Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Tendinopathy is a prevalent and debilitating musculoskeletal disorder. Uncertainty remains regarding its pathophysiology, but it is believed to be a combination of inflammation, damage, degenerative changes, and unsuccessful repair mechanisms. Cell-based therapy is an emerging regenerative medicine modality that uses mesenchymal stem cells (MSCs), their progeny or exosomes to promote tendon healing and regeneration. It is based on the fact that MSCs can be differentiated into tenocytes, the major cell type within tendons, and facilitate tendon repair. Photobiomodulation (PBM) is a non-invasive and potentially promising therapeutic technique that utilizes low-level light to alter intracellular processes and promote tissue healing and regeneration. Recent studies have examined the potential for PBM to improve MSC therapy use in tendinopathy by promoting viability, proliferation, and differentiation. As well as enhance tendon regeneration. This review focuses on Photobiomodulation and MSC therapy applications in regenerative medicine and their potential for tendon tissue engineering.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X295488240319111911
2024-05-07
2025-05-02
Loading full text...

Full text loading...

References

  1. van DijkC.N. van SterkenburgM.N. WiegerinckJ.I. KarlssonJ. MaffulliN. Terminology for Achilles tendon related disorders.Knee Surg. Sports Traumatol. Arthrosc.201119583584110.1007/s00167‑010‑1374‑z21222102
    [Google Scholar]
  2. XuY. MurrellG.A.C. The basic science of tendinopathy.Clin. Orthop. Relat. Res.200846671528153810.1007/s11999‑008‑0286‑418478310
    [Google Scholar]
  3. SaundersC.J. van der MerweL. PosthumusM. CookJ. HandleyC.J. CollinsM. SeptemberA.V. Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations.J. Orthop. Res.201331463263710.1002/jor.2227823192621
    [Google Scholar]
  4. WangY. ZhouH. NieZ. CuiS. Prevalence of Achilles tendinopathy in physical exercise: A systematic review and meta-analysis.Sports Medicine and Health Science20224315215910.1016/j.smhs.2022.03.00336090915
    [Google Scholar]
  5. FloritD. PedretC. CasalsM. MalliarasP. SugimotoD. RodasG. Incidence of tendinopathy in team sports in a multidisciplinary sports club over 8 seasons.J. Sports Sci. Med.201918478078831827363
    [Google Scholar]
  6. LimW.L. LiauL.L. NgM.H. ChowdhuryS.R. LawJ.X. Current progress in tendon and ligament tissue engineering.Tissue Eng. Regen. Med.201916654957110.1007/s13770‑019‑00196‑w31824819
    [Google Scholar]
  7. HopkinsC. FuS.C. ChuaE. HuX. RolfC. MattilaV.M. QinL. YungP.S.H. ChanK.M. Critical review on the socio-economic impact of tendinopathy.Asia. Pac. J. Sports Med. Arthrosc. Rehabil. Technol.2016492010.1016/j.asmart.2016.01.00229264258
    [Google Scholar]
  8. ReinkingM.F. Current concepts in the treatment of patellar tendinopathy.Int. J. Sports Phys. Ther.201611685486627904789
    [Google Scholar]
  9. CardosoT.B. PizzariT. KinsellaR. HopeD. CookJ.L. Current trends in tendinopathy management.Best Pract. Res. Clin. Rheumatol.201933112214010.1016/j.berh.2019.02.00131431267
    [Google Scholar]
  10. LoiaconoC. PalermiS. MassaB. BelvisoI. RomanoV. Di GregorioA. SiricoF. SaccoA.M. Tendinopathy: Pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review.Medicina201955844710.3390/medicina5508044731394838
    [Google Scholar]
