Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

maturation has been considered an approach to mature oocytes derived from women with polycystic ovary syndrome (PCOS). It is suggested that the IVM of oocytes may benefit from mesenchymal stem cells derived conditioned medium (CM-MSC).

Objective

The purpose of this study was to determine the efficacy of a cocktail of menstrual blood stem cell (MenSCs)-derived secretome, along with follicular fluid and melatonin, in oocyte maturation and embryo development in PCOS.

Methods

Four hundred left germinal vesicle oocytes were collected from 100 PCOS patients and randomly divided into four treatment groups: 1) control, 2) secretome, 3) follicular fluid, and 4) melatonin. Oocyte maturation, fertilization rate, and embryo development were monitored, as well as the expression levels of oocyte-secreted factors (GDF9- BMP15), oocyte maturation (MPK3), and apoptosis (BAX-Bcl2).

Results

The rate of oocyte maturation increased in all test groups, but only the results for the SEC group were significant (P= 0.032). There were no significant differences in oocyte fertilization and embryo yield among groups. However, the quality of embryos significantly increased in the melatonin group compared to the control. Cytoplasmic maturation was confirmed by the expression of oocyte maturation-related genes using Real-time PCR. Additionally, the expression level of BCL-2 was significantly higher in the SEC-FF-MEL group than in the control group ( ≤ 0.01).

Conclusion

Enrichment of IVM media using MenSCs-secretome, particularly along with melatonin, could be an effective strategy to improve oocyte maturation and embryo development in PCOS.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X298902240523103352
2024-06-11
2025-05-03
Loading full text...

Full text loading...

