Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Polycystic ovary syndrome (PCOS) is the most prevalent reproductive endocrine illness in women of reproductive age and is one of the most important causes of female infertility. The pathogenesis of PCOS is complex. Although mesenchymal stem cell therapy is anticipated to be a successful treatment for PCOS, its long-term safety, including tumorigenesis in patients, remains unknown.

Objective

This study aimed to confirm the efficacy and safety of human umbilical cord mesenchymal stem cells in improving fertility in PCOS mice.

Methods

In this study, dehydroepiandrosterone (DHEA) was used to construct a C56BL/6 mouse PCOS model, human umbilical cord mesenchymal stem cells (hUC-MSCs) were used as a treatment, and the reproductive phenotype was observed in parallel breeding experiments to confirm the efficacy of the treatment. A 4-month follow-up period, final blood tests, and organ histology were carried out to confirm the long-term safety of the treatment.

Results

After hUC-MSCs treatment, the sex hormone disorder of mice was corrected, the morphology and function of the ovary were improved, the number of offspring was significantly increased compared to the control group, and no adverse reactions related to stem cell transplantation such as tumor formation were found within 4 months.

Conclusion

The treatment of hUC-MSCs is safe and effective in treating PCOS over the long term.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X287937240424074937
2024-06-05
2025-05-05
Loading full text...

Full text loading...