  11. LiuY. SuenC.W. ZhangJ. LiG. Current concepts on tenogenic differentiation and clinical applications.J. Orthop. Translat.20179284210.1016/j.jot.2017.02.00529662797
    [Google Scholar]
  12. MillarN.L. SilbernagelK.G. ThorborgK. KirwanP.D. GalatzL.M. AbramsG.D. MurrellG.A.C. McInnesI.B. RodeoS.A. Tendinopathy.Nat. Rev. Dis. Primers202171110.1038/s41572‑020‑00234‑133414454
    [Google Scholar]
  13. GasparD. SpanoudesK. HolladayC. PanditA. ZeugolisD. Progress in cell-based therapies for tendon repair.Adv. Drug Deliv. Rev.20158424025610.1016/j.addr.2014.11.02325543005
    [Google Scholar]
  14. YanZ. YinH. NerlichM. PfeiferC.G. DochevaD. Boosting tendon repair: Interplay of cells, growth factors and scaffold-free and gel-based carriers.J. Exp. Orthop.20185111310.1186/s40634‑017‑0117‑129330711
    [Google Scholar]
  15. NorelliJ.B. PlazaD.P. StalD.N. VargheseA.M. LiangH. GrandeD.A. Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo.J. Tissue Eng.20189204173141881118310.1177/204173141881118330542597
    [Google Scholar]
  16. YoungstromD.W. LaDowJ.E. BarrettJ.G. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.Connect. Tissue Res.201657645446510.3109/03008207.2015.111745827028488
    [Google Scholar]
  17. DonderwinkelI. TuanR.S. CameronN.R. FrithJ.E. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells.Acta Biomater.2022145254210.1016/j.actbio.2022.04.02835470075
    [Google Scholar]
  18. McCollochA. LiebmanC. LiuH. ChoM. Alterted adipogenesis of human mesenchymal stem cells by photobiomodulation using 1064 nm laser light.Lasers Surg. Med.202153226327410.1002/lsm.2327832495397
    [Google Scholar]
  19. ChangS-Y. CarpenaN.T. KangB.J. LeeM.Y. Effects of photobiomodulation on stem cells important for regenerative medicine.Med Lasers.202092134141
    [Google Scholar]
  20. MacedoD.B. TimC.R. KidoH.W. MacedoJ.B. MartignagoC.C.S. RennoA.C.M. MacedoG.B. AssisL. Influence of photobiomodulation therapy on the treatment of pulmonary inflammatory conditions and its impact on COVID-19.Lasers Med. Sci.20223731921192910.1007/s10103‑021‑03452‑534694503
    [Google Scholar]
  21. JereS.W. HoureldN.N. AbrahamseH. Photobiomodulation at 660 nm stimulates proliferation and migration of diabetic wounded cells via the expression of epidermal growth factor and the JAK/STAT pathway.J. Photochem. Photobiol. B2018179748310.1016/j.jphotobiol.2017.12.02629353701
    [Google Scholar]
  22. de SousaA.P.C. ParaguassúG.M. SilveiraN.T.T. de SouzaJ. CangussúM.C.T. dos SantosJ.N. PinheiroA.L.B. Laser and LED phototherapies on angiogenesis.Lasers Med. Sci.201328398198710.1007/s10103‑012‑1187‑z22923269
    [Google Scholar]
  23. RajendranN.K. HoureldN.N. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture.J. Photochem. Photobiol.20221210015710.1016/j.jpap.2022.100157
    [Google Scholar]
  24. DompeC. MoncrieffL. MatysJ. Grzech-LeśniakK. KocherovaI. BryjaA. BruskaM. DominiakM. MozdziakP. SkibaT. ShibliJ. Angelova VolponiA. KempistyB. Dyszkiewicz-KonwińskaM. Photobiomodulation—underlying mechanism and clinical applications.J. Clin. Med.202096172410.3390/jcm906172432503238
    [Google Scholar]
  25. Costa-AlmeidaR. CalejoI. GomesM.E. Mesenchymal stem cells empowering tendon regenerative therapies.Int. J. Mol. Sci.20192012300210.3390/ijms2012300231248196
    [Google Scholar]
  26. MaoX. YaoL. LiM. ZhangX. WengB. ZhuW. NiR. ChenK. YiL. ZhaoJ. MaoH. Enhancement of tendon repair using tendon-derived stem cells in small intestinal submucosa via M2 macrophage polarization.Cells20221117277010.3390/cells1117277036078178