References

  1. CostelloM.F. MissoM.L. WongJ. HartR. RombautsL. MelderA. NormanR.J. TeedeH.J. The treatment of infertility in polycystic ovary syndrome: A brief update.Aust. N. Z. J. Obstet. Gynaecol.201252440040310.1111/j.1479‑828X.2012.01448.x22639834
    [Google Scholar]
  2. HartR. HickeyM. FranksS. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome.Best Pract. Res. Clin. Obstet. Gynaecol.200418567168310.1016/j.bpobgyn.2004.05.00115380140
    [Google Scholar]
  3. TannusS. HatirnazS. TanJ. AtaB. TanS.L. HatirnazE. Kenat-PektasM. DahanM.H. Predictive factors for live birth after in vitro maturation of oocytes in women with polycystic ovary syndrome.Arch. Gynecol. Obstet.2018297119920410.1007/s00404‑017‑4561‑z28993961
    [Google Scholar]
  4. WallsM.L. HunterT. RyanJ.P. KeelanJ.A. NathanE. HartR.J. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: A comparative analysis of fresh, frozen and cumulative cycle outcomes.Hum. Reprod.2015301889610.1093/humrep/deu24825355587
    [Google Scholar]
  5. YangH. KolbenT. MeisterS. PaulC. van DorpJ. ErenS. KuhnC. RahmehM. MahnerS. JeschkeU. von SchönfeldtV. Factors influencing the in vitro maturation (IVM) of human oocyte.Biomedicines2021912190410.3390/biomedicines912190434944731
    [Google Scholar]
  6. RoseB. NguyenK. BrownS. The effect of in vitro maturation (IVM) protocol changes on measures of oocyte/embryo competence.Reproduc Med202341657310.3390/reprodmed401000818251368
    [Google Scholar]
  7. MoradiA. GhasemianF. MashayekhiF. In vitro oocyte maturation rate of mice with polycystic ovarian syndrome in the presence of α-linolenic acid antioxidant.Zahedan J. Res. Med. Sci.202022210.5812/zjrms.95100
    [Google Scholar]
  8. MohsenzadehM. KhaliliM.A. AnbariF. VatanparastM. High efficiency of homemade culture medium supplemented with GDF9-β in human oocytes for rescue in vitro maturation.Clin. Exp. Reprod. Med.202249214915810.5653/cerm.2021.0505035698778
    [Google Scholar]
  9. YangZ.Y. ChianR.C. Development of in vitro maturation techniques for clinical applications.Fertil. Steril.2017108457758410.1016/j.fertnstert.2017.08.02028965552
    [Google Scholar]
  10. LiY. LiuH. YuQ. LiuH. HuangT. ZhaoS. MaJ. ZhaoH. Growth hormone promotes in vitro maturation of human oocytes.Front. Endocrinol.20191048510.3389/fendo.2019.0048531396155
    [Google Scholar]
  11. VuongL.N. LeA.H. HoV.N.A. PhamT.D. SanchezF. RomeroS. De VosM. HoT.M. GilchristR.B. SmitzJ. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome.J. Assist. Reprod. Genet.202037234735710.1007/s10815‑019‑01677‑631902102
    [Google Scholar]
  12. Da BroiM.G. GiorgiV.S.I. WangF. KeefeD.L. AlbertiniD. NavarroP.A. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications.J. Assist. Reprod. Genet.201835573575110.1007/s10815‑018‑1143‑329497954
    [Google Scholar]
  13. BrincaA.T. RamalhinhoA.C. SousaÂ. OlianiA.H. BreitenfeldL. PassarinhaL.A. GallardoE. Follicular fluid: A powerful tool for the understanding and diagnosis of polycystic ovary syndrome.Biomedicines2022106125410.3390/biomedicines1006125435740276
    [Google Scholar]
  14. De LeoV. MusacchioM.C. CappelliV. MassaroM.G. MorganteG. PetragliaF. Genetic, hormonal and metabolic aspects of PCOS: An update.Reprod. Biol. Endocrinol.20161413810.1186/s12958‑016‑0173‑x27423183
    [Google Scholar]
  15. RudnickaE. SuchtaK. GrymowiczM. Calik-KsepkaA. SmolarczykK. DuszewskaA.M. SmolarczykR. MeczekalskiB. Chronic low grade inflammation in pathogenesis of PCOS.Int. J. Mol. Sci.2021227378910.3390/ijms2207378933917519
    [Google Scholar]
  16. KhicharA. GuptaS. MishraS. MeenaM. Assessment of inflammatory markers in women with PCOS and their correlation with insulin resistance.Clin. Lab.20216711/202110.7754/Clin.Lab.2021.21031034758238
    [Google Scholar]
  17. KowaltowskiA.J. VercesiA.E. Mitochondrial damage induced by conditions of oxidative stress.Free Radic. Biol. Med.1999263-446347110.1016/S0891‑5849(98)00216‑09895239
    [Google Scholar]
  18. NakamuraY. YamagataY. SuginoN. TakayamaH. KatoH. Nitric oxide inhibits oocyte meiotic maturation.Biol. Reprod.20026751588159210.1095/biolreprod.102.00526412390892
    [Google Scholar]
  19. HashimotoS. MinamiN. YamadaM. ImaiH. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: Relevance to intracellular reactive oxygen species and glutathione contents.Mol. Reprod. Dev.200056452052610.1002/1098‑2795(200008)56:4<520::AID‑MRD10>3.0.CO;2‑010911402
