J. MilesJ.J. Helminth immunomodulation in autoimmune disease.Front. Immunol.2017845310.3389/fimmu.2017.0045328484453
    [Google Scholar]
  7. HarrisN.L. LokeP. Recent advances in type-2-cell-mediated immunity: Insights from helminth infection.Immunity20174761024103610.1016/j.immuni.2017.11.01529262347
    [Google Scholar]
  8. LloydC.M. SnelgroveR.J. Type 2 immunity: Expanding our view.Sci. Immunol.2018325eaat160410.1126/sciimmunol.aat160429980619
    [Google Scholar]
  9. AnthonyR.M. RutitzkyL.I. UrbanJ.F.Jr StadeckerM.J. GauseW.C. Protective immune mechanisms in helminth infection.Nat. Rev. Immunol.200771297598710.1038/nri219918007680
    [Google Scholar]
  10. GerbeF. SidotE. SmythD.J. OhmotoM. MatsumotoI. DardalhonV. CessesP. GarnierL. PouzollesM. BrulinB. BruschiM. HarcusY. ZimmermannV.S. TaylorN. MaizelsR.M. JayP. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites.Nature2016529758522623010.1038/nature1652726762460
    [Google Scholar]
  11. HowittM.R. LavoieS. MichaudM. BlumA.M. TranS.V. WeinstockJ.V. GalliniC.A. ReddingK. MargolskeeR.F. OsborneL.C. ArtisD. GarrettW.S. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut.Science201635162791329133310.1126/science.aaf164826847546
    [Google Scholar]
  12. von MoltkeJ. JiM. LiangH.E. LocksleyR.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit.Nature2016529758522122510.1038/nature1616126675736
    [Google Scholar]
  13. GerbeF. van EsJ.H. MakriniL. BrulinB. MellitzerG. RobineS. RomagnoloB. ShroyerN.F. BourgauxJ.F. PignodelC. CleversH. JayP. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium.J. Cell Biol.2011192576778010.1083/jcb.20101012721383077
    [Google Scholar]
  14. QiuW. RemottiH.E. TangS.M. WangE. DobberteenL. YoussofL.A. LeeJ.H. CheungE.C. SuG.H. Pancreatic DCLK1+ cells originate distinctly from PDX1+ progenitors and contribute to the initiation of intraductal papillary mucinous neoplasm in mice.Cancer Lett.2018423717910.1016/j.canlet.2018.03.00929526803
    [Google Scholar]
  15. WuX. QuD. WeygantN. PengJ. HouchenC.W. Cancer stem cell marker DCLK1 correlates with tumorigenic immune infiltrates in the colon and gastric adenocarcinoma microenvironments.Cancers202012227410.3390/cancers1202027431979136
    [Google Scholar]
  16. ItzkovitzS. LyubimovaA. BlatI.C. MaynardM. van EsJ. LeesJ. JacksT. CleversH. van OudenaardenA. Single-molecule transcript counting of stem-cell markers in the mouse intestine.Nat. Cell Biol.201214110611410.1038/ncb238422119784
    [Google Scholar]
  17. MiddelhoffM. NienhüserH. ValentiG. MaurerH.C. HayakawaY. TakahashiR. KimW. JiangZ. MalagolaE. CutiK. TailorY. ZamechekL.B. RenzB.W. QuanteM. YanK.S. WangT.C. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche.Nat. Commun.202011111110.1038/s41467‑019‑13850‑731913277
    [Google Scholar]
  18. MayR. QuD. WeygantN. ChandrakesanP. AliN. LightfootS.A. LiL. SurebanS.M. HouchenC.W. Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury.Stem Cells201432382282710.1002/stem.156624123696
    [Google Scholar]
  19. PovedaC.M. BrittonC. DevaneyE. McNeillyT.N. GerbeF. JayP. MaizelsR.M. Tuft cells: Detectors, amplifiers, effectors and targets in parasite infection.Cells20231220247710.3390/cells1220247737887321
    [Google Scholar]
