Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Objective

Parkinson’s disease (PD) is a progressive neurodegenerative disorder with symptoms including tremor and bradykinesia, while traditional dopamine replacement therapy and hypothalamic deep brain stimulation can temporarily relieve patients’ symptoms, they cannot cure the disease. Hence, discovering new methods is crucial to designing more effective therapeutic approaches to address the condition. In our previous study, we found that exosomes (Exos) derived from human umbilical cord mesenchymal stem cells (hucMSCs) repaired a PD model by inducing dopaminergic neuron autophagy and inhibiting microglia. However, it is not clear whether its therapeutic effect is related to inhibiting apoptosis by inhibiting caspase-3 expression.

Methods

Three intervention schemes were used concerning previous literature, and the dosage of each scheme is the same, with different dosing intervals and treatment courses and to compare the aspects of behavior, histomorphology, and biochemical indexes. To predict and determine target gene enrichment, high-throughput sequencing and miRNA expression profiling of exosomes, GO and KEGG analysis, and Western blot were used.

Results

Exos labeled with PKH67 were found to reach the substantia nigra through the blood- brain barrier and existed in the liver and spleen. 6-hydroxydopamine (6-OHDA) induced PD rats were treated with Exos every two days for one month, which alleviated the asymmetric rotation induced by morphine, reduced the loss of dopaminergic neurons in the substantia nigra, and increased dopamine levels in the striatum. The effect became more significant as the treatment time was extended to two months. These results suggest that hucMSCs-Exos can inhibit the 6-OHDA-induced neuron damage in PD rats, and its neuroprotective effects may be mediated by inhibiting cell apoptosis. Through high-throughput sequencing of miRNA, potential targets for Exos to inhibit apoptosis may be BAD, IKBKB, TRAF2, BCL2, and CYCS.

Conclusion

The above results indicate that hucMSCs-Exos can inhibit 6-OHDA-induced damage in PD rats, and its neuroprotective effect may be mediated by inhibiting cell apoptosis.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X301827240613063513
2024-06-27
2025-05-01
Loading full text...

Full text loading...

