Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Objective

While clinical trials exploring stem cells for regenerating periodontal tissues have demonstrated positive results, there is a limited availability of systematic literature reviews on this subject. To gain a more comprehensive understanding of stem cell interventions in periodontal regeneration, this meta-analysis is undertaken to assess the beneficial effects of stem cells in human periodontal regeneration.

Methods

“PubMed,” “PubMed Central,” “Web of Science,” “Embase Scopus” “Wanfang,” and “CNKI,” were used to extract clinical studies related to the utilization of stem cells in repairing periodontal tissue defects. This search included studies published up until October 5, 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell-free therapy for regenerating periodontal tissues. Meta-analysis was conducted using Review Manager software (version 5.4).

Results

This meta-analysis synthesized findings from 15 selected studies investigating the impact of stem cell interventions on periodontal tissue regeneration. The “stem cell” group displayed a substantial reduction in clinical attachment level (CAL) compared to the “control” group within 3 to 12 months post-surgery. However, no significant differences in CAL gain were found between groups. Probing pocket depth (PPD) significantly decreased in the “stem cell” group compared to the “control” group, particularly for follow-up periods exceeding 6 months, and dental stem cell treatment exhibited notable improvements. Conversely, no significant differences were observed in PPD reduction. Gingival recession (GR) significantly decreased in the “stem cell” group compared to the “control” group at 3 to 12 months post-surgery. No significant differences were observed in GR reduction between groups. No significant differences were identified in cementoenamel junction-bone distance reduction, infrabony defect reduction, or bone mineral density increase between the two groups. Furthermore, no significant changes were observed in the gingival index, plaque index, or width of keratinized gingiva.

Conclusion

In conclusion, while stem cell-based therapy offers promising prospects for periodontal defect treatment, there are notable limitations in the current body of research. Larger, multicenter, double-blind RCTs with robust methodologies are needed to provide more reliable evidence for stem cell-based intervention in periodontitis.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X294900240130095058
2024-02-12
2025-05-01
Loading full text...

Full text loading...