    [Google Scholar]
  27. NingC. LiP. GaoC. FuL. LiaoZ. TianG. YinH. LiM. SuiX. YuanZ. LiuS. GuoQ. Recent advances in tendon tissue engineering strategy.Front. Bioeng. Biotechnol.202311111531210.3389/fbioe.2023.111531236890920
    [Google Scholar]
  28. ChenG ZhangW ZhangK WangS GaoY GuJ Hypoxia-induced mesenchymal stem cells exhibit stronger tenogenic differentiation capacities and promote patellar tendon repair in rabbits.Stem Cells Int.20202022882260910.1155/2020/8822609
    [Google Scholar]
  29. Ruiz-AlonsoS. Lafuente-MerchanM. CirizaJ. Saenz-del-BurgoL. PedrazJ.L. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques.J. Control. Release202133344848610.1016/j.jconrel.2021.03.04033811983
    [Google Scholar]
  30. KoivunotkoE. SnirviJ. MerivaaraA. HarjumäkiR. RautiainenS. KelloniemiM. KuismanenK. MiettinenS. YliperttulaM. KoivuniemiR. Angiogenic potential of human adipose-derived mesenchymal stromal cells in nanofibrillated cellulose hydrogel.Biomedicines20221010258410.3390/biomedicines1010258436289846
    [Google Scholar]
  31. ManningC.N. SchwartzA.G. LiuW. XieJ. HavliogluN. Sakiyama-ElbertS.E. SilvaM.J. XiaY. GelbermanR.H. ThomopoulosS. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair.Acta Biomater.2013966905691410.1016/j.actbio.2013.02.00823416576
    [Google Scholar]
  32. YoonJ.P. LeeC.H. JungJ.W. LeeH.J. LeeY.S. KimJ.Y. ParkG.Y. ChoiJ.H. ChungS.W. Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model.Am. J. Sports Med.20184661441145010.1177/036354651875775929543511
    [Google Scholar]
  33. ChenE. YangL. YeC. ZhangW. RanJ. XueD. WangZ. PanZ. HuQ. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.Acta Biomater.20187337738710.1016/j.actbio.2018.04.02729678676
    [Google Scholar]
  34. ZaccaraI.M. MestieriL.B. MoreiraM.S. GreccaF.S. MartinsM.D. KopperP.M.P. Photobiomodulation therapy improves multilineage differentiation of dental pulp stem cells in three-dimensional culture model.J. Biomed. Opt.20182391910.1117/1.JBO.23.9.09500130203632
    [Google Scholar]
  35. ZhangJ. LiB. WangJ.H.C. The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo.Biomaterials201132296972698110.1016/j.biomaterials.2011.05.08821703682
    [Google Scholar]
  36. GissiC. RadeghieriA. Antonetti Lamorgese PasseriC. GalloriniM. CalcianoL. OlivaF. VeronesiF. ZendriniA. CataldiA. BergeseP. MaffulliN. BerardiA.C. Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study.PLoS One2020153e022991410.1371/journal.pone.022991432163452
    [Google Scholar]
  37. ShinM.J. ShimI.K. KimD.M. ChoiJ.H. LeeY.N. JeonI.H. KimH. ParkD. KholinneE. YangH.S. KohK.H. Engineered cell sheets for the effective delivery of adipose-derived stem cells for tendon-to-bone healing.Am. J. Sports Med.202048133347335810.1177/036354652096444533136454
    [Google Scholar]
  38. WeiB. LuJ. Characterization of tendon-derived stem cells and rescue tendon injury.Stem Cell Rev. Rep.20211751534155110.1007/s12015‑021‑10143‑933651334
    [Google Scholar]
  39. BiY. EhirchiouD. KiltsT.M. InksonC.A. EmbreeM.C. SonoyamaW. LiL. LeetA.I. SeoB.M. ZhangL. ShiS. YoungM.F. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.Nat. Med.200713101219122710.1038/nm163017828274
    [Google Scholar]
  40. LeeK.J. CleggP.D. ComerfordE.J. Canty-LairdE.G. A comparison of the stem cell characteristics of murine tenocytes and tendon-derived stem cells.BMC Musculoskelet. Disord.201819111610.1186/s12891‑018‑2038‑229650048
    [Google Scholar]