References

  1. TeedeH. DeeksA. MoranL. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan.BMC Med.2010814110.1186/1741‑7015‑8‑4120591140
    [Google Scholar]
  2. SteinI.F. LeventhalM.L. Amenorrhea associated with bilateral polycystic ovaries.Am. J. Obstet. Gynecol.193529218119110.1016/S0002‑9378(15)30642‑6
    [Google Scholar]
  3. AlyJ.M. DecherneyA.H. Lifestyle modifications in PCOS.Clin. Obstet. Gynecol.2021641838910.1097/GRF.000000000000059433346595
    [Google Scholar]
  4. Escobar-MorrealeH.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment.Nat. Rev. Endocrinol.201814527028410.1038/nrendo.2018.2429569621
    [Google Scholar]
  5. HoegerK.M. DokrasA. PiltonenT. Update on PCOS: Consequences, challenges, and guiding treatment.J. Clin. Endocrinol. Metab.20211063e1071e108310.1210/clinem/dgaa83933211867
    [Google Scholar]
  6. TeedeH.J. TayC.T. LavenJ. DokrasA. MoranL.J. PiltonenT.T. CostelloM.F. BoivinJ. M RedmanL. A BoyleJ. NormanR.J. MousaA. JohamA.E. Recommendations from the 2023 International evidence-based guideline for the assessment and management of polycystic ovary syndrome.Fertil. Steril.2023120476779310.1016/j.fertnstert.2023.07.02537589624
    [Google Scholar]
  7. HartR. PCOS and infertility.Panminerva Med.200850430531419078871
    [Google Scholar]
  8. VasanthanJ. GurusamyN. RajasinghS. SigamaniV. KirankumarS. ThomasE.L. RajasinghJ. Role of Human Mesenchymal Stem Cells in Regenerative Therapy.Cells20201015410.3390/cells1001005433396426
    [Google Scholar]
  9. YuanY. NiS. ZhugeA. LiL. LiB. Adipose-derived mesenchymal stem cells reprogram M1 Macrophage Metabolism via PHD2/HIF-1α pathway in Colitis Mice.Front. Immunol.20221385980610.3389/fimmu.2022.85980635757749
    [Google Scholar]
  10. WenX. ZouY. LiL. NieH. WangK. WangJ. LiS. YangM. GuoQ. Nondestructive isolation of mesenchymal stem cells from bone marrow using DNA aptamers.Analyst (Lond.)2022147225203520910.1039/D2AN01086K36255234
    [Google Scholar]
  11. AndoW. KutcherJ.J. KrawetzR. SenA. NakamuraN. FrankC.B. HartD.A. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: A cell source with enhanced commitment to the chondrogenic lineage.Cytotherapy201416677678810.1016/j.jcyt.2013.12.00324529553
    [Google Scholar]
  12. HindleP. BailyJ. KhanN. BiantL.C. SimpsonA.H.R. PéaultB. Perivascular Mesenchymal stem cells in sheep: Characterization and autologous transplantation in a model of articular cartilage repair.Stem Cells Dev.201625211659166910.1089/scd.2016.016527554322
    [Google Scholar]
  13. HuaQ. ZhangY. LiH. LiH. JinR. LiL. XiangY. TianM. WangJ. SunL. WangY. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium.Stem Cell Res. Ther.202213130110.1186/s13287‑022‑02990‑135841027
    [Google Scholar]
  14. KumarK. AgarwalP. DasK. MiliB. MadhusoodanA.P. KumarA. BagS. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix.Tissue Cell201648665365810.1016/j.tice.2016.06.00427423985
    [Google Scholar]
  15. BeeravoluN. McKeeC. AlamriA. MikhaelS. BrownC. Perez-CruetM. ChaudhryG.R. Isolation and characterization of Mesenchymal stromal cells from Human Umbilical Cord and Fetal Placenta.J. Vis. Exp.20171225522410.3791/5522428447991
    [Google Scholar]
  16. XuX. JiangW. ChenL. XuZ. ZhangQ. ZhuM. YeP. LiH. YuL. ZhouX. ZhouC. ChenX. ZhengX. XuK. CaiH. ZhengS. JiangW. WuX. LiD. ChenL. LuoQ. WangY. QuJ. LiY. ZhengW. JiangY. TangL. XiangC. LiL. Evaluation of the safety and efficacy of using human menstrual blood-derived mesenchymal stromal cells in treating severe and critically ill COVID-19 patients: An exploratory clinical trial.Clin. Transl. Med.2021112e29710.1002/ctm2.29733634996
    [Google Scholar]
  17. KanekoT. GuB. SoneP.P. ZawS.Y.M. MuranoH. ZawZ.C.T. OkijiT. Dental pulp tissue engineering using mesenchymal stem cells: A review with a protocol.Stem Cell Rev.201814566867610.1007/s12015‑018‑9826‑929804171