  20. OliphantC.J. BarlowJ.L. McKenzieA.N.J. Insights into the initiation of type 2 immune responses.Immunology2011134437838510.1111/j.1365‑2567.2011.03499.x22044021
    [Google Scholar]
  21. AllenJ.E. SutherlandT.E. Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin.Semin. Immunol.201426432934010.1016/j.smim.2014.06.00325028340
    [Google Scholar]
  22. WynnT.A. Type 2 cytokines: Mechanisms and therapeutic strategies.Nat. Rev. Immunol.201515527128210.1038/nri383125882242
    [Google Scholar]
  23. YazdanbakhshM. KremsnerP.G. van ReeR. Allergy, parasites, and the hygiene hypothesis.Science2002296556749049410.1126/science.296.5567.49011964470
    [Google Scholar]
  24. JamesS.L. AbateD. AbateK.H. AbayS.M. AbbafatiC. AbbasiN. AbbastabarH. AllahA.F. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeZ. AberaS.F. AbilO.Z. AbrahaH.N. RaddadA.L.J. RmeilehA.N.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AckermanI.N. AdamuA.A. AdebayoO.M. AdekanmbiV. AdetokunbohO.O. AdibM.G. AdsuarJ.C. AfanviK.A. AfaridehM. AfshinA. AgarwalG. AgesaK.M. AggarwalR. AghayanS.A. AgrawalS. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemijuT. AkseerN. AlyA.Z. EyadhyA.A. MekhlafiA.H.M. RaddadiA.R.M. AlahdabF. AlamK. AlamT. AlashiA. AlavianS.M. AleneK.A. AlijanzadehM. NavaeiA.R. AljunidS.M. AlkerwiA. AllaF. AllebeckP. AlouaniM.M.L. AltirkawiK. GuzmanA.N. AmareA.T. AmindeL.N. AmmarW. AmoakoY.A. AnberN.H. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntonioC.A.T. AnwariP. ArablooJ. ArauzA. AremuO. ArianiF. ArmoonB. ÄrnlövJ. AroraA. ArtamanA. AryalK.K. AsayeshH. AsgharR.J. AtaroZ. AtreS.R. AusloosM. BurgosA.L. AvokpahoE.F.G.A. AwasthiA. QuintanillaA.B.P. AyerR. AzzopardiP.S. BabazadehA. BadaliH. BadawiA. BaliA.G. BallesterosK.E. BallewS.H. BanachM. BanoubJ.A.M. BanstolaA. BaracA. BarbozaM.A. ColloB.S.L. BärnighausenT.W. BarreroL.H. BauneB.T. HejaziB.S. BediN. BeghiE. BehzadifarM. BehzadifarM. BéjotY. BelachewA.B. BelayY.A. BellM.L. BelloA.K. BensenorI.M. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhattaraiS. BhaumikS. BhuttaZ.A. BiadgoB. BijaniA. BikbovB. BilanoV. BililignN. SayeedB.M.S. BisanzioD. BlackerB.F. BlythF.M. OrmB.I.R. BoufousS. BourneR. BradyO.J. BraininM. BrantL.C. BrazinovaA. BreitbordeN.J.K. BrennerH. BriantP.S. BriggsA.M. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BusseR. ButtZ.A. HurtadoC.L. CanoJ. CárdenasR. CarreroJ.J. CarterA. CarvalhoF. OrjuelaC.C.A. RivasC.J. CastroF. LópezC.F. CercyK.M. CerinE. ChaiahY. ChangA.R. ChangH-Y. ChangJ-C. CharlsonF.J. ChattopadhyayA. ChattuV.K. ChaturvediP. ChiangP.P-C. ChinK.L. ChitheerA. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. CicuttiniF.M. CiobanuL.G. CirilloM. ClaroR.M. MateoC.D. CooperC. CoreshJ. CortesiP.A. CortinovisM. CostaM. CousinE. CriquiM.H. CromwellE.A. CrossM. CrumpJ.A. DadiA.F. DandonaL. DandonaR. DarganP.I. DaryaniA. GuptaD.R. NevesD.J. DasaT.T. DaveyG. DavisA.C. DavitoiuD.V. De CourtenB. De La HozF.P. De LeoD. De NeveJ-W. DegefaM.G. DegenhardtL. DeiparineS. DellavalleR.P. DemozG.T. DeribeK. DervenisN. Des JarlaisD.C. DessieG.A. DeyS. DharmaratneS.D. DinberuM.T. DiracM.A. DjalaliniaS. DoanL. DokovaK. DokuD.T. DorseyE.R. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbrahimiH. EbrahimpourS. EchkoM.M. EdvardssonD. EffiongA. EhrlichJ.R. El BcheraouiC. ZakiS.M. El-KhatibZ. ElkoutH. ElyazarI.R.F. EnayatiA. EndriesA.Y. ErB. ErskineH.E. EshratiB. EskandariehS. EsteghamatiA. EsteghamatiS. FakhimH. OmraniF.V. FaramarziM. FareedM. FarhadiF. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarvidM.S. FarzadfarF. FeiginV.L. FentahunN. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerrariA.J. FeyissaG.T. FilipI. FischerF. FitzmauriceC. FoigtN.A. ForemanK.J. FoxJ. FrankT.D. FukumotoT. FullmanN. FürstT. FurtadoJ.M. FutranN.D. GallS. GanjiM. GankpeF.G. BasteiroG.A.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. MalerasG.R. GeramoY.C.D. GethingP.W. GezaeK.E. GhadiriK. FalavarjaniG.K. KasmanG.M. GhimireM. GhoshR. GhoshalA.G. GiampaoliS. GillP.S. GillT.K. GinawiI.A. GiussaniG. GnedovskayaE.V. GoldbergE.M. GoliS. DantésG.H. GonaP.N. GopalaniS.V. GormanT.M. GoulartA.C. GoulartB.N.G. GradaA. GramsM.E. GrossoG. GugnaniH.C. GuoY. GuptaP.C. GuptaR. GuptaR. GuptaT. GyawaliB. HaagsmaJ.A. HachinskiV. NejadH.N. BidgoliH.H. HagosT.B. HailuG.B. MirzaianH.A. MirzaianH.A. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HasanM. HassankhaniH. HassenH.Y. HavmoellerR. HawleyC.N. HayR.J. HayS.I. OmranH.A. HeibatiB. HendrieD. HenokA. HerteliuC. HeydarpourS. HibstuD.T. HoangH.T. HoekH.W. HoffmanH.J. HoleM.K. RadH.E. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HotezP.J. HoyD.G. HsairiM. HtetA.S. HuG. HuangJ.J. HuynhC.K. IburgK.M. IkedaC.T. IleanuB. IlesanmiO.S. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JavanbakhtM. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JohnsonC.O. JonasJ.B. JozwiakJ.J. JungariS.B. JürissonM. KabirZ. KadelR. KahsayA. KalaniR. KanchanT. KaramiM. MatinK.B. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KawakamiN. KaryaniA.K. KeighobadiM.M. KeiyoroP.N. KemmerL. KempG.R. KengneA.P. KerenA. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalilI.A. KhanE.A. KhanM.S. KhanM.A. KhangY-H. KhazaeiM. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KiirithioD.N. KimC-I. KimD. KimP. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. Kissimova-SkarbekK. KivimäkiM. KnudsenA.K.S. KocarnikJ.M. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KyuH.H. LadD.P. LadS.D. LafranconiA. LallooR. LallukkaT. LamiF.H. LansinghV.C. LatifiA. LauK.M-M. LazarusJ.V. LeasherJ.L. LedesmaJ.R. LeeP.H. LeighJ. LeungJ. LeviM. LewyckaS. LiS. LiY. LiaoY. LibenM.L. LimL-L. LimS.S. LiuS. LodhaR. LookerK.J. LopezA.D. LorkowskiS. LotufoP.A. LowN. LozanoR. LucasT.C.D. LucchesiL.R. LuneviciusR. LyonsR.A. MaS. MacarayanE.R.K. MackayM.T. MadottoF. Abd El RazekM.H. Magdy Abd El RazekM. MaghavaniD.P. MahotraN.B. MaiH.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MandaA-L. ManguerraH. ManhertzT. MansourniaM.A. MantovaniL.G. MapomaC.C. MaravillaJ.C. MarcenesW. MarksA. Martins-MeloF.R. MartopulloI. MärzW. MarzanM.B. Mashamba-ThompsonT.P. MassenburgB.B. MathurM.R. MatsushitaK. MaulikP.K. MazidiM. McAlindenC. McGrathJ.J. McKeeM. MehndirattaM.M. MehrotraR. MehtaK.M. MehtaV. Mejia-RodriguezF. MekonenT. MeleseA. MelkuM. MeltzerM. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MensahG.A. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MezerjiN.M.G. MiazgowskiB. MiazgowskiT. MillearA.I. MillerT.R. MiltzB. MiniG.K. MirarefinM. MirrakhimovE.M. MisganawA.T. MitchellP.B. MitikuH. MoazenB. MohajerB. MohammadK.A. MohammadifardN. Mohammadnia-AfrouziM. MohammedM.A. MohammedS. MohebiF. MoitraM. MokdadA.H. MolokhiaM. MonastaL. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. MorawskaL. Moreno VelásquezI. Morgado-Da-CostaJ. MorrisonS.D. MoschosM.M. Mountjoy-VenningW.C. MousaviS.M. MrutsK.B. MucheA.A. MuchieK.F. MuellerU.O. MuhammedO.S. MukhopadhyayS. MullerK. MumfordJ.E. MurhekarM. MusaJ. MusaK.I. MustafaG. NabhanA.F. NagataC. NaghaviM. NaheedA. NahvijouA. NaikG. NaikN. NajafiF. NaldiL. NamH.S. NangiaV. NansseuJ.R. NascimentoB.R. NatarajanG. NeamatiN. NegoiI. NegoiR.I. NeupaneS. NewtonC.R.J. NgunjiriJ.W. NguyenA.Q. NguyenH.T. NguyenH.L.T. NguyenH.T. NguyenL.H. NguyenM. NguyenN.B. NguyenS.H. NicholsE. NingrumD.N.A. NixonM.R. NolutshunguN. NomuraS. NorheimO.F. NorooziM. NorrvingB. NoubiapJ.J. NouriH.R. Nourollahpour ShiadehM. NowrooziM.R. NsoesieE.O. NyasuluP.S. OdellC.M. Ofori-AsensoR. OgboF.A. OhI-H. OladimejiO. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OlsenH.E. OlusanyaB.O. OngK.L. OngS.K. OrenE. OrtizA. OtaE. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PacellaR. PakpourA.H. PanaA. Panda-JonasS. ParisiA. ParkE-K. ParryC.D.H. PatelS. PatiS. PatilS.T. PatleA. PattonG.C. PaturiV.R. PaulsonK.R. PearceN. PereiraD.M. PericoN. PesudovsK. PhamH.Q. PhillipsM.R. PigottD.M. PillayJ.D. PiradovM.A. PirsahebM. PishgarF. Plana-RipollO. PlassD. PolinderS. PopovaS. PostmaM.J. PourshamsA. PoustchiH. PrabhakaranD. PrakashS. PrakashV. PurcellC.A. PurwarM.B. QorbaniM. QuistbergD.A. RadfarA. RafayA. RafieiA. RahimF. RahimiK. Rahimi-MovagharA. Rahimi-MovagharV. RahmanM. RahmanM.H. RahmanM.A. RahmanS.U. RaiR.K. RajatiF. RamU. RanjanP. RantaA. RaoP.C. RawafD.L. RawafS. ReddyK.S. ReinerR.C. ReinigN. ReitsmaM.B. RemuzziG. RenzahoA.M.N. ResnikoffS. RezaeiS. RezaiM.S. RibeiroA.L.P. RobertsN.L.S. RobinsonS.R. RoeverL. RonfaniL. RoshandelG. RostamiA. RothG.A. RoyA. RubagottiE. SachdevP.S. SadatN. SaddikB. SadeghiE. Saeedi MoghaddamS. SafariH. SafariY. Safari-FaramaniR. SafdarianM. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiH.S. SalamN. SalamaJ.S. SalamatiP. SaleemK. SaleemZ. SalimiY. SalomonJ.A. SalviS.S. SalzI. SamyA.M. SanabriaJ. SangY. SantomauroD.F. SantosI.S. SantosJ.V. Santric MilicevicM.M. Sao JoseB.P. SardanaM. SarkerA.R. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SaxenaS. SaylanM. SchaeffnerE. SchmidtM.I. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SchwendickeF. ScottJ.G. SekerijaM. SepanlouS.G. Serván-MoriE. SeyedmousaviS. ShabaninejadH. ShafieesabetA. ShahbaziM. ShaheenA.A. ShaikhM.A. Shams-BeyranvandM. ShamsiM. ShamsizadehM. SharafiH. SharafiK. SharifM. Sharif-AlhoseiniM. SharmaM. SharmaR. SheJ. SheikhA. ShiP. ShibuyaK. ShigematsuM. ShiriR. ShirkoohiR. ShishaniK. ShiueI. ShokranehF. ShomanH. ShrimeM.G. SiS. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilvaJ.P. SilveiraD.G.A. SingamN.S.V. SinghJ.A. SinghN.P. SinghV. SinhaD.N. SkiadaresiE. SlepakE.L.N. SliwaK. SmithD.L. SmithM. Soares FilhoA.M. SobaihB.H. SobhaniS. SobngwiE. SonejiS.S. SoofiM. SoosaraeiM. SorensenR.J.D. SorianoJ.B. SoyiriI.N. SposatoL.A. SreeramareddyC.T. SrinivasanV. StanawayJ.D. SteinD.J. SteinerC. SteinerT.J. StokesM.A. StovnerL.J. SubartM.L. SudaryantoA. SufiyanM.B. SunguyaB.F. SurP.J. SutradharI. SykesB.L. SylteD.O. Tabarés-SeisdedosR. TadakamadlaS.K. TadesseB.T. TandonN. TassewS.G. TavakkoliM. TaveiraN. TaylorH.R. Tehrani-BanihashemiA. TekalignT.G. TekelemedhinS.W. TekleM.G. TemesgenH. TemsahM-H. TemsahO. TerkawiA.S. TeweldemedhinM. ThankappanK.R. ThomasN. TilahunB. ToQ.G. TonelliM. Topor-MadryR. TopouzisF. TorreA.E. Tortajada-GirbésM. TouvierM. Tovani-PaloneM.R. TowbinJ.A. TranB.X. TranK.B. TroegerC.E. TruelsenT.C. TsilimbarisM.K. TsoiD. Tudor CarL. TuzcuE.M. UkwajaK.N. UllahI. UndurragaE.A. UnutzerJ. UpdikeR.L. UsmanM.S. UthmanO.A. VaduganathanM. VaeziA. ValdezP.R. VarugheseS. VasankariT.J. VenketasubramanianN. VillafainaS. ViolanteF.S. VladimirovS.K. VlassovV. VollsetS.E. VosoughiK. VujcicI.S. WagnewF.S. WaheedY. WallerS.G. WangY. WangY-P. WeiderpassE. WeintraubR.G. WeissD.J. WeldegebrealF. WeldegwergsK.G. WerdeckerA. WestT.E. WhitefordH.A. WideckaJ. WijeratneT. WilnerL.B. WilsonS. WinklerA.S. WiyehA.B. WiysongeC.S. WolfeC.D.A. WoolfA.D. WuS. WuY-C. WyperG.M.A. XavierD. XuG. YadgirS. YadollahpourA. JabbariY.S.H. YamadaT. YanL.L. YanoY. YaseriM. YasinY.J. YeshanehA. YimerE.M. YipP. YismaE. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. YousefifardM. YuC. ZadnikV. ZaidiZ. ZamanS.B. ZamaniM. ZareZ. ZelekeA.J. ZenebeZ.M. ZhangK. ZhaoZ. ZhouM. ZodpeyS. ZuckerI. VosT. MurrayC.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017.Lancet2018392101591789185810.1016/S0140‑6736(18)32279‑730496104
    [Google Scholar]
  25. ShiW. XuN. WangX. ValléeI. LiuM. LiuX. Helminth therapy for immune-mediated inflammatory diseases: Current and future perspectives.J. Inflamm. Res.20221547549110.2147/JIR.S34807935087284
    [Google Scholar]
  26. AtagozliT. ElliottD.E. InceM.N. Helminth lessons in inflammatory bowel diseases (IBD).Biomedicines2023114120010.3390/biomedicines1104120037189818
    [Google Scholar]
  27. BohnackerS. TroisiF. JiménezL.R.M. BierenE.J. What can parasites tell us about the pathogenesis and treatment of asthma and allergic diseases.Front. Immunol.202011210610.3389/fimmu.2020.0210633013887
    [Google Scholar]
  28. MaizelsR.M. Regulation of immunity and allergy by helminth parasites.Allergy202075352453410.1111/all.1394431187881
    [Google Scholar]
  29. AbbaszadehH. GhorbaniF. DerakhshaniM. MovassaghpourA. YousefiM. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm.J. Cell. Physiol.2020235270671710.1002/jcp.2900431254289
    [Google Scholar]
  30. CuiL. LuoW. JiangW. LiH. XuJ. LiuX. WangB. WangJ. ChenG. Human umbilical cord mesenchymal stem cell-derived exosomes promote neurological function recovery in rat after traumatic brain injury by inhibiting the activation of microglia and astrocyte.Regen. Ther.20222128228710.1016/j.reth.2022.07.00536092501
    [Google Scholar]
  31. GuX. LiY. ChenK. WangX. WangZ. LianH. LinY. RongX. ChuM. LinJ. GuoX. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway.J. Cell. Mol. Med.202024137515753010.1111/jcmm.1537832424968
    [Google Scholar]
  32. WuH.Y. ZhangX.C. JiaB.B. CaoY. YanK. LiJ.Y. TaoL. JieZ.G. LiuQ.W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway.J. Pharmacol. Sci.2021147114315510.1016/j.jphs.2021.06.00834294366
    [Google Scholar]