  41. MarquesM.M. Photobiomodulation therapy weaknesses.Lasers in Dental Science20226313113210.1007/s41547‑022‑00166‑x
    [Google Scholar]
  42. GuoJ. ChanK.M. ZhangJ.F. LiG. Tendon-derived stem cells undergo spontaneous tenogenic differentiation.Exp. Cell Res.201634111710.1016/j.yexcr.2016.01.00726794903
    [Google Scholar]
  43. SongH. YinZ. WuT. LiY. LuoX. XuM. DuanL. LiJ. Enhanced effect of tendon stem/progenitor cells combined with tendon-derived decellularized extracellular matrix on tendon regeneration.Cell Transplant.201827111634164310.1177/096368971880538330298746
    [Google Scholar]
  44. WuT. LiuY. WangB. SunY. XuJ. Yuk-waiL.W. XuL. ZhangJ. LiG. The use of cocultured mesenchymal stem cells with tendon-derived stem cells as a better cell source for tendon repair.Tissue Eng. Part A20162219-201229124010.1089/ten.tea.2016.024827609185
    [Google Scholar]
  45. RuiY.F. LuiP.P.Y. LiG. FuS.C. LeeY.W. ChanK.M. Isolation and characterization of multipotent rat tendon-derived stem cells.Tissue Eng. Part A20101651549155810.1089/ten.tea.2009.052920001227
    [Google Scholar]
  46. LeW CheahAE-J YaoJ Ex-vivo tendon repair augmented with bone marrow derived mesenchymal stem cells stimulated with myostatin for tenogenesis.J Hand Surg Asian Pac Vol. 2018231475710.1142/S2424835518500066
    [Google Scholar]
  47. ImamM.A. HoltonJ. HorriatS. NegidaA.S. GrubhoferF. GuptaR. NarvaniA. SnowM. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology.SICOT J.201735810.1051/sicotj/201703928990575
    [Google Scholar]
  48. YinZ. GuoJ. WuT. ChenX. XuL. LinS. SunY. ChanK.M. OuyangH. LiG. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo.Stem Cells Transl. Med.2016581106111610.5966/sctm.2015‑021527280798
    [Google Scholar]
  49. HernigouP. Flouzat LachanietteC.H. DelambreJ. ZilberS. DuffietP. ChevallierN. RouardH. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: A case-controlled study.Int. Orthop.20143891811181810.1007/s00264‑014‑2391‑124913770
    [Google Scholar]
  50. CentenoC FauselZ StemperI AzuikeU DodsonE. A randomized controlled trial of the treatment of rotator cuff tears with bone marrow concentrate and platelet products compared to exercise therapy: A midterm analysis.Stem Cells Int.20202020596235410.1155/2020/5962354
    [Google Scholar]
  51. CaiJ. YangY. AiC. JinW. ShengD. ChenJ. ChenS. Bone marrow stem cells-seeded polyethylene terephthalate scaffold in repair and regeneration of rabbit achilles tendon.Artif. Organs201842111086109410.1111/aor.1329830294929
    [Google Scholar]
  52. Al-AniMK XuK SunY PanL XuZ YangL Study of bone marrow mesenchymal and tendon-derived stem cells transplantation on the regenerating effect of achilles tendon ruptures in rats.Stem Cells Int.2015201598414610.1155/2015/984146
    [Google Scholar]
  53. ChenS. WangJ. ChenY. MoX. FanC. Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration.Mater. Sci. Eng. C202111911150610.1016/j.msec.2020.11150633321604
    [Google Scholar]
  54. JoC.H. ChaiJ.W. JeongE.C. OhS. KimP.S. YoonJ.Y. YoonK.S. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: A first-in-human trial.Stem Cells20183691441145010.1002/stem.285529790618
    [Google Scholar]
  55. KokubuS. InakiR. HoshiK. HikitaA. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing.Regen. Ther.20201410311010.1016/j.reth.2019.12.00331989000
    [Google Scholar]