References

  1. SimonD.K. TannerC.M. BrundinP. Parkinson disease epidemiology, pathology, genetics, and pathophysiology.Clin. Geriatr. Med.202036111210.1016/j.cger.2019.08.00231733690
    [Google Scholar]
  2. CrambK.M.L. Beccano-KellyD. CraggS.J. Wade-MartinsR. Impaired dopamine release in Parkinson’s disease.Brain202314683117313210.1093/brain/awad06436864664
    [Google Scholar]
  3. ChuY. HirstW.D. FederoffH.J. HarmsA.S. StoesslA.J. KordowerJ.H. Nigrostriatal tau pathology in parkinsonism and Parkinson’s disease.Brain2024147244445710.1093/brain/awad38838006313
    [Google Scholar]
  4. AbrishamdarM. JalaliM.S. YazdanfarN. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against Parkinson’s disease.Neurol. Sci.20234472277228910.1007/s10072‑023‑06706‑y36949298
    [Google Scholar]
  5. ChhabraP. Pre-clinical aspects and contemporary treatments of parkinson's disease.CNS Neurol Disord Drug Target2023
    [Google Scholar]
  6. LetaV. KlingelhoeferL. LongardnerK. CampagnoloM. LeventH.Ç. AureliF. MettaV. BhidayasiriR. Chung-FayeG. Falup-PecurariuC. StocchiF. JennerP. WarneckeT. Ray ChaudhuriK. Gastrointestinal barriers to levodopa transport and absorption in Parkinson’s disease.Eur. J. Neurol.20233051465148010.1111/ene.1573436757008
    [Google Scholar]
  7. SunX. XueL. WangZ. XieA. Update to the treatment of parkinson’s disease based on the gut-brain axis mechanism.Front. Neurosci.20221687823910.3389/fnins.2022.87823935873830
    [Google Scholar]
  8. YuH. SunT. AnJ. WenL. LiuF. BuZ. CuiY. FengJ. Potential roles of exosomes in Parkinson’s disease: From pathogenesis, diagnosis, and treatment to prognosis.Front. Cell Dev. Biol.202088610.3389/fcell.2020.0008632154247
    [Google Scholar]
  9. AdamH GopinathSCB Md ArshadMK An update on pathogenesis and clinical scenario for Parkinson's disease: Diagnosis and treatment.3 BIOTECH2023135142
    [Google Scholar]
  10. GemayelJ. ChakerD. El HachemG. MhannaM. SalemehR. HannaC. HarbF. IbrahimA. CheblyA. KhalilC. Mesenchymal stem cells-derived secretome and extracellular vesicles: Perspective and challenges in cancer therapy and clinical applications.Clin. Transl. Oncol.20232572056206810.1007/s12094‑023‑03115‑736808392
    [Google Scholar]
  11. JanockovaJ. SlovinskaL. HarvanovaD. SpakovaT. RosochaJ. New therapeutic approaches of mesenchymal stem cells-derived exosomes.J. Biomed. Sci.20212813910.1186/s12929‑021‑00736‑434030679
    [Google Scholar]
  12. XunianZ. KalluriR. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes.Cancer Sci.202011193100311010.1111/cas.1456332639675
    [Google Scholar]
  13. YuB. ZhangX. LiX. Exosomes derived from mesenchymal stem cells.Int. J. Mol. Sci.20141534142415710.3390/ijms1503414224608926
    [Google Scholar]
  14. BaharlooiH. AzimiM. SalehiZ. IzadM. Mesenchymal stem cell-derived exosomes: A promising therapeutic ace card to address autoimmune diseases.Int. J. Stem Cells2020131132310.15283/ijsc1910831887849
    [Google Scholar]
  15. TanF. LiX. WangZ. LiJ. ShahzadK. ZhengJ. Clinical applications of stem cell-derived exosomes.Signal Transduct. Target. Ther.2024911710.1038/s41392‑023‑01704‑038212307
    [Google Scholar]
  16. BanksW.A. SharmaP. BullockK.M. HansenK.M. LudwigN. WhitesideT.L. Transport of extracellular vesicles across the blood- brain barrier: Brain pharmacokinetics and effects of inflammation.Int. J. Mol. Sci.20202112440710.3390/ijms2112440732575812
    [Google Scholar]
  17. GaoP. LiX. DuX. LiuS. XuY. Diagnostic and therapeutic potential of exosomes in neurodegenerative diseases.Front. Aging Neurosci.20211379086310.3389/fnagi.2021.79086334975460
    [Google Scholar]
  18. ZhuangZ. LiuM. LuoJ. ZhangX. DaiZ. ZhangB. ChenH. XueJ. HeM. XuH. LiuA. Exosomes derived from bone marrow mesenchymal stem cells attenuate neurological damage in traumatic brain injury by alleviating glutamate-mediated excitotoxicity.Exp. Neurol.202235711418210.1016/j.expneurol.2022.11418235901975
    [Google Scholar]
  19. HarrellC.R. VolarevicV. DjonovV. VolarevicA. Therapeutic potential of exosomes derived from adipose tissue-sourced mesenchymal stem cells in the treatment of neural and retinal diseases.Int. J. Mol. Sci.2022239448710.3390/ijms2309448735562878