References

  1. MantessoA. NörJ.E. Stem cells in clinical dentistry.J. Am. Dent. Assoc.20231541210481057 37804275
    [Google Scholar]
  2. KwonT. LamsterI.B. LevinL. Current concepts in the management of periodontitis.Int. Dent. J.202171646247610.1111/idj.12630 34839889
    [Google Scholar]
  3. SlotsJ. Periodontitis: Facts, fallacies and the future.Periodontol. 2000201775172310.1111/prd.12221 28758294
    [Google Scholar]
  4. JiaL. HanN. DuJ. GuoL. LuoZ. LiuY. Pathogenesis of important virulence factors of porphyromonas gingivalisvia toll-like receptors.Front. Cell. Infect. Microbiol.2019926210.3389/fcimb.2019.00262 31380305
    [Google Scholar]
  5. ZhangD. ChenL. LiS. GuZ. YanJ. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.Innate Immun.20081429910710.1177/1753425907088244 18713726
    [Google Scholar]
  6. PoschG. AndrukhovO. VinogradovE. Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia.Clin. Vaccine Immunol.201320694595310.1128/CVI.00139‑13 23616409
    [Google Scholar]
  7. SharmaA. Virulence mechanisms of Tannerella forsythia.Periodontol. 2000201054110611610.1111/j.1600‑0757.2009.00332.x 20712636
    [Google Scholar]
  8. NussbaumG. Ben-AdiS. GenzlerT. SelaM. RosenG. Involvement of Toll-like receptors 2 and 4 in the innate immune response to Treponema denticola and its outer sheath components.Infect. Immun.20097793939394710.1128/IAI.00488‑09 19596768
    [Google Scholar]
  9. GrenierD. Binding properties of Treponema denticola lipooligosaccharide.J. Oral Microbiol.2013512151710.3402/jom.v5i0.21517 24049558
    [Google Scholar]
  10. YinL. LiX. HouJ. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair.Jpn. Dent. Sci. Rev.20225833634710.1016/j.jdsr.2022.10.002 36340583
    [Google Scholar]
  11. ChenY. HuangZ. TangZ. More than just a periodontal pathogen –the research progress on fusobacterium nucleatum.Front. Cell. Infect. Microbiol.20221281531810.3389/fcimb.2022.815318 35186795
    [Google Scholar]
  12. BelibasakisG.N. MaulaT. BaoK. Virulence and pathogenicity properties of aggregatibacter actinomycetemcomitans.Pathogens20198422210.3390/pathogens8040222 31698835
    [Google Scholar]
  13. NaqviA.R. FordhamJ.B. KhanA. NaresS. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages.Innate Immun.201420554055110.1177/1753425913501914 24062196
    [Google Scholar]
  14. LeeYH HongJY Oral microbiome as a co-mediator of halitosis and periodontitis: A narrative review.Front oral health20234122914510.3389/froh.2023.1229145
    [Google Scholar]
  15. CobbC.M. Lasers and the treatment of periodontitis: The essence and the noise.Periodontol. 2000201775120529510.1111/prd.12137 28758295
    [Google Scholar]
  16. GrazianiF. KarapetsaD. AlonsoB. HerreraD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?Periodontol. 2000201775115218810.1111/prd.12201 28758300
    [Google Scholar]
  17. HerreraD. SanzM. KebschullM. Treatment of stage IV periodontitis: The EFP S3 level clinical practice guideline.J. Clin. Periodontol.202249S2447110.1111/jcpe.13639 35688447
    [Google Scholar]
  18. HanJ. MenicaninD. GronthosS. BartoldP.M. Stem cells, tissue engineering and periodontal regeneration.Aust. Dent. J.201459S111713010.1111/adj.12100 24111843
    [Google Scholar]
  19. HuL. LiuY. WangS. Stem cell‐based tooth and periodontal regeneration.Oral Dis.201824569670510.1111/odi.12703 28636235
    [Google Scholar]
  20. LiuJ. RuanJ. WeirM.D. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells.Cells20198653710.3390/cells8060537 31167434
    [Google Scholar]
  21. XieZ. ShenZ. ZhanP. Functional dental pulp regeneration: Basic research and clinical translation.Int. J. Mol. Sci.20212216899110.3390/ijms22168991 34445703
    [Google Scholar]
  22. XuX.Y. LiX. WangJ. HeX.T. SunH.H. ChenF.M. Concise review: Periodontal tissue regeneration using stem cells: Strategies and translational considerations.Stem Cells Transl. Med.20198439240310.1002/sctm.18‑0181 30585445
    [Google Scholar]
  23. KellerL. Regiel-FutyraA. GimenoM. Chitosan-based nanocomposites for the repair of bone defects.Nanomedicine20171372231224010.1016/j.nano.2017.06.007 28647591
    [Google Scholar]
  24. BharadwazA. JayasuriyaA.C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.Mater. Sci. Eng. C202011011069810.1016/j.msec.2020.110698 32204012
    [Google Scholar]