  33. WangY. LiuJ. WangH. LvS. LiuQ. LiS. YangX. LiuG. Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through the NLRP3 signaling pathway.Stem Cells202341436838310.1093/stmcls/sxad01036682034
    [Google Scholar]
  34. WeiZ. HangS. OcanseyW.D.K. ZhangZ. WangB. ZhangX. MaoF. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis.J. Nanobiotechnology202321118810.1186/s12951‑023‑01951‑x37303049
    [Google Scholar]
  35. XieX. JiJ. ChenX. XuW. ChenH. ZhuS. WuJ. WuY. SunY. SaiW. LiuZ. XiaoM. BaoB. Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3.Clin. Transl. Oncol.202224351753110.1007/s12094‑021‑02705‑734811696
    [Google Scholar]
  36. ChenY. JinJ. ChenX. XuJ. AnL. RuanH. Exosomal microRNA-342-5p from human umbilical cord mesenchymal stem cells inhibits preeclampsia in rats.Funct. Integr. Genomics20232312710.1007/s10142‑022‑00931‑y36598700
    [Google Scholar]
  37. WangG. YuanJ. CaiX. XuZ. WangJ. OcanseyD.K.W. YanY. QianH. ZhangX. XuW. MaoF. HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice.Clin. Transl. Med.2020102e11310.1002/ctm2.11332564521
    [Google Scholar]
  38. CaiX. ZhangZ. YuanJ. OcanseyD.K.W. TuQ. ZhangX. QianH. XuW. QiuW. MaoF. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis.Stem Cell Res. Ther.202112141610.1186/s13287‑021‑02492‑634294138
    [Google Scholar]
  39. WangY. ZhangY. LuB. XiJ. OcanseyD.K.W. MaoF. HaoD. YanY. hucMSC-ex alleviates IBD-associated intestinal fibrosis by inhibiting ERK phosphorylation in intestinal fibroblasts.Stem Cells Int.2023202311410.1155/2023/282898136845967
    [Google Scholar]
  40. ZhangL. YuanJ. OcanseyK.W.D. LuB. WanA. ChenX. ZhangX. QiuW. MaoF. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease.Int. Immunopharmacol.202211010906610.1016/j.intimp.2022.10906635978512
    [Google Scholar]
  41. YangS. LiangX. SongJ. LiC. LiuA. LuoY. MaH. TanY. ZhangX. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6.Stem Cell Res. Ther.202112131510.1186/s13287‑021‑02404‑834051868
    [Google Scholar]
  42. DongL. WangY. ZhengT. PuY. MaY. QiX. ZhangW. XueF. ShanZ. LiuJ. WangX. MaoC. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice.Stem Cell Res. Ther.2021121410.1186/s13287‑020‑02072‑033407872
    [Google Scholar]
  43. YanF. WuJ. QinH. TangM. RenK. YouC. Effects of exosomes from umbilical cord mesenchymal stem cells on LPS induced acute lung injury.J Hunan Norm Univ202219711
    [Google Scholar]
  44. ZhaoM. RenK. XiongX. XinY. ZouY. MaynardJ.C. KimA. BattistA.P. KoneripalliN. WangY. ChenQ. XinR. YangC. HuangR. YuJ. HuangZ. ZhangZ. WangH. WangD. XiaoY. SalgadoO.C. JarjourN.N. HogquistK.A. ReveloX.S. BurlingameA.L. GaoX. von MoltkeJ. LinZ. RuanH.B. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C.Immunity2022554623638.e510.1016/j.immuni.2022.03.00935385697
    [Google Scholar]
  45. XiongX. YangC. HeW.Q. YuJ. XinY. ZhangX. HuangR. MaH. XuS. LiZ. MaJ. XuL. WangQ. RenK. WuX.S. VakocC.R. ZhongJ. ZhongG. ZhuX. SongY. RuanH.B. WangQ. Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity.Nat. Commun.2022131519210.1038/s41467‑022‑32846‑436057627
    [Google Scholar]
  46. JohnstonC.J.C. RobertsonE. HarcusY. GraingerJ.R. CoakleyG. SmythD.J. McSorleyH.J. MaizelsR. Cultivation of Heligmosomoides polygyrus: An immunomodulatory nematode parasite and its secreted products.J. Vis. Exp.2015e5241298e5241210.3791/5241225867600