    [Google Scholar]
  20. WangJ. YangL. The role of exosomes in central nervous system tissue regeneration and repair.Biomed. Mater.202318505200310.1088/1748‑605X/ace39c37399812
    [Google Scholar]
  21. GotohS. KawaboriM. FujimuraM. Intranasal administration of stem cell-derived exosomes for central nervous system diseases.Neural Regen. Res.20241961249125510.4103/1673‑5374.38587537905871
    [Google Scholar]
  22. JarmalavičiūtėA. TunaitisV. PivoraitėU. VenalisA. PivoriūnasA. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis.Cytotherapy201517793293910.1016/j.jcyt.2014.07.01325981557
    [Google Scholar]
  23. XueC. LiX. BaL. ZhangM. YangY. GaoY. SunZ. HanQ. ZhaoR.C. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease.Aging Dis.20211251211122210.14336/AD.2020.122134341703
    [Google Scholar]
  24. ChenH.X. LiangF.C. GuP. XuB.L. XuH.J. WangW.T. HouJ.Y. XieD.X. ChaiX.Q. AnS.J. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy.Cell Death Dis.202011428810.1038/s41419‑020‑2473‑532341347
    [Google Scholar]
  25. ChaiX-Q. AnS-J. ZhangZ-X. ZhouY-J. GuP. ZhaoW. ChenH-X. WuR-Y. ZhouL-Y. CuiQ-Z. SunS-K. ZhangL-Q. ZhangK. XuH-J. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson’s disease and neuronal damage through inhibition of microglia.Neural Regen. Res.202318102291230010.4103/1673‑5374.36830037056150
    [Google Scholar]
  26. QuL. LinB. ZengW. FanC. WuH. GeY. LiQ. LiC. WeiY. XinJ. WangX. LiuD. CangC. Lysosomal K + channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson’s disease.EMBO Rep.2022239e5323410.15252/embr.20215323435913019
    [Google Scholar]
  27. SaadhM.J. FaisalA. AdilM. ZabibahR.S. MamadalievA.M. JawadM.J. AlsaikhanF. FarhoodB. Parkinson’s disease and MicroRNAs: A duel between inhibition and stimulation of apoptosis in neuronal cells.Mol. Neurobiol.202410.1007/s12035‑024‑04111‑w38520611
    [Google Scholar]
  28. YangX. ZhangM. WeiM. WangA. DengY. CaoH. MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax.Metab. Brain Dis.202035462763510.1007/s11011‑020‑00546‑x32140823
    [Google Scholar]
  29. PanJ. WuT. ChenB. WuH. Exosomes derived from endothelial progenitor cells ameliorate glyoxylate deprivation (OGD)-induced neuronal apoptosis by delivering miR-221-3p.Histol. Histopathol.202338442343036190183
    [Google Scholar]
  30. CaiY. ZhangM.M. WangM. JiangZ.H. TanZ.G. Bone marrow-derived mesenchymal stem cell-derived exosomes containing gli1 alleviate microglial activation and neuronal apoptosis in vitro and in a mouse Parkinson disease model by direct inhibition of Sp1 Signaling.J. Neuropathol. Exp. Neurol.202281752253410.1093/jnen/nlac03735609560
    [Google Scholar]
  31. FowlerA.J. MoussaC.E.H. Activating autophagy as a therapeutic strategy for Parkinson’s disease.CNS Drugs201832111110.1007/s40263‑018‑0497‑529492779
    [Google Scholar]
  32. CarmanL.S. GageF.H. ShultsC.W. Partial lesion of the substantia nigra: Relation between extent of lesion and rotational behavior.Brain Res.1991553227528310.1016/0006‑8993(91)90835‑J1681983
    [Google Scholar]
  33. NiuJ. XieJ. GuoK. ZhangX. XiaF. ZhaoX. SongL. ZhugeD. LiX. ZhaoY. HuangZ. Efficient treatment of Parkinson’s disease using ultrasonography-guided rhFGF20 proteoliposomes.Drug Deliv.20182511560156910.1080/10717544.2018.148297230043675
    [Google Scholar]
  34. KumariN. AgrawalS. KumariR. SharmaD. LuthraP.M. Neuroprotective effect of IDPU (1-(7-imino-3-propyl-2,3-dihydrothiazolo[4,5-d]pyrimidin-6(7H)-yl)urea) in 6-OHDA induced rodent model of Hemiparkinson’s disease.Neurosci. Lett.2018675748210.1016/j.neulet.2018.03.04029567422
    [Google Scholar]
  35. ZhuG. ChenG. ShiL. FengJ. WangY. YeC. FengW. NiuJ. HuangZ. PEGylated rhFGF-2 conveys long-term neuroprotection and improves neuronal function in a rat model of Parkinson’s disease.Mol. Neurobiol.2015511324210.1007/s12035‑014‑8750‑524930088
    [Google Scholar]
  36. TollesonC.M. FangJ.Y. Advances in the mechanisms of Parkinson’s disease.Discov. Med.20131580616623375015
    [Google Scholar]
