Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Cartilage has intrinsically limited healing power, and regeneration of cartilage damages has remained a challenge. Secreted products of mesenchymal stem cells have shown a new therapeutic strategies for cartilage injuries. Also it has been observed that low frequency electromagnetic field plays a key role in biological processes.

Objective

This research was performed to investigate the synergic effect of mesenchymal stem cell-derived exosomes and low frequency electromagnetic field on chondrogenic differentiation.

Methods

In this study, mesenchymal stem cell-derived exosomes were identified using AFM, SEM, TEM microscopy, and DLS method. Cells were treated in chondrogenic medium by exosomes, low frequency electromagnetic field, and the synergy of both. The cell survival was examined using MTT and Annexin methods, and cartilage differentiation was confirmed by Alcian blue staining. The expression of Sox-9, Acan, Col 2a1 and Col 10a1 genes was examined Real-Time PCR technique on day 14 post-treatment.

Results

The results confirmed the presence of exosomes with an approximate size of less than 100 nm. The results of Alcian blue revealed greater expression of glycosaminoglycans in the synergic treatment group compared to the other groups. Real-time PCR showed a significant increase in the expression of Sox-9, Acan, and Col 2a1 genes, as well as a significant reduction of Col 10a1 gene expression in the synergic treatment group compared to other groups.

Conclusion

This study indicated that the synergic effect of exosome and low-frequency electromagnetic fields would lead to enhanced chondrogenic differentiation, which can be further explored in future clinical studies.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X314834240628110545
2024-07-08
2025-05-01
Loading full text...

Full text loading...

