Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X265479231127065541
2024-01-18
2025-01-22
Loading full text...

Full text loading...

References

  1. LiG.W. XieX.S. Central dogma at the single-molecule level in living cells.Nature2011475735630831510.1038/nature1031521776076
    [Google Scholar]
  2. CappJ.P. JollyM.K. SharmaA. Editorial: Non-genetic heterogeneity in development and disease.Front. Genet.20211273181410.3389/fgene.2021.73181434434224
    [Google Scholar]
  3. EldarA. ElowitzM.B. Functional roles for noise in genetic circuits.Nature2010467731216717310.1038/nature0932620829787
    [Google Scholar]
  4. JunkerJ.P. van OudenaardenA. Every cell is special: Genome-wide studies add a new dimension to single-cell biology.Cell2014157181110.1016/j.cell.2014.02.01024679522
    [Google Scholar]
  5. EtzrodtM. EndeleM. SchroederT. Quantitative single-cell approaches to stem cell research.Cell Stem Cell201415554655810.1016/j.stem.2014.10.01525517464
    [Google Scholar]
  6. RubakhinS.S. RomanovaE.V. NemesP. SweedlerJ.V. Profiling metabolites and peptides in single cells.Nat. Methods201184 SupplS20S2910.1038/nmeth.154921451513
    [Google Scholar]
  7. TangF. LaoK. SuraniM.A. Development and applications of single-cell transcriptome analysis.Nat. Methods20118S4S6S1110.1038/nmeth.155721451510
    [Google Scholar]
  8. AliyaS. LeeH. AlhammadiM. UmapathiR. HuhY.S. An overview on single-cell technology for hepatocellular carcinoma diagnosis.Int. J. Mol. Sci.2022233140210.3390/ijms2303140235163329
    [Google Scholar]
  9. BiehlJ.K. RussellB. Introduction to stem cell therapy.J. Cardiovasc. Nurs.20092429810310.1097/JCN.0b013e318197a6a519242274
    [Google Scholar]
  10. Mousaei GhasroldashtM. SeokJ. ParkH.S. AliF.B.L. Al-HendyA. Stem cell therapy: From idea to clinical practice.Int. J. Mol. Sci.2022235285010.3390/ijms2305285035269990
    [Google Scholar]
  11. GolchinA. ChatziparasidouA. RanjbarvanP. NiknamZ. ArdeshirylajimiA. Embryonicic stem cells in clinical trials: Current overview of developments and challenges.Adv Exp Med Bio20211312193710.1007/5584_2020_592
    [Google Scholar]
  12. GolchinA. ShamsF. BasiriA. RanjbarvanP. KianiS. Sarkhosh-InanlouR. ArdeshirylajimiA. Ghaleh AzizS.G. SadighS. RasmiY. Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing.Stem Cell Rev. Rep.20221861892191110.1007/s12015‑021‑10309‑535080745
    [Google Scholar]
  13. GolchinA. ShamsF. KaramiF. Advancing mesenchymal stem cell therapy with CRISPR/Cas9 for clinical trial studies.Adv Exp Med Biol.202012478910010.1007/5584_2019_459
    [Google Scholar]
  14. ShepherdM.S. LiJ. WilsonN.K. OedekovenC.A. LiJ. BelmonteM. FinkJ. PrickJ.C.M. PaskD.C. HamiltonT.L. LoefflerD. RaoA. SchröderT. GöttgensB. GreenA.R. KentD.G. Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal.Blood2018132879180310.1182/blood‑2017‑12‑82106629991556
    [Google Scholar]
  15. KucinskiI. GottgensB. Advancing stem cell research through multimodal single-cell analysis.Cold Spring Harb. Perspect. Biol.2020127a03572510.1101/cshperspect.a03572531932320
    [Google Scholar]