    [Google Scholar]
  20. Virant-KlunI. BauerC. StåhlbergA. KubistaM. SkutellaT. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes.Reprod. Biomed. Online201836550852310.1016/j.rbmo.2018.01.01129503212
    [Google Scholar]
  21. MadkourA. BouamoudN. KaarouchI. LouanjliN. SaadaniB. AssouS. AboulmaouahibS. SefriouiO. AmzaziS. CopinH. BenkhalifaM. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome.Fertil. Steril.2018110471071910.1016/j.fertnstert.2018.04.03830196968
    [Google Scholar]
  22. BenkhalifaM. MadkourA. LouanjliN. BouamoudN. SaadaniB. KaarouchI. ChahineH. SefriouiO. MervielP. CopinH. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: Contribution to embryo development and IVF outcome.Expert Rev. Proteomics201512440742310.1586/14789450.2015.105678226098221
    [Google Scholar]
  23. StavelyR. NurgaliK. The emerging antioxidant paradigm of mesenchymal stem cell therapy.Stem Cells Transl. Med.202099985100610.1002/sctm.19‑044632497410
    [Google Scholar]
  24. DemeestereI. CentnerJ. GervyC. EnglertY. DelbaereA. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents.Reproduction2005130214715610.1530/rep.1.0064816049152
    [Google Scholar]
  25. KhanmohammadiN. SameniH.R. MohammadiM. PakdelA. MirmohammadkhaniM. ParsaieH. ZarbakhshS. Effect of transplantation of bone marrow stromal cell-conditioned medium on ovarian function, morphology and cell death in cyclophosphamide-treated rats.Cell J.2018201101829308613
    [Google Scholar]
  26. BrankinV. MitchellM.R.P. WebbB. HunterM.G. Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro.Reprod. Biol. Endocrinol.2003115510.1186/1477‑7827‑1‑5512941156
    [Google Scholar]
  27. ChangZ. Mesenchymal stem cells in preclinical infertility cytotherapy: A retrospective review.Stem Cells Int.20212021888236810.1155/2021/8882368
    [Google Scholar]
  28. FazeliZ. AbedindoA. OmraniM.D. GhaderianS.M.H. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review.Stem Cell Rev.201814111210.1007/s12015‑017‑9765‑x28884412
    [Google Scholar]
  29. Fathi-KazerooniM. TavoosidanaG. Taghizadeh-JahedM. KhanjaniS. GolshahiH. GargettC.E. EdalatkhahH. KazemnejadS. Comparative restoration of acute liver failure by menstrual blood stem cells compared with bone marrow stem cells in mice model.Cytotherapy201719121474149010.1016/j.jcyt.2017.08.02229107739
    [Google Scholar]
  30. Fathi-KazerooniM. Fattah-GhaziS. DarziM. MakaremJ. NasiriR. SalahshourF. Dehghan-ManshadiS.A. KazemnejadS. Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat severe COVID-19 patients: Clinical trial phase I & II.Stem Cell Res. Ther.20221319610.1186/s13287‑022‑02771‑w35255966
    [Google Scholar]
  31. KhanjaniS. KhanmohammadiM. ZarnaniA.H. TalebiS. EdalatkhahH. EghtesadS. NikokarI. KazemnejadS. Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells.J. Tissue Eng. Regen. Med.2015911E124E13410.1002/term.171523505217
    [Google Scholar]
  32. ChenL. QuJ. XiangC. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine.Stem Cell Res. Ther.201910111010.1186/s13287‑018‑1105‑930606242
    [Google Scholar]
  33. FaramarziH. MehrabaniD. FardM. AkhavanM. ZareS. BakhshalizadehS. ManafiA. KazemnejadS. ShiraziR. The potential of menstrual blood-derived stem cells in differentiation to epidermal lineage: A preliminary report.World J. Plast. Surg.201651263127308237
    [Google Scholar]
  34. ChenL. Menstrual blood-derived stem cells: Toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases.Stem Cell Res. Ther.201910111210.1186/s13287‑018‑1105‑930606242
    [Google Scholar]
  35. BozorgmehrM. GurungS. DarziS. NikooS. KazemnejadS. ZarnaniA.H. GargettC.E. Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application.Front. Cell Dev. Biol.2020849710.3389/fcell.2020.0049732742977
    [Google Scholar]
  36. LiuT. HuangY. ZhangJ. QinW. ChiH. ChenJ. YuZ. ChenC. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model.Stem Cells Dev.201423131548155710.1089/scd.2013.037124593672
    [Google Scholar]
  37. ManshadiM.D. NavidS. HoshinoY. DaneshiE. NooryP. AbbasiM. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure.Microsc. Res. Tech.201982663564210.1002/jemt.2312030582244
    [Google Scholar]
  38. LaiD. WangF. YaoX. ZhangQ. WuX. XiangC. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure.J. Transl. Med.201513115510.1186/s12967‑015‑0516‑y25964118
    [Google Scholar]