  25. MarquesC.F. DiogoG.S. PinaS. OliveiraJ.M. SilvaT.H. ReisR.L. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review.J. Mater. Sci. Mater. Med.20193033210.1007/s10856‑019‑6234‑x 30840132
    [Google Scholar]
  26. ZhengY. YangJ. LiangJ. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation.Biomacromolecules201920114135414210.1021/acs.biomac.9b00964 31609601
    [Google Scholar]
  27. EchaveM.C. Hernáez-MoyaR. IturriagaL. Recent advances in gelatin-based therapeutics.Expert Opin. Biol. Ther.201919877377910.1080/14712598.2019.1610383 31009588
    [Google Scholar]
  28. BarbonS. StoccoE. MacchiV. Platelet-rich fibrin scaffolds for cartilage and tendon regenerative medicine: From bench to bedside.Int. J. Mol. Sci.2019207170110.3390/ijms20071701 30959772
    [Google Scholar]
  29. DuttaS.D. PatelD.K. LimK.T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering.J. Biol. Eng.20191315510.1186/s13036‑019‑0177‑0 31249615
    [Google Scholar]
  30. BirruB. MekalaN.K. ParchaS.R. Improved osteogenic differentiation of umbilical cord blood MSCs using custom made perfusion bioreactor.Biomed. J.201841529029710.1016/j.bj.2018.07.002 30580792
    [Google Scholar]
  31. MaryczK. SmieszekA. TargonskaS. WalshS.A. SzustakiewiczK. WigluszR.J. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics.Mater. Sci. Eng. C202011011063410.1016/j.msec.2020.110634 32204070
    [Google Scholar]
  32. MatichescuA. ArdeleanL.C. RusuL.C. Advanced biomaterials and techniques for oral tissue engineering and regeneration-a review.Materials20201322530310.3390/ma13225303
    [Google Scholar]
  33. TheodoridisK. AggelidouE. ManthouM. DemiriE. BakopoulouA. KritisA. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture.Colloids Surf. B Biointerfaces201918311040310.1016/j.colsurfb.2019.110403 31400614
    [Google Scholar]
  34. TavelliL. McGuireM.K. ZucchelliG. Biologics‐based regenerative technologies for periodontal soft tissue engineering.J. Periodontol.202091214715410.1002/JPER.19‑0352 31479158
    [Google Scholar]
  35. HeH. YuJ. LiuY. Effects of FGF2 and TGFβ 1 on the differentiation of human dental pulp stem cells in vitro.Cell Biol. Int.200832782783410.1016/j.cellbi.2008.03.013 18442933
    [Google Scholar]
  36. MathieuS. JeanneauC. Sheibat-OthmanN. KalajiN. FessiH. AboutI. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration.J. Endod.201339222823510.1016/j.joen.2012.11.007 23321236
    [Google Scholar]
  37. ZhangY. LiuJ. ZouT. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling.Stem Cell Res. Ther.202112128110.1186/s13287‑021‑02349‑y 33971955
    [Google Scholar]
  38. IoharaK. NakashimaM. ItoM. IshikawaM. NakasimaA. AkamineA. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2.J. Dent. Res.200483859059510.1177/154405910408300802 15271965
    [Google Scholar]
  39. SuzukiT. LeeC.H. ChenM. Induced migration of dental pulp stem cells for in vivo pulp regeneration.J. Dent. Res.20119081013101810.1177/0022034511408426 21586666
    [Google Scholar]
  40. LiS. HuJ. ZhangG. Extracellular Ca 2+ promotes odontoblastic differentiation of dental pulp stem cells via BMP2‐mediated Smad1/5/8 and Erk1/2 pathways.J. Cell. Physiol.201523092164217310.1002/jcp.24945 25656933
    [Google Scholar]
  41. KongY. HuX. ZhongY. XuK. WuB. ZhengJ. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling.Stem Cell Res. Ther.201910137810.1186/s13287‑019‑1493‑5 31823825
    [Google Scholar]
  42. SagomonyantsK. KalajzicI. MayeP. MinaM. Enhanced dentinogenesis of pulp progenitors by early exposure to FGF2.J. Dent. Res.201594111582159010.1177/0022034515599768 26276371
    [Google Scholar]
  43. HeP. ZhengL. ZhouX. IGFs in dentin formation and regeneration: Progress and remaining challenges.Stem Cells Int.202220221710.1155/2022/3737346 35432548
    [Google Scholar]
  44. VandommeJ. TouilY. OstynP. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.Stem Cells Dev.201423883985110.1089/scd.2013.0400 24266654
    [Google Scholar]
  45. CuiD. XiaoJ. ZhouY. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway.Cell Prolif.2019526e1268010.1111/cpr.12680 31454111
    [Google Scholar]
  46. ZhangM. JiangF. ZhangX. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration.Stem Cells Transl. Med.20176122126213410.1002/sctm.17‑0033 29064632
    [Google Scholar]
  47. MizunoM. BanzaiY. Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin.Int. Endod. J.2008411193393810.1111/j.1365‑2591.2008.01420.x 19133082