  16. LeeJ. HyeonD.Y. HwangD. Single-cell multiomics: Technologies and data analysis methods.Exp. Mol. Med.20205291428144210.1038/s12276‑020‑0420‑232929225
    [Google Scholar]
  17. TarashanskyA.J. XueY. LiP. QuakeS.R. WangB. Self-assembling manifolds in single-cell RNA sequencing data.eLife20198e4899410.7554/eLife.4899431524596
    [Google Scholar]
  18. WenL. TangF. Single-cell sequencing in stem cell biology.Genome Biol.20161717110.1186/s13059‑016‑0941‑027083874
    [Google Scholar]
  19. Maciej SerdaF.G. BeckerM. ClearyR.M. Single cell technology: A step forward to new breeding technologies.8th CONAVI: National Viticulture Conference,Udine, 5-7 July 2021.2021
    [Google Scholar]
  20. TianJ. ZhepingX. ChuanhaoY. XuejuanC. XuejunZ. TianJ. ZhepingX. ChuanhaoY. XuejuanC. XuejunZ. Development trend analysis of single cell technology in China.Sci. Focus20221711610.15978/J.CNKI.1673‑5668.202201001
    [Google Scholar]
  21. LinW.N. TayM.Z. LuR. LiuY. ChenC.H. CheowL.F. The role of single-cell technology in the study and control of infectious diseases.Cells2020961440
    [Google Scholar]
  22. AltschulerS.J. WuL.F. Cellular heterogeneity: Do differences make a difference?Cell2010141455956310.1016/j.cell.2010.04.03320478246
    [Google Scholar]
  23. CarterB. ZhaoK. The epigenetic basis of cellular heterogeneity.Nat. Rev. Genet.202122423525010.1038/s41576‑020‑00300‑033244170
    [Google Scholar]
  24. ZhengG.X.Y. TerryJ.M. BelgraderP. RyvkinP. BentZ.W. WilsonR. ZiraldoS.B. WheelerT.D. McDermottG.P. ZhuJ. GregoryM.T. ShugaJ. MontesclarosL. UnderwoodJ.G. MasquelierD.A. NishimuraS.Y. Schnall-LevinM. WyattP.W. HindsonC.M. BharadwajR. WongA. NessK.D. BeppuL.W. DeegH.J. McFarlandC. LoebK.R. ValenteW.J. EricsonN.G. StevensE.A. RadichJ.P. MikkelsenT.S. HindsonB.J. BielasJ.H. Massively parallel digital transcriptional profiling of single cells.Nat. Commun.2017811404910.1038/ncomms1404928091601
    [Google Scholar]
  25. MacoskoE.Z. BasuA. SatijaR. NemeshJ. ShekharK. GoldmanM. TiroshI. BialasA.R. KamitakiN. MartersteckE.M. TrombettaJ.J. WeitzD.A. SanesJ.R. ShalekA.K. RegevA. McCarrollS.A. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets.Cell201516151202121410.1016/j.cell.2015.05.00226000488
    [Google Scholar]
  26. OchockaN. SegitP. WalentynowiczK.A. WojnickiK. CyranowskiS. SwatlerJ. MieczkowskiJ. KaminskaB. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages.Nat. Commun.2021121115110.1038/s41467‑021‑21407‑w33608526
    [Google Scholar]
  27. ZhouY. BianS. ZhouX. CuiY. WangW. WenL. GuoL. FuW. TangF. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer.Cancer Cell2020386818828.e510.1016/j.ccell.2020.09.01533096021
    [Google Scholar]
  28. AraiF. NgC. MaruyamaH. IchikawaA. El-ShimyH. FukudaT. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel.Lab Chip20055121399140310.1039/b502546j16286972
    [Google Scholar]
  29. WhitesidesG.M. The origins and the future of microfluidics.Nature2006442710136837310.1038/nature0505816871203
    [Google Scholar]
  30. FarahiniaA. ZhangW.J. BadeaI. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review.J. Sci. Adv. Mater. Devices20216330332010.1016/j.jsamd.2021.03.005
    [Google Scholar]