    [Google Scholar]
  18. FotiaC. MassaA. BorianiF. BaldiniN. GranchiD. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells.Cytotechnology20156761073108410.1007/s10616‑014‑9731‑224798810
    [Google Scholar]
  19. JiangY. JahagirdarB.N. ReinhardtR.L. SchwartzR.E. KeeneC.D. Ortiz-GonzalezX.R. ReyesM. LenvikT. LundT. BlackstadM. DuJ. AldrichS. LisbergA. LowW.C. LargaespadaD.A. VerfaillieC.M. Pluripotency of mesenchymal stem cells derived from adult marrow.Nature20024186893414910.1038/nature0087012077603
    [Google Scholar]
  20. SpaggiariG.M. CapobiancoA. BecchettiS. MingariM.C. MorettaL. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood200610741484149010.1182/blood‑2005‑07‑277516239427
    [Google Scholar]
  21. RamasamyR. FazekasovaH. LamE.W.F. SoeiroI. LombardiG. DazziF. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle.Transplantation2007831717610.1097/01.tp.0000244572.24780.5417220794
    [Google Scholar]
  22. CorcioneA. BenvenutoF. FerrettiE. GiuntiD. CappielloV. CazzantiF. RissoM. GualandiF. MancardiG.L. PistoiaV. UccelliA. Human mesenchymal stem cells modulate B-cell functions.Blood2006107136737210.1182/blood‑2005‑07‑265716141348
    [Google Scholar]
  23. BartolucciJ. VerdugoF.J. GonzálezP.L. LarreaR.E. AbarzuaE. GosetC. RojoP. PalmaI. LamichR. PedrerosP.A. ValdiviaG. LopezV.M. NazzalC. Alcayaga-MirandaF. CuencaJ. BrobeckM.J. PatelA.N. FigueroaF.E. KhouryM. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure.Circ. Res.2017121101192120410.1161/CIRCRESAHA.117.31071228974553
    [Google Scholar]
  24. ShiM. LiY.Y. XuR.N. MengF.P. YuS.J. FuJ.L. HuJ.H. LiJ.X. WangL.F. JinL. WangF.S. Mesenchymal stem cell therapy in decompensated liver cirrhosis: A long-term follow-up analysis of the randomized controlled clinical trial.Hepatol. Int.20211561431144110.1007/s12072‑021‑10199‑234843069
    [Google Scholar]
  25. Garcia-OlmoD. GilaberteI. BinekM. D´HooreA.J.L. LindnerD. SelvaggiF. SpinelliA. PanésJ. Follow-up study to evaluate the long-term safety and efficacy of darvadstrocel (mesenchymal stem cell treatment) in patients with perianal fistulizing crohn’s disease: ADMIRE-CD Phase 3 Randomized controlled trial.Dis. Colon Rectum202265571372010.1097/DCR.000000000000232534890373
    [Google Scholar]
  26. ShinJ.H. RyuC.M. YuH.Y. ParkJ. KangA.R. ShinJ.M. HongK.S. KimE.Y. ChungH.M. ShinD.M. ChooM.S. Safety of human embryonic stem cell-derived mesenchymal stem cells for treating interstitial cystitis: A phase I study.Stem Cells Transl. Med.202211101010102010.1093/stcltm/szac06536069837
    [Google Scholar]
  27. LeeW.S. KimH.J. KimK.I. KimG.B. JinW. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A Phase IIb, randomized, placebo-controlled clinical trial.Stem Cells Transl. Med.20198650451110.1002/sctm.18‑012230835956
    [Google Scholar]
  28. RiordanN.H. MoralesI. FernándezG. AllenN. FearnotN.E. LeckroneM.E. MarkovichD.J. MansfieldD. AvilaD. PatelA.N. KesariS. Paz RodriguezJ. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis.J. Transl. Med.20181615710.1186/s12967‑018‑1433‑729523171
    [Google Scholar]
  29. LeeJ. ChangW.H. ChungJ.W. KimS.J. KimS.K. LeeJ.S. SohnS.I. KimY.H. BangO.Y. KimS.J. ChoY.H. SungJ.H. KimE.H. SonJ.P. KimD.H. ChoiE-H. RyooS. KangY.M. KimY.M. KimH.S. JangJ.H. Efficacy of intravenous mesenchymal stem cells for motor recovery after Ischemic Stroke: A neuroimaging study.Stroke2022531202810.1161/STROKEAHA.121.03450534583525
    [Google Scholar]
  30. ChungJ.W. ChangW.H. BangO.Y. MoonG.J. KimS.J. KimS.K. LeeJ.S. SohnS.I. KimY.H. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke.Neurology2021967e1012e102310.1212/WNL.000000000001144033472925
    [Google Scholar]
  31. KimH.J. ChoK.R. JangH. LeeN.K. JungY.H. KimJ.P. LeeJ.I. ChangJ.W. ParkS. KimS.T. MoonS.W. SeoS.W. ChoiS.J. NaD.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial.Alzheimers Res. Ther.202113115410.1186/s13195‑021‑00897‑234521461