  56. KrausA. WoonC. RaghavanS. MegerleK. PhamH. ChangJ. Co-culture of human adipose-derived stem cells with tenocytes increases proliferation and induces differentiation into a tenogenic lineage.Plast. Reconstr. Surg.20131325754e766e10.1097/PRS.0b013e3182a48b4624165627
    [Google Scholar]
  57. VlassovA.V. MagdalenoS. SetterquistR. ConradR. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.Biochim. Biophys. Acta, Gen. Subj.20121820794094810.1016/j.bbagen.2012.03.01722503788
    [Google Scholar]
  58. ChimentiI. SmithR.R. LiT.S. GerstenblithG. MessinaE. GiacomelloA. MarbánE. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice.Circ. Res.2010106597198010.1161/CIRCRESAHA.109.21068220110532
    [Google Scholar]
  59. SongK. JiangT. PanP. YaoY. JiangQ. Exosomes from tendon derived stem cells promote tendon repair through miR-144-3p-regulated tenocyte proliferation and migration.Stem Cell Res. Ther.20221318010.1186/s13287‑022‑02723‑435197108
    [Google Scholar]
  60. ChenW. SunY. GuX. CaiJ. LiuX. ZhangX. ChenJ. HaoY. ChenS. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model.Biomaterials202127112071410.1016/j.biomaterials.2021.12071433610048
    [Google Scholar]
  61. ChenS.H. ChenZ.Y. LinY.H. ChenS.H. ChouP.Y. KaoH.K. LinF.H. Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized Achilles tendons.Int. J. Mol. Sci.202122221237310.3390/ijms22221237334830254
    [Google Scholar]
  62. ZhangK. ChengK. Stem cell-derived exosome versus stem cell therapy.Nature Reviews Bioengineering202312
    [Google Scholar]
  63. HamblinM.R. Mechanisms and mitochondrial redox signaling in photobiomodulation.Photochem. Photobiol.201894219921210.1111/php.1286429164625
    [Google Scholar]
  64. GeorgeS. HamblinM.R. AbrahamseH. Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts.J. Photochem. Photobiol. B2018188606810.1016/j.jphotobiol.2018.09.00430216761
    [Google Scholar]
  65. HuangY-Y SharmaSK CarrollJ HamblinMR Biphasic dose response in low level light therapy–an update.Dose Response.20119460261810.2203/dose‑response.11‑009.Hamblin
    [Google Scholar]
  66. GeorgeS. HamblinM.R. AbrahamseH. Photobiomodulation-induced differentiation of immortalized adipose stem cells to neuronal cells.Lasers Surg. Med.202052101032104010.1002/lsm.2326532525253
    [Google Scholar]
  67. WangY. HuangY.Y. WangY. LyuP. HamblinM.R. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels.Sci. Rep.2016613371910.1038/srep3371927650508
    [Google Scholar]
  68. WangY. HuangY.Y. WangY. LyuP. HamblinM.R. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells.Sci. Rep.201771778110.1038/s41598‑017‑07525‑w28798481
    [Google Scholar]
  69. ChenJ. SangY. LiJ. ZhaoT. LiuB. XieS. SunW. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1.J. Photochem. Photobiol. B202223311247210.1016/j.jphotobiol.2022.11247235660312
    [Google Scholar]
  70. R HamblinM. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation.AIMS Biophys.20174333736110.3934/biophy.2017.3.33728748217
    [Google Scholar]
  71. CuiL. XuS.M. MaD.D. WuB.L. The effect of TRPM 7 suppression on the proliferation, migration and osteogenic differentiation of human dental pulp stem cells.Int. Endod. J.201447658359310.1111/iej.1219324138320
    [Google Scholar]
  72. ShanmugapriyaK. KimH. LeeY.W. KangH.W. Multifunctional heteropolysaccharide hydrogel under photobiomodulation for accelerated wound regeneration.Ceram. Int.20204667268727810.1016/j.ceramint.2019.11.221
    [Google Scholar]