    [Google Scholar]
  48. LiuY. LiuN. NaJ. Wnt/β‐catenin plays a dual function in calcium hydroxide induced proliferation, migration, osteogenic differentiation and mineralization in vitro human dental pulp stem cells.Int. Endod. J.20235619210210.1111/iej.13843 36229421
    [Google Scholar]
  49. KulthanaamondhitaP. KornsuthisoponC. PhotichailertS. ManokawinchokeJ. LimraksasinP. OsathanonT. Specific microRNAs regulate dental pulp stem cell behavior.J. Endod.202248668869810.1016/j.joen.2022.02.012 35271859
    [Google Scholar]
  50. WuM. LiuX. LiZ. SHED aggregate exosomes shuttled miR‐26a promote angiogenesis in pulp regeneration via TGF‐β/SMAD2/3 signalling.Cell Prolif.2021547e1307410.1111/cpr.13074 34101281
    [Google Scholar]
  51. BoteroT.M. SonJ.S. VodopyanovD. HasegawaM. ShelburneC.E. NörJ.E. MAPK signaling is required for LPS-induced VEGF in pulp stem cells.J. Dent. Res.201089326426910.1177/0022034509357556 20110511
    [Google Scholar]
  52. JanebodinK. ZengY. BuranaphatthanaW. IeronimakisN. ReyesM. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells.J. Dent. Res.201392652453110.1177/0022034513485599 23609159
    [Google Scholar]
  53. Gonzalez-KingH. GarcíaN.A. Ontoria-OviedoI. CiriaM. MonteroJ.A. SepúlvedaP. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes.Stem Cells20173571747175910.1002/stem.2618 28376567
    [Google Scholar]
  54. KolarM.K. ItteV.N. KinghamP.J. NovikovL.N. WibergM. KelkP. The neurotrophic effects of different human dental mesenchymal stem cells.Sci. Rep.2017711260510.1038/s41598‑017‑12969‑1 28974767
    [Google Scholar]
  55. ZhangJ. LianM. CaoP. Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation.Neurochem. Res.20174241015102510.1007/s11064‑016‑2134‑3 28005222
    [Google Scholar]
  56. HanQ. WangQ. WuJ. Nell-1 promotes the neural-like differentiation of dental pulp cells.Biochem. Biophys. Res. Commun.2019513251552110.1016/j.bbrc.2019.04.028 30979495
    [Google Scholar]
  57. WangD. LyuY. YangY. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis.Acta Biomater.202214061062410.1016/j.actbio.2021.11.039 34852303
    [Google Scholar]
  58. YangJ. ZhangY. WanC. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration.Biomaterials201544112310.1016/j.biomaterials.2014.12.006 25617122
    [Google Scholar]
  59. LiM. SunX. MaL. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways.Sci. Rep.2017714016110.1038/srep40161 28067275
    [Google Scholar]
  60. LiuY. GuoL. LiX. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration.Tissue Eng. Part C Methods202228840541910.1089/ten.tec.2022.0106 35838120
    [Google Scholar]
  61. ThalakiriyawaD.S. DissanayakaW.L. Advances in regenerative dentistry approaches: An update.Int. Dent. J.2023 37541918
    [Google Scholar]
  62. DubucA. Planat-BénardV. MartyM. MonsarratP. KémounP. Periodontal cell therapy: A systematic review and meta-analysis.In: Santi-Rocca J, Ed. Periodontitis: Advances in Experimental Research.ChamSpringer International Publishing202237739710.1007/978‑3‑030‑96881‑6_20
    [Google Scholar]
  63. PortronS. SoueidanA. MarsdenA.C. Periodontal regenerative medicine using mesenchymal stem cells and biomaterials: A systematic review of pre-clinical studies.Dent. Mater. J.201938686788310.4012/dmj.2018‑315 31511473
    [Google Scholar]
  64. AlshoibyM.M. Fawzy El-SayedK.M. ElbattawyW. HosnyM.M. Injectable platelet-rich fibrin with demineralized freeze-dried bone allograft compared to demineralized freeze-dried bone allograft in intrabony defects of patients with stage-III periodontitis: A randomized controlled clinical trial.Clin. Oral Investig.20232773457346710.1007/s00784‑023‑04954‑y 37002441
    [Google Scholar]
  65. ApatzidouD.A. BakopoulouA.A. Kouzi-KoliakouK. KaragiannisV. KonstantinidisA. A tissue‐engineered biocomplex for periodontal reconstruction. A proof‐of‐principle randomized clinical study.J. Clin. Periodontol.20214881111112510.1111/jcpe.13474 33899259
    [Google Scholar]
  66. CubukS. OduncuogluB.F. AlaaddinogluE.E. The effect of dental pulp stem cells and L-PRF when placed into the extraction sockets of impacted mandibular third molars on the periodontal status of adjacent second molars: A split-mouth, randomized, controlled clinical trial.Oral Maxillofac. Surg.2022271596810.1007/s10006‑022‑01045‑2 35141806
    [Google Scholar]