  31. ZhangX. MarjaniS.L. HuZ. WeissmanS.M. PanX. WuS. Single- cell sequencing for precise cancer research: Progress and prospects.Cancer Res.20167661305131210.1158/0008‑5472.CAN‑15‑190726941284
    [Google Scholar]
  32. WinterhoffB.J. MaileM. MitraA.K. SebeA. BazzaroM. GellerM.A. AbrahanteJ.E. KleinM. HellwegR. MullanyS.A. BeckmanK. DanielJ. StarrT.K. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.Gynecol. Oncol.2017144359860610.1016/j.ygyno.2017.01.01528111004
    [Google Scholar]
  33. NavinN. HicksJ. Future medical applications of single-cell sequencing in cancer.Genome Med.2011353110.1186/gm24721631906
    [Google Scholar]
  34. VermeulenL. TodaroM. de Sousa MelloF. SprickM.R. KemperK. Perez AleaM. RichelD.J. StassiG. MedemaJ.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity.Proc. Natl. Acad. Sci.200810536134271343210.1073/pnas.080570610518765800
    [Google Scholar]
  35. WuA.R. WangJ. StreetsA.M. HuangY. Single-cell transcriptional analysis.Annu. Rev. Anal. Chem.201710143946210.1146/annurev‑anchem‑061516‑04522828301747
    [Google Scholar]
  36. SunT. MorganH. Single-cell microfluidic impedance cytometry: A review.Microfluid. Nanofluidics20108442344310.1007/s10404‑010‑0580‑9
    [Google Scholar]
  37. ZareR.N. KimS. Microfluidic platforms for single-cell analysis.Annu. Rev. Biomed. Eng.201012118720110.1146/annurev‑bioeng‑070909‑10523820433347
    [Google Scholar]
  38. Vieira BragaF.A. KarG. BergM. CarpaijO.A. PolanskiK. SimonL.M. BrouwerS. GomesT. HesseL. JiangJ. FasouliE.S. EfremovaM. Vento-TormoR. Talavera-LópezC. JonkerM.R. AffleckK. PalitS. StrzeleckaP.M. FirthH.V. MahbubaniK.T. CvejicA. MeyerK.B. Saeb-ParsyK. LuingeM. BrandsmaC.A. TimensW. AngelidisI. StrunzM. KoppelmanG.H. van OosterhoutA.J. SchillerH.B. TheisF.J. van den BergeM. NawijnM.C. TeichmannS.A. A cellular census of human lungs identifies novel cell states in health and in asthma.Nat. Med.20192571153116310.1038/s41591‑019‑0468‑531209336
    [Google Scholar]
  39. ElmentaiteR. TeichmannS.A. MadissoonE. Studying immune to non-immune cell cross-talk using single-cell technologies.Curr. Opin. Syst. Biol.201918879410.1016/j.coisb.2019.10.00532984660
    [Google Scholar]
  40. KaurR.P. LudhiadchA. MunshiA. Chapter 9 - Single-Cell Genomics: Technology and Applications.Single-Cell OmicsAcademic Press2019117919710.1016/B978‑0‑12‑814919‑5.00009‑9
    [Google Scholar]
  41. YasenA. AiniA. WangH. LiW. ZhangC. RanB. TuxunT. MaimaitinijiatiY. ShaoY. AjiT. WenH. Progress and applications of single-cell sequencing techniques.Infect. Genet. Evol.20208010419810.1016/j.meegid.2020.10419831958516
    [Google Scholar]
  42. YuY. TsangJ.C.H. WangC. ClareS. WangJ. ChenX. BrandtC. KaneL. CamposL.S. LuL. BelzG.T. McKenzieA.N.J. TeichmannS.A. DouganG. LiuP. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway.Nature2016539762710210610.1038/nature2010527749818
    [Google Scholar]
  43. PedrioliA. OxeniusA. Single B cell technologies for monoclonal antibody discovery.Trends Immunol.202142121143115810.1016/j.it.2021.10.00834743921
    [Google Scholar]
  44. XueZ. HuangK. CaiC. CaiL. JiangC. FengY. LiuZ. ZengQ. ChengL. SunY.E. LiuJ. HorvathS. FanG. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.Nature2013500746459359710.1038/nature1236423892778