    [Google Scholar]
  47. FengP. ChaiJ. YiH. ReddingK. MargolskeeR.F. HuangL. WangH. Aggravated gut inflammation in mice lacking the taste signaling protein α-gustducin.Brain Behav. Immun.201871232710.1016/j.bbi.2018.04.01029678794
    [Google Scholar]
  48. FlamarA.L. KloseC.S.N. MoellerJ.B. MahlakõivT. BessmanN.J. ZhangW. MoriyamaS. TrticaS.V. RankinL.C. PutzelG.G. RodewaldH.R. HeZ. ChenL. LiraS.A. KarsentyG. ArtisD. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cCell-mediated immunity.Immunity2020524606619.e610.1016/j.immuni.2020.02.00932160524
    [Google Scholar]
  49. GelmezM.Y. OktelikF.B. TahraliI. YilmazV. KucuksezerU.C. AkdenizN. CetinE.A. KoseM. CinarC. OguzF.S. BesisikS. KoksalanK. OzdemirO. SenkalN. GulA. TuzunE. DenizG. Immune modulation as a consequence of SARS-CoV-2 infection.Front. Immunol.20221395439110.3389/fimmu.2022.95439136110850
    [Google Scholar]
  50. DrureyC. LindholmH.T. CoakleyG. PovedaM.C. LöserS. DoolanR. GerbeF. JayP. HarrisN. OudhoffM.J. MaizelsR.M. Intestinal epithelial tuft cell induction is negated by a murine helminth and its secreted products.J. Exp. Med.20222191e2021114010.1084/jem.2021114034779829
    [Google Scholar]
  51. HuW.C. The central THαβ immunity associated cCytokine: IL-10 has a strong anti-tumor ability toward established cancer models in vivo and toward cancer cells in vitro. Front. Oncol.20211165555410.3389/fonc.2021.65555433912464
    [Google Scholar]
  52. FrickeW.F. SongY. WangA.J. SmithA. GrinchukV. PeiC. MaB. LuN. UrbanJ.F.Jr DonohueS.T. ZhaoA. ZhaoA. Type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis.Microbiome2015314010.1186/s40168‑015‑0103‑826377648
    [Google Scholar]
  53. DwyerG.K. D’CruzL.M. TurnquistH.R. Emerging Functions of IL-33 in Homeostasis and Immunity.Annu. Rev. Immunol.2022401154310.1146/annurev‑immunol‑101320‑12424334985928
    [Google Scholar]
  54. ZhangY. DavisC. ShahS. HughesD. RyanJ.C. AltomareD. PeñaM.M.O. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis.Mol. Carcinog.201756127228710.1002/mc.2249127120577
    [Google Scholar]
  55. NechamaM. KwonJ. WeiS. KyiT.A. WelnerR.S. DovB.I.Z. ArredouaniM.S. AsaraJ.M. ChenC.H. TsaiC.Y. NelsonK.F. KobayashiK.S. IsraelE. ZhouX.Z. NicholsonL.K. LuK.P. The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation.Nat. Commun.201891160310.1038/s41467‑018‑03886‑629686383
    [Google Scholar]
  56. TanZ. LiuQ. JiangR. LvL. ShotoS.S. MailletI. QuesniauxV. TangJ. ZhangW. SunB. RyffelB. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells.Cell. Mol. Immunol.201815438839810.1038/cmi.2016.6328194023
    [Google Scholar]
  57. XiR. MontagueJ. LinX. LuC. LeiW. TanakaK. ZhangY.V. XuX. ZhengX. ZhouX. UrbanJ.F.Jr IwatsukiK. MargolskeeR.F. MatsumotoI. TizzanoM. LiJ. JiangP. Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity.Proc. Natl. Acad. Sci.202111830e202630711810.1073/pnas.202630711834290141
    [Google Scholar]
  58. de KouchkovskyD.A. GhoshS. RothlinC.V. Negative Regulation of Type 2 Immunity.Trends Immunol.201738315416710.1016/j.it.2016.12.00228082101
    [Google Scholar]
  59. WeinstockJ.V. ElliottD.E. Helminths and the IBD hygiene hypothesis.Inflamm. Bowel Dis.200915112813310.1002/ibd.2063318680198