    [Google Scholar]
  32. ChengL. WangS. PengC. ZouX. YangC. MeiH. LiC. SuX. XiaoN. OuyangQ. ZhangM. WangQ. LuoY. ShenM. QinQ. WangH. ZhuW. LuG. LinG. KuangY. ChenX. Human umbilical cord mesenchymal stem cells for psoriasis: A phase 1/2a, single-arm study.Signal Transduct. Target. Ther.20227126310.1038/s41392‑022‑01059‑y35927231
    [Google Scholar]
  33. ZangL. LiY. HaoH. LiuJ. ChengY. LiB. YinY. ZhangQ. GaoF. WangH. GuS. LiJ. LinF. ZhuY. TianG. ChenY. GuW. DuJ. ChenK. GuoQ. YangG. PeiY. YanW. WangX. MengJ. ZhangS. BaJ. LyuZ. DouJ. HanW. MuY. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: A single-center, double-blinded, randomized, placebo-controlled phase II trial.Stem Cell Res. Ther.202213118010.1186/s13287‑022‑02848‑635505375
    [Google Scholar]
  34. HashemianS.M.R. AliannejadR. ZarrabiM. SoleimaniM. VosoughM. HosseiniS.E. HossieniH. KeshelS.H. NaderpourZ. Hajizadeh-SaffarE. ShajarehE. JamaatiH. Soufi-ZomorrodM. KhavandgarN. AlemiH. KarimiA. PakN. RouzbahaniN.H. NouriM. SorouriM. KashaniL. MadaniH. AghdamiN. VaseiM. BaharvandH. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series.Stem Cell Res. Ther.20211219110.1186/s13287‑021‑02165‑433514427
    [Google Scholar]
  35. LanzoniG. LinetskyE. CorreaD. Messinger CayetanoS. AlvarezR.A. KouroupisD. Alvarez GilA. PoggioliR. RuizP. MarttosA.C. HiraniK. BellC.A. KusackH. RafkinL. BaidalD. PastewskiA. GawriK. LeñeroC. ManteroA.M.A. MetalonisS.W. WangX. RoqueL. MastersB. KenyonN.S. GinzburgE. XuX. TanJ. CaplanA.I. GlassbergM.K. AlejandroR. RicordiC. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial.Stem Cells Transl. Med.202110566067310.1002/sctm.20‑047233400390
    [Google Scholar]
  36. SenguptaV. SenguptaS. LazoA. WoodsP. NolanA. BremerN. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19.Stem Cells Dev.2020291274775410.1089/scd.2020.008032380908
    [Google Scholar]
  37. ShiL. YuanX. YaoW. WangS. ZhangC. ZhangB. SongJ. HuangL. XuZ. FuJ.L. LiY. XuR. LiT.T. DongJ. CaiJ. LiG. XieY. ShiM. LiY. ZhangY. XieW.F. WangF.S. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial.EBioMed.20227510378910.1016/j.ebiom.2021.10378934963099
    [Google Scholar]
  38. ShuL. NiuC. LiR. HuangT. WangY. HuangM. JiN. ZhengY. ChenX. ShiL. WuM. DengK. WeiJ. WangX. CaoY. YanJ. FengG. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells.Stem Cell Res. Ther.202011136110.1186/s13287‑020‑01875‑532811531
    [Google Scholar]
  39. LuX. CuiJ. CuiL. LuoQ. CaoQ. YuanW. ZhangH. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice.Stem Cell Res. Ther.201910121410.1186/s13287‑019‑1313‑y31331391
    [Google Scholar]
  40. ZhaoG. CaoY. ZhuX. TangX. DingL. SunH. LiJ. LiX. DaiC. RuT. ZhuH. LuJ. LinC. WangJ. YanG. WangH. WangL. DaiY. WangB. LiR. DaiJ. ZhouY. HuY. Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman’s syndrome.Sci. China Life Sci.201760440441610.1007/s11427‑016‑0328‑y27921235
    [Google Scholar]
  41. HuangJ. LiQ. YuanX. LiuQ. ZhangW. LiP. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: A phase I clinical trial.Stem Cell Res. Ther.20221318510.1186/s13287‑022‑02756‑935241151
    [Google Scholar]
  42. ChughR.M. ParkH. El AndaloussiA. ElsharoudA. EsfandyariS. UlinM. BakirL. AboalsoudA. AliM. AshourD. IgboeliP. IsmailN. McAllisterJ. Al-HendyA. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10.Stem Cell Res. Ther.202112138810.1186/s13287‑021‑02472‑w34233746
    [Google Scholar]
  43. LiT. XiaM. GaoY. ChenY. XuY. Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy.Expert Opin. Biol. Ther.20151591293130610.1517/14712598.2015.105152826067213
    [Google Scholar]
  44. WaltersKA AllanCM HandelsmanDJ Rodent models for human polycystic ovary syndrome.Biol Reprod.2012865149130610.1095/biolreprod.111.097808
    [Google Scholar]