  37. EarlT. JridiA. ThulinP.C. ZornM. McKeeK.E. MitrovichK. MorettiP. AlshaikhJ. KassavetisP. CortezM.M. LamotteG. Effect of levodopa on postural blood pressure changes in Parkinson’s disease disease: A randomized crossover study.Clin. Auton. Res.202434111712410.1007/s10286‑024‑01024‑538429568
    [Google Scholar]
  38. PirkerW. KatzenschlagerR. HallettM. PoeweW. Pharmacological treatment of tremor in Parkinson’s disease revisited.J. Parkinsons Dis.202313212714410.3233/JPD‑22506036847017
    [Google Scholar]
  39. XiongY. JiL. HeL. ChenL. ZhangX. ChenZ. LiX. ZhaoH. ShirakawaM. YuanC. MaY. GuoH. Effects of levodopa therapy on cerebral arteries and perfusion in Parkinson’s disease patients.J. Magn. Reson. Imaging202255394395310.1002/jmri.2790334477268
    [Google Scholar]
  40. AbbasiM.H. EsmaeiliS. HabibiS.A. ShahidiG.A. Dilemma in Parkinson’s treatment; levodopa monotherapy may be the best choice.J. Clin. Neurosci.20207921922310.1016/j.jocn.2020.06.02433070900
    [Google Scholar]
  41. AstradssonA. JenkinsB.G. ChoiJ.K. HallettP.J. LevesqueM.A. McDowellJ.S. BrownellA.L. SpealmanR.D. IsacsonO. The blood–brain barrier is intact after levodopa-induced dyskinesias in parkinsonian primates—Evidence from in vivo neuroimaging studies.Neurobiol. Dis.200935334835110.1016/j.nbd.2009.05.01819501164
    [Google Scholar]
  42. ChaudhuriK.R. RizosA. SethiK.D. Motor and nonmotor complications in Parkinson’s disease: An argument for continuous drug delivery?J. Neural Transm.201312091305132010.1007/s00702‑013‑0981‑523456290
    [Google Scholar]
  43. HongJ.Y. SunwooM.K. YoonJ.H. KangS.Y. SohnY.H. LeeP.H. KimS.H. Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease.PLoS One2020158e023747210.1371/journal.pone.023747232817705
    [Google Scholar]
  44. SonntagK.C. SongB. LeeN. JungJ.H. ChaY. LeblancP. NeffC. KongS.W. CarterB.S. SchweitzerJ. KimK.S. Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects.Prog. Neurobiol.201816812010.1016/j.pneurobio.2018.04.00529653250
    [Google Scholar]
  45. ZengX. QinH. Stem cell transplantation for Parkinson’s disease: Current challenges and perspectives.Aging Dis.20221361652166310.14336/AD.2022.031236465172
    [Google Scholar]
  46. XueJ. WuY. BaoY. ZhaoM. LiF. SunJ. SunY. WangJ. ChenL. MaoY. SchweitzerJ.S. SongB. Clinical considerations in Parkinson’s disease cell therapy.Ageing Res. Rev.20238310179210.1016/j.arr.2022.10179236402405
    [Google Scholar]
  47. MorizaneA. Cell therapy for Parkinson’s disease with induced pluripotent stem cells.Inflamm. Regen.20234311610.1186/s41232‑023‑00269‑336843101
    [Google Scholar]
  48. DlouhyB.J. AweO. RaoR.C. KirbyP.A. HitchonP.W. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient.J. Neurosurg. Spine201421461862210.3171/2014.5.SPINE1399225002238
    [Google Scholar]
  49. ShiJ.X. ZhangK.Z. Advancements in autologous stem cell transplantation for Parkinson’s Disease.Curr Stem Cell Res Ther2023
    [Google Scholar]
  50. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  51. FatimaS. QaiserA. AndleebS. HashmiA.H. ManzoorS. Navigating the brain: The role of exosomal shuttles in precision therapeutics.Front. Neurol.202414132421610.3389/fneur.2023.132421638304326
    [Google Scholar]
  52. AbdelsalamM. AhmedM. OsaidZ. HamoudiR. HaratiR. Insights into exosome transport through the blood–brain barrier and the potential therapeutical applications in brain diseases.Pharmaceuticals202316457110.3390/ph1604057137111328
    [Google Scholar]
  53. OsaidZ. HaiderM. HamoudiR. HaratiR. Exosomes interactions with the blood–brain barrier: Implications for cerebral disorders and therapeutics.Int. J. Mol. Sci.202324211563510.3390/ijms24211563537958619
    [Google Scholar]
  54. SunT. DingZ.X. LuoX. LiuQ.S. ChengY. Blood exosomes have neuroprotective effects in a mouse model of Parkinson’s disease.Oxid. Med. Cell. Longev.2020202011410.1155/2020/380747633294121
    [Google Scholar]
  55. QiN. ZhangS. ZhouX. DuanW. GaoD. FengJ. LiA. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect.J. Nanobiotechnology202119144610.1186/s12951‑021‑01180‑034949198
    [Google Scholar]