  73. HolandaV.M. ChavantesM.C. SilvaD.F.T. de HolandaC.V.M. de OliveiraJ.O.Jr WuX. AndersJ.J. Photobiomodulation of the dorsal root ganglion for the treatment of low back pain: A pilot study.Lasers Surg. Med.201648765365910.1002/lsm.2252227135465
    [Google Scholar]
  74. RizziM. MigliarioM. TonelloS. RocchettiV. RenòF. Photobiomodulation induces in vitro re-epithelialization via nitric oxide production.Lasers Med. Sci.20183351003100810.1007/s10103‑018‑2443‑729349512
    [Google Scholar]
  75. GarridoP.R. PedroniA.C.F. CuryD.P. MoreiraM.S. RosinF. SarraG. MarquesM.M. Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets.J. Photochem. Photobiol. B201919414915710.1016/j.jphotobiol.2019.03.01730954874
    [Google Scholar]
  76. AlzyoudJ.A.M. OmoushS.A. Al-QtaitatA. Photobiomodulation for tendinopathy: A review of preclinical studies.Photobiomodul. Photomed. Laser Surg.202240637037710.1089/photob.2021.019235639100
    [Google Scholar]
  77. LockeR.C. LemmonE.A. DudzinskiE. KopaS.C. WayneJ.M. SoulasJ.M. De TaboadaL. KillianM.L. Photobiomodulation does not influence maturation and mildly improves functional healing of mouse achilles tendons.J. Orthop. Res.20203881866187510.1002/jor.2459231965620
    [Google Scholar]
  78. LyuK. LiuX. JiangL. ChenY. LuJ. ZhuB. LiuX. LiY. WangD. LiS. The functions and mechanisms of low-level laser therapy in tendon repair.Front. Physiol.20221380837410.3389/fphys.2022.80837435242050
    [Google Scholar]
  79. MaoA.S. MooneyD.J. Regenerative medicine: Current therapies and future directions.Proc. Natl. Acad. Sci. USA201511247144521445910.1073/pnas.150852011226598661
    [Google Scholar]
  80. BaldariS. Di RoccoG. PiccoliM. PozzobonM. MuracaM. ToiettaG. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies.Int. J. Mol. Sci.20171810208710.3390/ijms1810208728974046
    [Google Scholar]
  81. AhmadiH. AminiA. Fadaei FathabadyF. MostafaviniaA. ZareF. Ebrahimpour-malekshahR. GhalibafM.N. AbrishamM. RezaeiF. AlbrightR. GhoreishiS.K. ChienS. BayatM. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats.Stem Cell Res. Ther.202011149410.1186/s13287‑020‑01967‑233239072
    [Google Scholar]
  82. BikmulinaP.Y. KoshelevaN.V. ShpichkaA.I. EfremovY.M. YusupovV.I. TimashevP.S. RochevY.A. Beyond 2D: Effects of photobiomodulation in 3D tissue-like systems.J. Biomed. Opt.202025411610.1117/1.JBO.25.4.04800132351077
    [Google Scholar]
  83. ZaccaraI.M. MestieriL.B. PilarE.F.S. MoreiraM.S. GreccaF.S. MartinsM.D. KopperP.M.P. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation.Lasers Med. Sci.202035374174910.1007/s10103‑019‑02931‑032095920
    [Google Scholar]
  84. AbdelgawadL.M. AbdelazizA.M. SabryD. AbdelgwadM. Influence of photobiomodulation and vitamin D on osteoblastic differentiation of human periodontal ligament stem cells and bone-like tissue formation through enzymatic activity and gene expression.Biomol. Concepts202011117218110.1515/bmc‑2020‑001634233429
    [Google Scholar]
  85. Bölükbaşı AteşG. AkA. GaripcanB. GülsoyM. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells.Cytotechnology202072224725810.1007/s10616‑020‑00374‑y32016710
    [Google Scholar]
  86. HawkinsD. AbrahamseH. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts.Photomed. Laser Surg.200624670571410.1089/pho.2006.24.70517199470
    [Google Scholar]
  87. ChenH. WuH. YinH. WangJ. DongH. ChenQ. LiY. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells.Lasers Med. Sci.201934466767510.1007/s10103‑018‑2638‑y30232645
    [Google Scholar]