  67. GhasemiradM. ChitsaziM.T. FaramarziM. RoshangarL. BabalooA. ChitsazhaR. Histological examination of the effect of concentrated growth factor (CGF) on healing outcomes after maxillary sinus floor augmentation surgery.J. Med. Life202316226727610.25122/jml‑2021‑0294 36937478
    [Google Scholar]
  68. SinghalL. BelludiS.A. PradhanN. ManviS. A comparative evaluation of the effect of platelet rich fibrin matrix with and without peripheral blood mesenchymal stem cells on dental implant stability: A randomized controlled clinical trial.J. Tissue Eng. Regen. Med.202216442243010.1002/term.3290 35172029
    [Google Scholar]
  69. CumpstonM. LiT. PageM.J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions.Cochrane Libr.20191010ED00014210.1002/14651858.ED000142 31643080
    [Google Scholar]
  70. NazirM.A. Prevalence of periodontal disease, its association with systemic diseases and prevention.Int. J. Health Sci.20171127280 28539867
    [Google Scholar]
  71. ChenF.M. GaoL.N. TianB.M. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial.Stem Cell Res. Ther.2016713310.1186/s13287‑016‑0288‑1 26895633
    [Google Scholar]
  72. ChenQ. LiuX. WangD. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis.Front. Cell Dev. Biol.2021966303710.3389/fcell.2021.663037 33869229
    [Google Scholar]
  73. LiuJ. ChenB. BaoJ. ZhangY. LeiL. YanF. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration.Stem Cell Res. Ther.201910132010.1186/s13287‑019‑1409‑4 31730019
    [Google Scholar]
  74. TomokiyoA. WadaN. MaedaH. Periodontal ligament stem cells: Regenerative potency in periodontium.Stem Cells Dev.2019281597498510.1089/scd.2019.0031 31215350
    [Google Scholar]
  75. AurrekoetxeaM. Garcia-GallasteguiP. IrastorzaI. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues.Front. Physiol.2015628910.3389/fphys.2015.00289 26528190
    [Google Scholar]
  76. QiaoX. TangJ. DouL. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats.Int. J. Nanomedicine2023184683470310.2147/IJN.S420967 37608819
    [Google Scholar]
  77. ShenZ. KuangS. ZhangY. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism.Bioact. Mater.2020541113112610.1016/j.bioactmat.2020.07.002 32743122
    [Google Scholar]
  78. LiQ. YangG. LiJ. Stem cell therapies for periodontal tissue regeneration: A network meta-analysis of preclinical studies.Stem Cell Res. Ther.202011142710.1186/s13287‑020‑01938‑7 33008471
    [Google Scholar]
  79. ZhouH. QiY.X. ZhuC.H. LiA. PeiD.D. Mesenchymal stem cell-derived extracellular vesicles for treatment of bone loss within periodontitis in pre-clinical animal models: A meta-analysis.BMC Oral Health202323170110.1186/s12903‑023‑03398‑w 37773120
    [Google Scholar]
  80. Abdal-WahabM. Abdel GhaffarK.A. EzzattO.M. HassanA.A.A. El AnsaryM.M.S. GamalA.Y. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial).J. Periodontal Res.202055344145210.1111/jre.12728 32080858
    [Google Scholar]
  81. AkbayA. BaranC. GünhanÖ. ÖzmeriçN. BaloşK. Periodontal regenerative potential of autogenous periodontal ligament grafts in Class II furcation defects.J. Periodontol.200576459560410.1902/jop.2005.76.4.595 15857101
    [Google Scholar]
  82. TuY.K. NeedlemanI. ChambroneL. LuH.K. FaggionC.M.Jr A bayesian network meta‐analysis on comparisons of enamel matrix derivatives, guided tissue regeneration and their combination therapies.J. Clin. Periodontol.201239330331410.1111/j.1600‑051X.2011.01844.x 22393565
    [Google Scholar]
  83. DhoteR. ChardeP. BhongadeM. RaoJ. Stem cells cultured on beta tricalcium phosphate (β-TCP) in Combination with Recombinant Human Platelet-Derived Growth Factor - BB (rh-PDGF-BB) for the Treatment of Human Infrabony Defects.J. Stem Cells2015104243254 27144828
    [Google Scholar]
  84. FerrarottiF. RomanoF. GambaM.N. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial.J. Clin. Periodontol.201845784185010.1111/jcpe.12931 29779220
    [Google Scholar]
  85. Hernández-MonjarazB. Santiago-OsorioE. Ledesma-MartínezE. Aguiñiga-SánchezI. Sosa-HernándezN.A. Mendoza-NúñezV.M. Dental pulp mesenchymal stem cells as a treatment for periodontal disease in older adults.Stem Cells Int.2020202011210.1155/2020/8890873 32908546
    [Google Scholar]
  86. KaiglerD. PagniG. ParkC.H. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial.Cell Transplant.201322576777710.3727/096368912X652968 22776413
    [Google Scholar]