  56. GuZ. YinZ. SongP. WuY. HeY. ZhuM. WuZ. ZhaoS. HuangH. WangH. TongC. QiZ. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells.Front. Bioeng. Biotechnol.20221094972410.3389/fbioe.2022.94972436091443
    [Google Scholar]
  57. YeoR.W.Y. LaiR.C. ZhangB. TanS.S. YinY. TehB.J. LimS.K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery.Adv. Drug Deliv. Rev.201365333634110.1016/j.addr.2012.07.00122780955
    [Google Scholar]
  58. AdelipourM. LubmanD.M. KimJ. Potential applications of mesenchymal stem cells and their derived exosomes in regenerative medicine.Expert Opin. Biol. Ther.202323649150710.1080/14712598.2023.221120337147781
    [Google Scholar]
  59. ShokatZ. AliA. AhmedU. JavedM.R. QasimM. TariqM. AhmedM.R. MasoudM.S. Mesenchymal stem cells: From regeneration to drug delivery systems.Crit. Rev. Ther. Drug Carrier Syst.2021383337310.1615/CritRevTherDrugCarrierSyst.202103391634348018
    [Google Scholar]
  60. ZhouX. LiZ. SunW. YangG. XingC. YuanL. Delivery efficacy differences of intravenous and intraperitoneal injection of exosomes: Perspectives from tracking dye labeled and miRNA encapsulated exosomes.Curr. Drug Deliv.202017318619410.2174/156720181766620012216325131969102
    [Google Scholar]
  61. JungK.O. KimY.H. ChungS.J. LeeC.H. RheeS. PratxG. ChungJ.K. YounH. Identification of lymphatic and hematogenous routes of rapidly labeled radioactive and fluorescent exosomes through highly sensitive multimodal imaging.Int. J. Mol. Sci.20202121785010.3390/ijms2121785033105908
    [Google Scholar]
  62. Sanchez-CatasusC.A. BohnenN.I. D’CruzN. MüllerM.L.T.M. Striatal acetylcholine–dopamine imbalance in Parkinson disease: in Vivo neuroimaging study with dual-tracer PET and dopaminergic PET–informed correlational tractography.J. Nucl. Med.202263343844510.2967/jnumed.121.26193934272323
    [Google Scholar]
  63. van der ZeeS. KanelP. GerritsenM.J.J. BoertienJ.M. SlompA.C. MüllerM.L.T.M. BohnenN.I. SpikmanJ.M. van LaarT. Altered cholinergic innervation in de novo Parkinson’s disease with and without cognitive impairment.Mov. Disord.202237471372310.1002/mds.2891335037719
    [Google Scholar]
  64. SunX. LiX. ZhangL. ZhangY. QiX. WangS. QinC. Longitudinal assessment of motor function following the unilateral intrastriatal 6-hydroxydopamine lesion model in mice.Front. Behav. Neurosci.20221698221810.3389/fnbeh.2022.98221836505729
    [Google Scholar]
  65. GanX. RenJ. HuangT. WuK. LiS. DuanY. WangZ. SiW. WeiJ. Pathological α-synuclein accumulation, CSF metabolites changes and brain microstructures in cynomolgus monkeys treated with 6-hydroxydopamine.Neurotoxicology20239417218110.1016/j.neuro.2022.12.00136476940
    [Google Scholar]
  66. AsadiM. TaghizadehS. KavianiE. VakiliO. Taheri-AnganehM. TahamtanM. SavardashtakiA. Caspase-3: Structure, function, and biotechnological aspects.Biotechnol. Appl. Biochem.20226941633164510.1002/bab.223334342377
    [Google Scholar]
  67. JiangY. LiuJ. ChenL. JinY. ZhangG. LinZ. DuS. FuZ. ChenT. QinY. SunX. Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease.Brain Res.2019172214633110.1016/j.brainres.2019.14633131301273
    [Google Scholar]
  68. BhattacharyyaP. BiswasA. BiswasS.C. Brain-enriched miR-128: Reduced in exosomes from Parkinson’s patient plasma, improves synaptic integrity, and prevents 6-OHDA mediated neuronal apoptosis.Front. Cell. Neurosci.202316103790310.3389/fncel.2022.103790336713778
    [Google Scholar]
  69. FengY. LuY. Immunomodulatory effects of dopamine in inflammatory diseases.Front. Immunol.20211266310210.3389/fimmu.2021.66310233897712
    [Google Scholar]
  70. PanickerN. KamT.I. WangH. NeifertS. ChouS.C. KumarM. BrahmachariS. JhaldiyalA. HinkleJ.T. AkkentliF. MaoX. XuE. KaruppagounderS.S. HsuE.T. KangS.U. PletnikovaO. TroncosoJ. DawsonV.L. DawsonT.M. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease.Neuron20221101524222437.e910.1016/j.neuron.2022.05.00935654037
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X301827240613063513
Loading
/content/journals/cscr/10.2174/011574888X301827240613063513
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test