  88. van RensburgM.J. CrousA. AbrahamseH. PrinslooD.P.A. Facilitating iADMSC differentiation into neuronal cells by photobiomodulation using visible and near-infrared wavelengths.Power2021100574
    [Google Scholar]
  89. MuneekaewS. WangM.J. ChenS. Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern.Sci. Rep.2022121181210.1038/s41598‑022‑05888‑335110659
    [Google Scholar]
  90. LeeC.H. LeeF.Y. TarafderS. KaoK. JunY. YangG. MaoJ.J. Harnessing endogenous stem/progenitor cells for tendon regeneration.J. Clin. Invest.201512572690270110.1172/JCI8158926053662
    [Google Scholar]
  91. ChenM.H. HuangY.C. SunJ.S. ChaoY.H. ChenM.H. Second messengers mediating the proliferation and collagen synthesis of tenocytes induced by low-level laser irradiation.Lasers Med. Sci.201530126327210.1007/s10103‑014‑1658‑525231827
    [Google Scholar]
  92. TsaiW.C. ChengJ.W. ChenJ.L. ChenC.Y. ChangH.N. LiaoY.H. LinM.S. PangJ.H.S. Low-level laser irradiation stimulates tenocyte proliferation in association with increased NO synthesis and upregulation of PCNA and cyclins.Lasers Med. Sci.20142941377138410.1007/s10103‑014‑1528‑124510281
    [Google Scholar]
  93. de CarvalhoP.K. SilveiraL.Jr BarbosaD. MuninE. SalgadoM.A.C. VillaverdeA.B. Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry.Lasers Med. Sci.2016311192610.1007/s10103‑015‑1819‑126498452
    [Google Scholar]
  94. AllahverdiA. SharifiD. AbediG. HesarakiS. FattahiyanH. Effect of platelet-rich plasma, low-level laser therapy (650 nm) or their combination on the healing of Achilles tendon in rabbits: A histopathological study.Eur. J. Exp. Biol.201443201208
    [Google Scholar]
  95. Younesi SoltaniF. JavanshirS. DowlatiG. ParhamA. Naderi-MeshkinH. Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6.Cell Tissue Bank.202111034013429
    [Google Scholar]
  96. Perucca OrfeiC. ViganòM. PearsonJ.R. ColombiniA. De LucaP. RagniE. Santos-RuizL. De GirolamoL. In vitro induction of tendon-specific markers in tendon cells, adipose-and bone marrow-derived stem cells is dependent on TGFβ3, BMP-12 and ascorbic acid stimulation.Int. J. Mol. Sci.201920114910.3390/ijms2001014930609804
    [Google Scholar]
  97. BurkJ PlengeA BrehmW HellerS PfeifferB KasperC Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching.Stem Cells Int.20162016734237910.1155/2016/7342379
    [Google Scholar]
  98. ParkH. NazhatS.N. RosenzweigD.H. Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels.Biomaterials202228612160610.1016/j.biomaterials.2022.12160635660820
    [Google Scholar]
  99. YuY. ZhouY. ChengT. LuX. YuK. ZhouY. HongJ. ChenY. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system.Cell Prolif.201649217318410.1111/cpr.1225027021233
    [Google Scholar]
  100. JoC.H. LimH.J. YoonK.S. Characterization of tendon-specific markers in various human tissues, tenocytes and mesenchymal stem cells.Tissue Eng. Regen. Med.201916215115910.1007/s13770‑019‑00182‑230989042
    [Google Scholar]
  101. Cagri UysalA. MizunoH. Tendon regeneration and repair with adipose derived stem cells.Curr. Stem Cell Res. Ther.20105216116710.2174/15748881079126860919941450
    [Google Scholar]
  102. YuanZ YuH LongH DaiY ShiL ZhaoJ Stem cell applications and tenogenic differentiation strategies for tendon repair.Stem Cells Int. 20232023365649810.1155/2023/3656498
    [Google Scholar]
  103. MillarN.L. MurrellG.A.C. McInnesI.B. Inflammatory mechanisms in tendinopathy – towards translation.Nat. Rev. Rheumatol.201713211012210.1038/nrrheum.2016.21328119539
    [Google Scholar]