    [Google Scholar]
  60. PangJ. DingJ. ZhangL. ZhangY. YangY. BaiX. LiuX. JinX. GuoH. YangY. LiuM. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice.Int. Immunopharmacol.20208610669910.1016/j.intimp.2020.10669932570037
    [Google Scholar]
  61. SquillaroT. PelusoG. GalderisiU. Clinical trials with mesenchymal stem cells: An update.Cell Transplant.201625582984810.3727/096368915X68962226423725
    [Google Scholar]
  62. LiT. XiaM. GaoY. ChenY. XuY. Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy.Expert Opin. Biol. Ther.20151591293130610.1517/14712598.2015.105152826067213
    [Google Scholar]
  63. ShinJ.W. RyuS. HamJ. JungK. LeeS. ChungD.H. KangH.R. KimH.Y. Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells.Mol. Cells202144858059010.14348/molcells.2021.010134462397
    [Google Scholar]
  64. LudwigA.K. GiebelB. Exosomes: Small vesicles participating in intercellular communication.Int. J. Biochem. Cell Biol.2012441111510.1016/j.biocel.2011.10.00522024155
    [Google Scholar]
  65. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  66. GuesciniM. GenedaniS. StocchiV. AgnatiL.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA.J. Neural Transm.201011711410.1007/s00702‑009‑0288‑819680595
    [Google Scholar]
  67. FergusonS.W. NguyenJ. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity.J. Control. Release201622817919010.1016/j.jconrel.2016.02.03726941033
    [Google Scholar]
  68. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  69. MaoF. WuY. TangX. KangJ. ZhangB. YanY. QianH. ZhangX. XuW. Exosomes derived from human umbilical cord mesenchymal stem cells relieve iInflammatory bowel disease in mice.BioMed Res. Int.2017201711210.1155/2017/535676028589143
    [Google Scholar]
  70. WuY. QiuW. XuX. KangJ. WangJ. WenY. TangX. YanY. QianH. ZhangX. XuW. MaoF. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination.Am. J. Transl. Res.20181072026203630093940
    [Google Scholar]
  71. BillippT.E. NadjsombatiM.S. von MoltkeJ. Tuning tuft cells: New ligands and effector functions reveal tissue-specific function.Curr. Opin. Immunol.2021689810610.1016/j.coi.2020.09.00633166855
    [Google Scholar]
  72. GoenkaS. KaplanM.H. Transcriptional regulation by STAT6.Immunol. Res.2011501879610.1007/s12026‑011‑8205‑221442426
    [Google Scholar]
  73. XuY. TangX. FangA. YanJ. OcanseyK.W.D. ZhangX. MaoF. HucMSC-Ex carrying miR-203a-3p.2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis.Int. Immunopharmacol.202211010892510.1016/j.intimp.2022.10892535724605
    [Google Scholar]
  74. WangJ. PeiB. YanJ. XuX. FangA.N. OcanseyD.K.W. ZhangX. QianH. XuW. MaoF. hucMSC-Derived Exosomes Alleviate the Deterioration of Colitis via the miR-146a/SUMO1 Axis.Mol. Pharm.202219248449310.1021/acs.molpharmaceut.1c0045035084199
    [Google Scholar]
  75. LiangX. LiC. SongJ. LiuA. WangC. WangW. KangY. SunD. QianJ. ZhangX. HucMSC-exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via Wnt signaling pathway.Int. J. Nanomedicine2023182799281810.2147/IJN.S40217937256205
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X314032240429113240
Loading
/content/journals/cscr/10.2174/011574888X314032240429113240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test