References

  1. FernandesT.L. GomollA.H. LattermannC. HernandezA.J. BuenoD.F. AmanoM.T. Macrophage: A potential target on cartilage regeneration.Front. Immunol.20201111110.3389/fimmu.2020.0011132117263
    [Google Scholar]
  2. LiuY. MaY. ZhangJ. YuanY. WangJ. Exosomes: A novel therapeutic agent for cartilage and bone tissue regeneration.Dose Response201917410.1177/155932581989270231857803
    [Google Scholar]
  3. XuX. LiangY. LiX. OuyangK. WangM. CaoT. LiW. LiuJ. XiongJ. LiB. XiaJ. WangD. DuanL. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration.Biomaterials202126912053910.1016/j.biomaterials.2020.12053933243424
    [Google Scholar]
  4. WangJ-F ZhuZ SunL ShaoS-k MaB-d WangY-k Exosomes derived from mesenchymal stem cells inhibit catabolism in human chondrocytes by activating autophagy via inhibition of the NF-Κb pathway.J. Women’s Health Dev.2022525426310.21203/rs.3.rs‑83574/v1
    [Google Scholar]
  5. TangW. ZhangH. LiuD. JiaoF. Icariin accelerates cartilage defect repair by promoting chondrogenic differentiation of BMSCs under conditions of oxygen-glucose deprivation.J. Cell. Mol. Med.202226120221510.1111/jcmm.1707334859578
    [Google Scholar]
  6. WuK.C. WengH.K. HsuY.S. HuangP.J. WangY.K. Aqueous extract of Arctium lappa L. root (burdock) enhances chondrogenesis in human bone marrow-derived mesenchymal stem cells. BMC Complement. Med. Ther.202020136410.1186/s12906‑020‑03158‑133228629
    [Google Scholar]
  7. AgrawalP. PramanikK. BiswasA. Chondrogenic differentiation of mesenchymal stem cells on silk fibroin: Chitosan-glucosamine scaffold in dynamic culture.Regen. Med.201813554555810.2217/rme‑2017‑015930124377
    [Google Scholar]
  8. ChenW. WangC. GaoY. WuY. WuG. ShiX. DuY. DengH. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration.Carbohydr. Polym.202022911554410.1016/j.carbpol.2019.11554431826435
    [Google Scholar]
  9. KimY.G. ParkU. ParkB.J. KimK. Exosome-mediated bidirectional signaling between mesenchymal stem cells and chondrocytes for enhanced chondrogenesis.Biotechnol. Bioprocess Eng.; BBE201924573474410.1007/s12257‑019‑0332‑y
    [Google Scholar]
  10. ZhouX. LiangH. HuX. AnJ. DingS. YuS. LiuC. LiF. XuY. BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation.Cell Death Discov.20206114210.1038/s41420‑020‑00374‑z33303743
    [Google Scholar]
  11. MahmoudiM. Taghavi-FarahabadiM. RezaeiN. HashemiS.M. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis.Int. Immunopharmacol.20197410568910.1016/j.intimp.2019.10568931207404
    [Google Scholar]
  12. ZhaiM. ZhuY. YangM. MaoC. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles.Adv. Sci.2020719200133410.1002/advs.20200133433042751
    [Google Scholar]
  13. PengH. JiW. ZhaoR. YangJ. LuZ. LiY. ZhangX. Exosome: A significant nano-scale drug delivery carrier.J. Mater. Chem. B Mater. Biol. Med.20208347591760810.1039/D0TB01499K32697267
    [Google Scholar]
  14. WangX. BotchwayB.O.A. ZhangY. YuanJ. LiuX. Combinational treatment of bioscaffolds and extracellular vesicles in spinal cord injury.Front. Mol. Neurosci.2019128110.3389/fnmol.2019.0008131031590
    [Google Scholar]
  15. SeongY. MoonJ. KimJ. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields.Life Sci.20141021162710.1016/j.lfs.2014.02.02224603130
    [Google Scholar]
  16. ParateD. KadirN.D. CelikC. LeeE.H. HuiJ.H.P. Franco-ObregónA. YangZ. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration.Stem Cell Res. Ther.20201114610.1186/s13287‑020‑1566‑532014064
    [Google Scholar]
  17. BahararaJ. FarrokhyarS. EidiA. The effect of exosomes derived from bone marrow stem cells on the levels of estradiol and testosterone secreted from the ovarian granulosa cells of immature NMRI mice.Dev. Biol.202012418
    [Google Scholar]
  18. LanY. JinQ. XieH. YanC. YeY. ZhaoX. ChenZ. XieZ. Exosomes enhance Adhesion and osteogenic differentiation of initial bone marrow stem cells on titanium surfaces.Front. Cell Dev. Biol.2020858323410.3389/fcell.2020.58323433224950
    [Google Scholar]
  19. SunL. LiD. SongK. WeiJ. YaoS. LiZ. SuX. JuX. ChaoL. DengX. KongB. LiL. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro.Sci. Rep.201771255210.1038/s41598‑017‑02786‑x28566720