    [Google Scholar]
  45. TangF. BarbacioruC. BaoS. LeeC. NordmanE. WangX. LaoK. SuraniM.A. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis.Cell Stem Cell20106546847810.1016/j.stem.2010.03.01520452321
    [Google Scholar]
  46. HassaniS.N. MoradiS. TaleahmadS. BraunT. BaharvandH. Transition of inner cell mass to embryonic stem cells: Mechanisms, facts, and hypotheses.Cell. Mol. Life Sci.201976587389210.1007/s00018‑018‑2965‑y30420999
    [Google Scholar]
  47. Durruthy-DurruthyR. GottliebA. HartmanB.H. WaldhausJ. LaskeR.D. AltmanR. HellerS. Reconstruction of the mouse otocyst and early neuroblast lineage at single- cell resolution.Cell2014157496497810.1016/j.cell.2014.03.03624768691
    [Google Scholar]
  48. TreutleinB. BrownfieldD.G. WuA.R. NeffN.F. MantalasG.L. EspinozaF.H. DesaiT.J. KrasnowM.A. QuakeS.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.Nature2014509750037137510.1038/nature1317324739965
    [Google Scholar]
  49. GaschA.P. YuF.B. HoseJ. EscalanteL.E. PlaceM. BacherR. KanbarJ. CiobanuD. SandorL. GrigorievI.V. KendziorskiC. QuakeS.R. McCleanM.N. Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress.PLoS Biol.20171512e200405010.1371/journal.pbio.200405029240790
    [Google Scholar]
  50. McLeanJ.S. LombardoM.J. BadgerJ.H. EdlundA. NovotnyM. Yee-GreenbaumJ. VyahhiN. HallA.P. YangY. DupontC.L. ZieglerM.G. ChitsazH. AllenA.E. YoosephS. TeslerG. PevznerP.A. FriedmanR.M. NealsonK.H. VenterJ.C. LaskenR.S. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum.Proc. Natl. Acad. Sci.201311026E2390E239910.1073/pnas.121980911023754396
    [Google Scholar]
  51. YangZ. LiC. FanZ. LiuH. ZhangX. CaiZ. XuL. LuoJ. HuangY. HeL. LiuC. WuS. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells.Eur. Urol.201771181210.1016/j.eururo.2016.06.02527387124
    [Google Scholar]
  52. ZhangX. LiuL. Applications of single cell RNA sequencing to research of stem cells.World J. Stem Cells2019111072272810.4252/wjsc.v11.i10.72231692946
    [Google Scholar]
  53. DemeulemeesterJ. KumarP. MøllerE.K. NordS. WedgeD.C. PetersonA. MathiesenR.R. FjelldalR. Zamani EstekiM. TheunisK. Fernandez GallardoE. GrundstadA.J. BorgenE. BaumbuschL.O. Børresen-DaleA.L. WhiteK.P. KristensenV.N. Van LooP. VoetT. NaumeB. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing.Genome Biol.201617125010.1186/s13059‑016‑1109‑727931250
    [Google Scholar]
  54. YuL. ZhaoH. MengL. ZhangC. Application of single cell sequencing in cancer.Single Cell Biomed201813514810.1007/978‑981‑13‑0502‑3_11
    [Google Scholar]
  55. Heselmeyer-HaddadK.M. Berroa GarciaL.Y. BradleyA. HernandezL. HuY. HabermannJ.K. DumkeC. ThornsC. PernerS. PestovaE. BurkeC. ChowdhuryS.A. SchwartzR. SchäfferA.A. ParisP.L. RiedT. Single-cell genetic analysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor prognosis.Am. J. Pathol.2014184102671268610.1016/j.ajpath.2014.06.03025131421
    [Google Scholar]
  56. HouY. GuoH. CaoC. LiX. HuB. ZhuP. WuX. WenL. TangF. HuangY. PengJ. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas.Cell Res.201626330431910.1038/cr.2016.2326902283