  39. ZafardoustS. KazemnejadS. DarziM. Fathi-KazerooniM. SaffarianZ. KhaliliN. EdalatkhahH. MirzadeganE. KhorasaniS. Intraovarian administration of autologous menstrual blood derived-mesenchymal stromal cells in women with premature ovarian failure.Arch. Med. Res.202354213514410.1016/j.arcmed.2022.12.01536702667
    [Google Scholar]
  40. ZafardoustS. KazemnejadS. DarziM. Fathi-KazerooniM. RastegariH. MohammadzadehA. Improvement of pregnancy rate and live birth rate in poor ovarian responders by intraovarian administration of autologous menstrual blood derived-mesenchymal stromal cells: Phase I/II clinical trial.Stem Cell Rev. Rep.202016475576310.1007/s12015‑020‑09969‑632198596
    [Google Scholar]
  41. ChenL. QuJ. MeiQ. ChenX. FangY. ChenL. LiY. XiangC. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine.Stem Cell Res. Ther.202112143310.1186/s13287‑021‑02511‑634344458
    [Google Scholar]
  42. MarinaroF. PericuestaE. Sánchez-MargalloF.M. CasadoJ.G. ÁlvarezV. MatillaE. HernándezN. BlázquezR. González-FernándezL. Gutiérrez-AdánA. Macías-GarcíaB. Extracellular vesicles derived from endometrial human mesenchymal stem cells improve IVF outcome in an aged murine model.Reprod. Domest. Anim.201853S2Suppl. 2464910.1111/rda.1331430238659
    [Google Scholar]
  43. QiuP. BaiY. LiuC. HeX. CaoH. LiM. ZhuH. HuaJ. A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat.Histochem. Cell Biol.2012138459360310.1007/s00418‑012‑0975‑722684927
    [Google Scholar]
  44. SoltaniA. AbrounS. Rezazadeh ValojerdiM. VahidianfarB. HosseiniE.S. The effect of follicular fluid on the proliferation and osteoblastic differentiation of human bone marrow mesenchymal stem cells.Int. J. Med. Lab.20196317218310.18502/ijml.v6i3.1398
    [Google Scholar]
  45. ZolfagharM. MirzaeianL. BeikiB. NajiT. MoiniA. Eftekhari-YazdiP. AkbarinejadV. VernengoA.J. FathiR. Wharton’s jelly derived mesenchymal stem cells differentiate into oocyte like cells in vitro by follicular fluid and cumulus cells conditioned medium.Heliyon2020610e0499210.1016/j.heliyon.2020.e0499233088934
    [Google Scholar]
  46. ZavarehS. KarimiI. SalehniaM. RahnamaA. Effect of in vitro maturation technique and alpha lipoic acid supplementation on oocyte maturation rate: Focus on oxidative status of oocytes.Int. J. Fertil. Steril.20169444245126985332
    [Google Scholar]
  47. LaX. ZhaoJ. WangZ. Clinical application of in vitro maturation of oocytes.Embryology-Theory and PracticeIntechOpen2019
    [Google Scholar]
  48. RaK. ParkS.C. LeeB.C. Female reproductive aging and oxidative stress: Mesenchymal stem cell conditioned medium as a promising antioxidant.Int. J. Mol. Sci.2023245505310.3390/ijms2405505336902477
    [Google Scholar]
  49. AliA. BenkhalifaM. MironP. In vitro maturation of oocytes: Biological aspects.Reprod. Biomed. Online200613343744610.1016/S1472‑6483(10)61450‑216984779
    [Google Scholar]
  50. GardnerD.K. LaneM. StevensJ. SchlenkerT. SchoolcraftW.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer.Fertil. Steril.20007361155115810.1016/S0015‑0282(00)00518‑510856474
    [Google Scholar]
  51. FanH.Y. SunQ.Y. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals.Biol. Reprod.200470353554710.1095/biolreprod.103.02283014613897
    [Google Scholar]
  52. ZhangD.X. ParkW.J. SunS.C. XuY.N. LiY.H. CuiX.S. KimN.H. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation.J. Reprod. Dev.2011571495610.1262/jrd.10‑087H20834195
    [Google Scholar]
  53. HaryadiD. SadewaA.H. MubarikaS. DasukiD. The potential application of conditioned media-mesenchymal stem cells on human oocyte maturation in assisted reproductive technology: A quasi-experimental based-study at Dr. Sardjito General Hospital, Yogyakarta, Indonesia.Bali Med. J.201983741748
    [Google Scholar]
  54. JafarzadehH. NazarianH. Ghaffari NovinM. Shams MofaraheZ. EiniF. PiryaeiA. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media.J. Cell. Biochem.201811912103651037510.1002/jcb.2738030171726
    [Google Scholar]
  55. AkbariH. Eftekhar VaghefiS. ShahediA. HabibzadehV. MirshekariT. GanjizadeganA. MollaeiH. AhmadiM. Nematollahi-MahaniS. Mesenchymal stem cell-conditioned medium modulates apoptotic and stress-related gene expression, ameliorates maturation and allows for the development of immature human oocytes after artificial activation.Genes201781237110.3390/genes812037129292728
    [Google Scholar]