    [Google Scholar]
  20. HeL. HeT. XingJ. ZhouQ. FanL. LiuC. ChenY. WuD. TianZ. LiuB. RongL. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis.Stem Cell Res. Ther.202011127610.1186/s13287‑020‑01781‑w32650828
    [Google Scholar]
  21. Kyung KimD. LeeS. KimM. JeongY. LeeS. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells.Chem. Eng. J.202140612708010.1016/j.cej.2020.127080
    [Google Scholar]
  22. SalekF. BahararaJ. ShahrokhabadiK.N. AminiE. The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells.Theriogenology202117311212210.1016/j.theriogenology.2021.08.00134371438
    [Google Scholar]
  23. Pužar DominkušP. StenovecM. SitarS. LasičE. ZorecR. PlemenitašA. ŽagarE. KreftM. LenassiM. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.Biochim. Biophys. Acta Biomembr.2018186061350136110.1016/j.bbamem.2018.03.01329551275
    [Google Scholar]
  24. DehghaniM. GulvinS.M. FlaxJ. GaborskiT.R. Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size.BioRxiv201953202810.1101/532028
    [Google Scholar]
  25. NooshabadiV.T. VerdiJ. Ebrahimi-BaroughS. MowlaJ. AtlasiM.A. MazoochiT. Endometrial mesenchymal stem cell-derived exosome promote endothelial cell angiogenesis in a dose dependent manner: A new perspective on regenerative medicine and cell-free therapy.Arch. Neurosci.201964
    [Google Scholar]
  26. SakhraniN. StefaniR.M. SettiS. CadossiR. AteshianG.A. HungC.T. Pulsed electromagnetic field therapy and direct current electric field modulation promote the migration of fibroblast-like synoviocytes to accelerate cartilage repair in vitro.Appl. Sci.202212231240610.3390/app12231240636970107
    [Google Scholar]
  27. KlabukovI. AtiakshinD. KoganE. IgnatyukM. KrasheninnikovM. ZharkovN. YakimovaA. GrinevichV. PryanikovP. ParshinV. SosinD. KostinA.A. ShegayP. KaprinA.D. BaranovskiiD. Post-implantation inflammatory responses to xenogeneic tissue-engineered cartilage implanted in rabbit trachea: The role of cultured chondrocytes in the modification of inflammation.Int. J. Mol. Sci.202324231678310.3390/ijms24231678338069106
    [Google Scholar]
  28. XiaoP. ZhuZ. DuC. ZengY. LiaoJ. ChengQ. ChenH. ZhaoC. HuangW. Silencing Smad7 potentiates BMP2-induced chondrogenic differentiation and inhibits endochondral ossification in human synovial-derived mesenchymal stromal cells.Stem Cell Res. Ther.202112113210.1186/s13287‑021‑02202‑233588941
    [Google Scholar]
  29. MaziarzA. KocanB. BesterM. BudzikS. CholewaM. OchiyaT. BanasA. How electromagnetic fields can influence adult stem cells: Positive and negative impacts.Stem Cell Res. Ther.2016715410.1186/s13287‑016‑0312‑527086866
    [Google Scholar]
  30. CadossiR MassariL Racine-AvilaJ AaronR K Pulsed electromagnetic field stimulation of bone healing and joint preservation: Cellular mechanisms of skeletal response.JAAOS Global Res. Rev.202045e1900155
    [Google Scholar]
  31. NammianP. Asadi-YousefabadS.L. DaneshiS. SheikhhaM.H. TabeiS.M.B. RazbanV. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy.Stem Cell Res. Ther.20211215810.1186/s13287‑020‑02110‑x33436054
    [Google Scholar]
  32. CuiG. GuoH. LiH. ZhaiY. GongZ. WuJ. LiuJ. DongY. HouS. LiuJ. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease.Immun. Ageing20191611010.1186/s12979‑019‑0150‑231114624
    [Google Scholar]
  33. SungJ YangH-M ParkJ ChoiG-S JohJ-W KwonC Isolation and characterization of mouse mesenchymal stem cells.Transplant Proc.20084082649265410.1016/j.transproceed.2008.08.009
    [Google Scholar]
  34. ChenX. ShiY. XueP. MaX. LiJ. ZhangJ. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3.Arthritis Res. Ther.202022125610.1186/s13075‑020‑02325‑633109253
    [Google Scholar]
  35. ShabbirA. CoxA. Rodriguez-MenocalL. SalgadoM. BadiavasE.V. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro.Stem Cells Dev.201524141635164710.1089/scd.2014.031625867197
    [Google Scholar]
  36. FanW. QianF. MaQ. ZhangP. ChenT. ChenC. ZhangY. DengP. ZhouZ. YuZ. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells.Int. J. Clin. Exp. Med.2015857394740426221281
    [Google Scholar]