  87. KaiglerD. Avila-OrtizG. TravanS. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: A randomized clinical trial.J. Bone Miner. Res.201530712061216
    [Google Scholar]
  88. SánchezN. FierravantiL. NúñezJ. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament‐derived mesenchymal stem cells: A 12‐month quasi‐randomized controlled pilot clinical trial.J. Clin. Periodontol.202047111391140210.1111/jcpe.13368 32946590
    [Google Scholar]
  89. ZanwarK. Kumar GanjiK. BhongadeM.L. Efficacy of human umbilical stem cells cultured on polylactic/polyglycolic acid membrane in the treatment of multiple gingival recession defects: A randomized controlled clinical study.J. Dent.201718295103 28620633
    [Google Scholar]
  90. ZanwarK. Laxmanrao BhongadeM. Kumar GanjiK. B Koudale S, Gowda P. Comparative evaluation of efficacy of stem cells in combination with PLA/PGA membrane versus sub-epithelial connective tissue for the treatment of multiple gingival recession defects: A clinical study.J. Stem Cells201494253267 25942341
    [Google Scholar]
  91. YamadaY. NakamuraS. ItoK. Injectable bone tissue engineering using expanded mesenchymal stem cells.Stem Cells201331357258010.1002/stem.1300 23225744
    [Google Scholar]
  92. MengL. WeiY. LiangY. HuQ. XieH. Stem cell homing in periodontal tissue regeneration.Front. Bioeng. Biotechnol.202210101761310.3389/fbioe.2022.1017613 36312531
    [Google Scholar]
  93. XiaoL. ZhouY. ZhuL. SPHK1‐S1PR1‐RANKL axis regulates the interactions between macrophages and BMSCs in inflammatory bone loss.J. Bone Miner. Res.20183361090110410.1002/jbmr.3396 29377379
    [Google Scholar]
  94. DuJ. ShanZ. MaP. WangS. FanZ. Allogeneic bone marrow mesenchymal stem cell transplantation for periodontal regeneration.J. Dent. Res.201493218318810.1177/0022034513513026 24226426
    [Google Scholar]
  95. KantarciA. HasturkH. Van DykeT.E. Animal models for periodontal regeneration and peri‐implant responses.Periodontol. 20002015681668210.1111/prd.12052 25867980
    [Google Scholar]
  96. VenkataiahV.S. HandaK. NjugunaM.M. Periodontal regeneration by allogeneic transplantation of adipose tissue derived multi-lineage progenitor stem cells in vivo.Sci. Rep.20199192110.1038/s41598‑018‑37528‑0 30696909
    [Google Scholar]
  97. TobitaM. UysalC.A. GuoX. HyakusokuH. MizunoH. Periodontal tissue regeneration by combined implantation of adipose tissue-derived stem cells and platelet-rich plasma in a canine model.Cytotherapy201315121517152610.1016/j.jcyt.2013.05.007 23849975
    [Google Scholar]
  98. ThomasB. SubbaT.A. VarmaS. Comparison of cellular and differentiation characteristics of mesenchymal stem cells derived from human gingiva and periodontal ligament.J. Int. Soc. Prev. Community Dent.202212223524410.4103/jispcd.JISPCD_259_21 35462740
    [Google Scholar]
  99. ZhangQ.Z. NguyenA.L. YuW.H. LeA.D. Human oral mucosa and gingiva: A unique reservoir for mesenchymal stem cells.J. Dent. Res.201291111011101810.1177/0022034512461016 22988012
    [Google Scholar]
  100. Fawzy El-SayedK.M. MekhemarM.K. Beck-BroichsitterB.E. Periodontal regeneration employing gingival margin‐derived stem/progenitor cells in conjunction with IL ‐1ra‐hydrogel synthetic extracellular matrix.J. Clin. Periodontol.201542544845710.1111/jcpe.12401 25875208
    [Google Scholar]
  101. ParkJ.Y. JeonS.H. ChoungP.H. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis.Cell Transplant.201120227128610.3727/096368910X519292 20719084
    [Google Scholar]
  102. KhorsandA. EslaminejadM.B. ArabsolgharM. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue.J. Oral Implantol.201339443344310.1563/AAID‑JOI‑D‑12‑00027 23964777
    [Google Scholar]
  103. LiuY. ZhengY. DingG. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine.Stem Cells20082641065107310.1634/stemcells.2007‑0734 18238856
    [Google Scholar]
  104. ZhangQ. ShiS. LiuY. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis.J. Immunol.2009183127787779810.4049/jimmunol.0902318 19923445
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X294900240130095058
Loading
/content/journals/cscr/10.2174/011574888X294900240130095058
Loading

Data & Media loading...

Supplements

PRISMA checklist and Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CAL; meta-analysis; PD; periodontal regeneration; periodontitis; Stem cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test