  104. ChangJ. LiuF. LeeM. WuB. TingK. ZaraJ.N. SooC. Al HezaimiK. ZouW. ChenX. MooneyD.J. WangC.Y. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation.Proc. Natl. Acad. Sci. USA2013110239469947410.1073/pnas.130053211023690607
    [Google Scholar]
  105. ZhangK. AsaiS. YuB. Enomoto-IwamotoM. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro.Biochem. Biophys. Res. Commun.2015463466767210.1016/j.bbrc.2015.05.12226051275
    [Google Scholar]
  106. LiM. ZhuY. PeiQ. DengY. NiT. The 532 nm laser treatment promotes the proliferation of tendon-derived stem cells and upregulates Nr4a1 to stimulate tenogenic differentiation.Photobiomodul. Photomed. Laser Surg.202240854355310.1089/photob.2022.000335904935
    [Google Scholar]
  107. de Freitas Dutra JúniorE. HiddS.M.C.M. AmaralM.M. FilhoA.L.M.M. AssisL. FerreiraR.S.Jr BarravieraB. MartignagoC.C.S. Figueredo-SilvaJ. de OliveiraR.A. TimC.R. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats.Lasers Med. Sci.202237297198110.1007/s10103‑021‑03341‑x34041619
    [Google Scholar]
  108. GomieroC. BertoluttiG. MartinelloT. Van BruaeneN. BroeckxS.Y. PatrunoM. SpaasJ.H. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology.Vet. Res. Commun.2016401394810.1007/s11259‑016‑9652‑y26757735
    [Google Scholar]
  109. XuK. ShaoY. XiaY. QianY. JiangN. LiuX. YangL. WangC. Tenascin-C regulates migration of SOX10 tendon stem cells via integrin-α9 for promoting patellar tendon remodeling.Biofactors202147576877710.1002/biof.175934058037
    [Google Scholar]
  110. LuckeL.D. BortolazzoF.O. TheodoroV. FujiiL. BombeiroA.L. FelonatoM. DaliaR.A. CarneiroG.D. CartarozziL.P. VicenteC.P. OliveiraA.L.R. MendonçaF.A.S. EsquisattoM.A.M. PimentelE.R. de AroA.A. Low-level laser and adipose-derived stem cells altered remodelling genes expression and improved collagen reorganization during tendon repair.Cell Prolif.2019523e1258010.1111/cpr.1258030734394
    [Google Scholar]
  111. NilforoushzadehM.A. Khodadadi YazdiM. Baradaran GhavamiS. FarokhimaneshS. Mohammadi AmirabadL. ZarrintajP. SaebM.R. HamblinM.R. ZareM. MozafariM. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: An in situ drug formation platform for accelerated wound healing.ACS Biomater. Sci. Eng.2020695096510910.1021/acsbiomaterials.0c0098833455261
    [Google Scholar]
  112. TsaiW.C. HsuC.C. PangJ.H.S. LinM.S. ChenY.H. LiangF.C. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.PLoS One201275e3823510.1371/journal.pone.003823522666495
    [Google Scholar]
  113. KhosravipourA. AminiA. Masteri FarahaniR. ZareF. MostafaviniaA. FallahnezhadS. AkbarzadeS. Ava parvandi AsgariM. MohammadbeigiA. RezaeiF. GhoreishiS.K. ChienS. BayatM. Preconditioning adipose-derived stem cells with photobiomodulation significantly increased bone healing in a critical size femoral defect in rats.Biochem. Biophys. Res. Commun.2020531210511110.1016/j.bbrc.2020.07.04832778332
    [Google Scholar]
  114. MinK.H. ByunJ.H. HeoC.Y. KimE.H. ChoiH.Y. PakC.S. Effect of low-level laser therapy on human adipose-derived stem cells: In vitro and in vivo studies.Aesthetic Plast. Surg.201539577878210.1007/s00266‑015‑0524‑626183254
    [Google Scholar]
  115. YooS.H. Effect of photobiomodulation on the mesenchymal stem cells.Med Lasers.202092119125
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X295488240319111911
Loading
/content/journals/cscr/10.2174/011574888X295488240319111911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test