    [Google Scholar]
  57. LitzenburgerU.M. BuenrostroJ.D. WuB. ShenY. SheffieldN.C. KathiriaA. GreenleafW.J. ChangH.Y. Single-cell epigenomic variability reveals functional cancer heterogeneity.Genome Biol.20171811510.1186/s13059‑016‑1133‑728118844
    [Google Scholar]
  58. KimK.T. LeeH.W. LeeH.O. SongH.J. JeongD.E. ShinS. KimH. ShinY. NamD.H. JeongB.C. KirschD.G. JooK.M. ParkW.Y. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma.Genome Biol.20161718010.1186/s13059‑016‑0945‑927139883
    [Google Scholar]
  59. MitraA.K. MukherjeeU.K. HardingT. JangJ.S. StessmanH. LiY. AbyzovA. JenJ. KumarS. RajkumarV. Van NessB. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.Leukemia20163051094110210.1038/leu.2015.36126710886
    [Google Scholar]
  60. LeongK.G. WangB.E. JohnsonL. GaoW.Q. Generation of a prostate from a single adult stem cell.Nature2008456722380480810.1038/nature0742718946470
    [Google Scholar]
  61. HoppeP.S. CoutuD.L. SchroederT. Single-cell technologies sharpen up mammalian stem cell research.Nat. Cell Biol.2014161091992710.1038/ncb304225271480
    [Google Scholar]
  62. GrünD. MuraroM.J. BoissetJ.C. WiebrandsK. LyubimovaA. DharmadhikariG. van den BornM. van EsJ. JansenE. CleversH. de KoningE.J.P. van OudenaardenA. De novo prediction of stem cell identity using single-cell transcriptome data.Cell Stem Cell201619226627710.1016/j.stem.2016.05.01027345837
    [Google Scholar]
  63. ShirakiN. KumeS. Detailed analysis at a single-cell level of cells undergoing pancreatic differentiation.J. Diabetes Investig.2020111202110.1111/jdi.1314031479587
    [Google Scholar]
  64. TangW. Challenges and advances in stem cell therapy.Biosci. Trends201913428628610.5582/bst.2019.0124131527325
    [Google Scholar]
  65. RusuE. NeculaL.G. NeaguA.I. AlecuM. StanC. AlbulescuR. TanaseC.P. Current status of stem cell therapy: Opportunities and limitations.Turk. J. Biol.20164095596710.3906/biy‑1506‑95
    [Google Scholar]
  66. LiuG. DavidB.T. TrawczynskiM. FesslerR.G. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications.Stem Cell Rev. Rep.202016133210.1007/s12015‑019‑09935‑x31760627
    [Google Scholar]
  67. CharitosI.A. BalliniA. CantoreS. BoccellinoM. Di DomenicoM. BorsaniE. NociniR. Di CosolaM. SantacroceL. BottalicoL. Stem cells: A historical review about biological, religious, and ethical issues.Stem Cells Int.2021202111110.1155/2021/997883734012469
    [Google Scholar]
  68. RandoT.A. AmbrosioF. Regenerative rehabilitation: Applied biophysics meets stem cell therapeutics.Cell Stem Cell201822330630910.1016/j.stem.2018.02.00329499150
    [Google Scholar]
  69. MaziniL. EzzoubiM. MalkaG. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: Flow chart and regulation updates before and after COVID-19.Stem Cell Res. Ther.202112111710.1186/s13287‑020‑02006‑w33397467
    [Google Scholar]
  70. KimbrelE.A. LanzaR. Next-generation stem cells - ushering in a new era of cell-based therapies.Nat. Rev. Drug Discov.202019746347910.1038/s41573‑020‑0064‑x32612263
    [Google Scholar]
  71. ZagharyW.A. ElansaryM.M. ShoumanD.N. AbdelrahimA.A. Abu-ZiedK.M. SakrT.M. Can nanotechnology overcome challenges facing stem cell therapy? A review.J. Drug Deliv. Sci. Technol.20216610288310.1016/j.jddst.2021.102883