  56. ZhaoP. QiaoJ. HuangS. ZhangY. LiuS. YanL.Y. HsuehA.J.W. DuanE.K. Gonadotrophin-induced paracrine regulation of human oocyte maturation by BDNF and GDNF secreted by granulosa cells.Hum. Reprod.201126369570210.1093/humrep/deq39021227937
    [Google Scholar]
  57. ShokriM.R. BozorgmehrM. GhanavatinejadA. FalakR. AleahmadM. KazemnejadS. ShokriF. ZarnaniA.H. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells.Sci. Rep.2019911000710.1038/s41598‑019‑46316‑331292483
    [Google Scholar]
  58. RienziL. BalabanB. EbnerT. MandelbaumJ. The oocyte.Hum. Reprod.201227Suppl. 1i2i2110.1093/humrep/des20022811312
    [Google Scholar]
  59. DoroudiR. ChangiziZ. Noureddin Nematollahi-MahaniS. Effects of melatonin and human follicular fluid supplementation of in vitro maturation medium on mouse vitrified germinal vesicle oocytes: A laboratory study.Int. J. Reprod. Biomed.2021191088989810.18502/ijrm.v19i10.982134805729
    [Google Scholar]
  60. DongY.Q. ChenC.Q. HuangY.Q. LiuD. ZhangX.Q. LiuF.H. In vitro maturation of human oocytes maintaining good development potential for rescue intracytoplasmic sperm injection with fresh sperm.World J. Clin. Cases20221072166217310.12998/wjcc.v10.i7.216635321156
    [Google Scholar]
  61. AminiM.S. NaderiM.M. ShiraziA. AminafsharM. Borjian BoroujeniS. PournouraliM. MalekpourA. Bioactive materials derived from menstrual blood stem cells enhance the quality of in vitro bovine embryos.Avicenna J. Med. Biotechnol.202214428729310.18502/ajmb.v14i4.1048336504564
    [Google Scholar]
  62. AlamM.H. MiyanoT. Interaction between growing oocytes and granulosa cells in vitro.Reprod. Med. Biol.2020191132310.1002/rmb2.1229231956281
    [Google Scholar]
  63. JiangY. HeY. PanX. WangP. YuanX. MaB. Advances in oocyte maturation in vivo and in vitro in mammals.Int. J. Mol. Sci.20232410905910.3390/ijms2410905937240406
    [Google Scholar]
  64. LeeS.H. Effects of human endothelial progenitor cell and its conditioned medium on oocyte development and subsequent embryo development.Int. J. Mol. Sci.20202121798310.3390/ijms2121798333121114
    [Google Scholar]
  65. SanfinsA. RodriguesP. AlbertiniD.F. GDF-9 and BMP-15 direct the follicle symphony.J. Assist. Reprod. Genet.201835101741175010.1007/s10815‑018‑1268‑430039232
    [Google Scholar]
  66. SánchezF. LolicatoF. RomeroS. De VosM. Van RanstH. VerheyenG. AnckaertE. SmitzJ.E.J. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield.Hum. Reprod.201732102056206810.1093/humrep/dex26228938744
    [Google Scholar]
  67. NikmardF. HosseiniE. BakhtiyariM. AshrafiM. AmidiF. AflatoonianR. Effects of melatonin on oocyte maturation in PCOS mouse model.Anim. Sci. J.201788458659210.1111/asj.1267527530294
    [Google Scholar]
  68. LinT. LeeJ.E. KangJ.W. OqaniR.K. ChoE.S. KimS.B. Il JinD. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects.Mol. Reprod. Dev.2018858-966568110.1002/mrd.2305230106229
    [Google Scholar]
  69. ZhaoX.M. HaoH.S. DuW.H. ZhaoS.J. WangH.Y. WangN. WangD. LiuY. QinT. ZhuH.B. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes.J. Pineal Res.201660213214110.1111/jpi.1229026485053
    [Google Scholar]
  70. WeiL.N. LiangX.Y. FangC. ZhangM.F. Abnormal expression of growth differentiation factor 9 and bone morphogenetic protein 15 in stimulated oocytes during maturation from women with polycystic ovary syndrome.Fertil. Steril.201196246446810.1016/j.fertnstert.2011.05.03621669410
    [Google Scholar]
  71. LiY. LiR.Q. OuS.B. ZhangN.F. RenL. WeiL.N. ZhangQ.X. YangD.Z. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans.Reprod. Biol. Endocrinol.20141218110.1186/1477‑7827‑12‑8125139161
    [Google Scholar]
  72. CadenasJ. PorsS.E. KumarA. KalraB. KristensenS.G. AndersenC.Y. MamsenL.S. Concentrations of oocyte secreted GDF9 and BMP15 decrease with MII transition during human IVM.Reprod. Biol. Endocrinol.202220112610.1186/s12958‑022‑01000‑635986324
    [Google Scholar]
  73. NtostisP. IlesD. KokkaliG. VaxevanoglouT. KanavakisE. PantouA. HuntrissJ. PantosK. PictonH.M. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes.Hum. Reprod.2021371809210.1093/humrep/deab22634755188
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X298902240523103352
Loading
/content/journals/cscr/10.2174/011574888X298902240523103352
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): GV-oocyte; IVM; melatonin; Menstrual blood stem cells; PCO; secretome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test