  37. SamieiM. AghazadehZ. AbdolahiniaE.D. VahdatiA. DaneshvarS. NoghaniA. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells.Acta Odontol. Scand.202078749450010.1080/00016357.2020.173465532191156
    [Google Scholar]
  38. MirzaeiA. SaburiE. EnderamiS.E. Barati BagherabadM. EnderamiS.E. ChokamiM. Shapouri MoghadamA. SalariniaR. ArdeshirylajimiA. MansouriV. SoleimanifarF. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold.Artif. Cells Nanomed. Biotechnol.20194713058306610.1080/21691401.2019.164515431339375
    [Google Scholar]
  39. Taghavi-FarahabadiM. MahmoudiM. RezaeiN. HashemiS.M. Wharton’s Jelly mesenchymal stem cells exosomes and conditioned media increased neutrophil lifespan and phagocytosis capacity.Immunol. Invest.20215081042105710.1080/08820139.2020.180172032777963
    [Google Scholar]
  40. ChenJ. ChenJ. ChengY. FuY. ZhaoH. TangM. ZhaoH. LinN. ShiX. LeiY. WangS. HuangL. WuW. TanJ. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation.Stem Cell Res. Ther.20201119710.1186/s13287‑020‑01610‑032127037
    [Google Scholar]
  41. CeccarelliG. BloiseN. MantelliM. GastaldiG. FassinaL. Cusella De AngelisM.G. FerrariD. ImbrianiM. VisaiL. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages.Biores. Open Access20132428329410.1089/biores.2013.001623914335
    [Google Scholar]
  42. MarmottiA. PerettiG.M. MattiaS. MangiaviniL. de GirolamoL. ViganòM. SettiS. BonasiaD.E. BlonnaD. BellatoE. FerreroG. CastoldiF. Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: A potential strategy for tendon repair—An in vitro study.Stem Cells Int.2018201811810.1155/2018/904823730154867
    [Google Scholar]
  43. Mayer-WagnerS. PassbergerA. SieversB. AignerJ. SummerB. SchiergensT.S. JanssonV. MüllerP.E. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells.Bioelectromagnetics201132428329010.1002/bem.2063321452358
    [Google Scholar]
  44. ZhaoC. ChenJ.Y. PengW.M. YuanB. BiQ. XuY.J. Exosomes from adipose-derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR-145 and miR-221.Mol. Med. Rep.20202141881188910.3892/mmr.2020.1098232319611
    [Google Scholar]
  45. BaiJ. ZhangY. ZhengX. HuangM. ChengW. ShanH. GaoX. ZhangM. ShengL. DaiJ. DengY. ZhangH. ZhouX. LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes.Cell Death Dis.202011976310.1038/s41419‑020‑02945‑532938906
    [Google Scholar]
  46. YangY.H. WenC.S. KuoY.L. FuS.L. LinT.Y. ChenC.M. WuP.K. ChenW.M. WangJ.Y. GuiLu-ErXian Glue extract promotes mesenchymal stem cells (MSC)-Induced chondrogenesis via exosomes release and delays aging in the MSC senescence process.J. Ethnopharmacol.202331711678410.1016/j.jep.2023.11678437321426
    [Google Scholar]
  47. MaK. ZhuB. WangZ. CaiP. HeM. YeD. YanG. ZhengL. YangL. ZhaoJ. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy.J. Nanobiotechnology202018116310.1186/s12951‑020‑00708‑033167997
    [Google Scholar]
  48. IorioJ. BagniG. DevescoviV. DurantiR. De BiaseP. ArcangeliA. DurantiC. Ultra-low electromagnetic fields application on in vitro cartilage regeneration: A pilot study to improve treatment of osteoarticular diseases.Appl. Sci.2022129411610.3390/app12094116
    [Google Scholar]
  49. LiY. LiL. LiY. FengL. WangB. WangM. WangH. ZhuM. YangY. WaldorffE.I. ZhangN. ViohlI. LinS. BianL. LeeW.Y.W. LiG. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field.Bioact. Mater.20232231232410.1016/j.bioactmat.2022.10.01036263100
    [Google Scholar]
  50. TongX. XuY. ZhangT. DengC. XunJ. SunD. XuD. Exosomes from CD133+ human urine-derived stem cells combined adhesive hydrogel facilitate rotator cuff healing by mediating bone marrow mesenchymal stem cells.J. Orthop. Translat.20233910011210.1016/j.jot.2023.02.00236879794
    [Google Scholar]
  51. GandolfiM.G. GardinC. ZampariniF. FerroniL. EspostiM.D. ParchiG. ErcanB. ManzoliL. FavaF. FabbriP. PratiC. ZavanB. Mineral-doped poly (L-lactide) acid scaffolds enriched with exosomes improve osteogenic commitment of human adipose-derived mesenchymal stem cells.Nanomaterials202010343210.3390/nano1003043232121340
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X314834240628110545
Loading
/content/journals/cscr/10.2174/011574888X314834240628110545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test