  45. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop groupRevised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS).Hum. Reprod.2004191414710.1093/humrep/deh09814688154
    [Google Scholar]
  46. GuoZ. ChenX. FengP. YuQ. Short-term rapamycin administration elevated testosterone levels and exacerbated reproductive disorder in dehydroepiandrosterone-induced polycystic ovary syndrome mice.J. Ovarian Res.20211416410.1186/s13048‑021‑00813‑033947426
    [Google Scholar]
  47. CorrieL. GulatiM. SinghS.K. KapoorB. KhursheedR. AwasthiA. VishwasS. ChellappanD.K. GuptaG. JhaN.K. AnandK. DuaK. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome.Life Sci.202128011975310.1016/j.lfs.2021.11975334171379
    [Google Scholar]
  48. HanS. WangS. FanX. ChenM. WangX. HuangY. ZhangH. MaY. WangJ. ZhangC. Abnormal Expression of Prolyl Oligopeptidase (POP) and its catalytic products Ac-SDKP contributes to the ovarian fibrosis change in Polycystic Ovary Syndrome (PCOS) Mice.Biomedicines2023117192710.3390/biomedicines1107192737509566
    [Google Scholar]
  49. LaiH. JiaX. YuQ. ZhangC. QiaoJ. GuanY. KangJ. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.Biol. Reprod.201491512710.1095/biolreprod.114.12006325100714
    [Google Scholar]
  50. ZhuS.F. HuH.B. XuH.Y. FuX.F. PengD.X. SuW.Y. HeY.L. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries.J. Cell. Mol. Med.20151992108211710.1111/jcmm.1257125922900
    [Google Scholar]
  51. SongD. ZhongY. QianC. ZouQ. OuJ. ShiY. GaoL. WangG. LiuZ. LiH. DingH. WuH. WangF. WangJ. LiH. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model.BioMed Res. Int.2016201611310.1155/2016/251751427047962
    [Google Scholar]
  52. ZhangM. XieT. DaiW. ZhaoB. ZhengY. HuJ. PanR. WangL. Umbilical cord mesenchymal stem cells ameliorate premature ovarian insufficiency in rats.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/922845635677383
    [Google Scholar]
  53. ParkH.S. CetinE. SibliniH. SeokJ. AlkelaniH. AlkhraitS. Liakath AliF. Mousaei GhasroldashtM. BeckmanA. Al-HendyA. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles to treat PCOS.Int. J. Mol. Sci.202324131115110.3390/ijms24131115137446328
    [Google Scholar]
  54. PalombaS. PiltonenT.T. GiudiceL.C. Endometrial function in women with polycystic ovary syndrome: A comprehensive review.Hum. Reprod. Update202127358461810.1093/humupd/dmaa05133302299
    [Google Scholar]
  55. WangZ. NieK. SuH. TangY. WangH. XuX. DongH. Berberine improves ovulation and endometrial receptivity in polycystic ovary syndrome.Phytomedicine20219115365410.1016/j.phymed.2021.15365434333328
    [Google Scholar]
  56. PiltonenT.T. ChenJ.C. KhatunM. KangasniemiM. LiakkaA. SpitzerT. TranN. HuddlestonH. IrwinJ.C. GiudiceL.C. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro.Hum. Reprod.20153051203121510.1093/humrep/dev05525750105
    [Google Scholar]
  57. ZhangY. HuM. JiaW. LiuG. ZhangJ. WangB. LiJ. CuiP. LiX. LagerS. Sferruzzi-PerriA.N. HanY. LiuS. WuX. BrännströmM. ShaoL.R. BilligH. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS- like rats.J. Endocrinol.2020246324726310.1530/JOE‑20‑015532590339
    [Google Scholar]
  58. YuT. WuD. CaoY. ZhaiJ. association between menstrual patterns and adverse pregnancy outcomes in patients with polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20211274037710.3389/fendo.2021.74037734867783
    [Google Scholar]
  59. KalhoriZ. AzadbakhtM. Soleimani MehranjaniM. ShariatzadehM.A. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome.Cytotherapy201820121445145810.1016/j.jcyt.2018.09.00530523787
    [Google Scholar]
  60. LvX. GuanC. LiY. SuX. ZhangL. WangX. XiaH.F. MaX. Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice.J. Ovarian Res.202114111910.1186/s13048‑021‑00871‑434526090
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X287937240424074937
Loading
/content/journals/cscr/10.2174/011574888X287937240424074937
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test