    [Google Scholar]
  72. GolchinA. RekabgardanM. TaheriR.A. NouraniM.R. Promotion of cell-based therapy: Special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies.Adv. Exp. Med. Biol. TurksenK. New York, NYSpringer201810311810.1007/5584_2018_256
    [Google Scholar]
  73. NiknamZ. JafariA. GolchinA. Danesh PouyaF. NematiM. Rezaei-TaviraniM. RasmiY. Potential therapeutic options for COVID-19: An update on current evidence.Eur. J. Med. Res.2022271610.1186/s40001‑021‑00626‑335027080
    [Google Scholar]
  74. ArdeshirylajimiA. GolchinA. KhojastehA. BandehpourM. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate.Artif. Cells Nanomed. Biotechnol.201846sup394394910.1080/21691401.2018.152181630489168
    [Google Scholar]
  75. JovicD. YuY. WangD. WangK. LiH. XuF. LiuC. LiuJ. LuoY. A brief overview of global trends in MSC-based cell therapy.Stem Cell Rev. Rep.20221851525154510.1007/s12015‑022‑10369‑135344199
    [Google Scholar]
  76. LublinF.D. BowenJ.D. HuddlestoneJ. KremenchutzkyM. CarpenterA. CorboyJ.R. FreedmanM.S. KruppL. PauloC. HaririR.J. FischkoffS.A. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: A randomized, placebo-controlled, multiple-dose study.Mult. Scler. Relat. Disord.20143669670410.1016/j.msard.2014.08.00225891548
    [Google Scholar]
  77. LukomskaB. StanaszekL. Zuba-SurmaE. LegoszP. SarzynskaS. DrelaK. Challenges and controversies in human mesenchymal stem cell therapy.Stem Cells Int.2019201911010.1155/2019/962853631093291
    [Google Scholar]
  78. LinW. HuangL. LiY. FangB. LiG. ChenL. XuL. Mesenchymal stem cells and cancer: Clinical challenges and opportunities.BioMed Res. Int.2019201911210.1155/2019/282085331205939
    [Google Scholar]
  79. KirwinT. GomesA. AminR. SufiA. GoswamiS. WangB. Mechanisms underlying the therapeutic potential of mesenchymal stem cells in atherosclerosis.Regen Med.2021167669682202110.2217/rme‑2021‑0024
    [Google Scholar]
  80. RezabakhshA. SokulluE. RahbarghaziR. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine.Stem Cell Res. Ther.202112152110.1186/s13287‑021‑02596‑z34583767
    [Google Scholar]
  81. YuanG.C. CaiL. ElowitzM. EnverT. FanG. GuoG. IrizarryR. KharchenkoP. KimJ. OrkinS. QuackenbushJ. SaadatpourA. SchroederT. ShivdasaniR. TiroshI. Challenges and emerging directions in single-cell analysis.Genome Biol.20171818410.1186/s13059‑017‑1218‑y28482897
    [Google Scholar]
  82. RiegerM.A. HoppeP.S. SmejkalB.M. EitelhuberA.C. SchroederT. Hematopoietic cytokines can instruct lineage choice.Science2009325593721721810.1126/science.117146119590005
    [Google Scholar]
  83. MoignardV. MacaulayI.C. SwiersG. BuettnerF. SchütteJ. Calero-NietoF.J. KinstonS. JoshiA. HannahR. TheisF.J. JacobsenS.E. de BruijnM.F. GöttgensB. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis.Nat. Cell Biol.201315436337210.1038/ncb270923524953
    [Google Scholar]
  84. HuangS. Non-genetic heterogeneity of cells in development: More than just noise.Development2009136233853386210.1242/dev.03513919906852
    [Google Scholar]
  85. HicksS.C. TownesF.W. TengM. IrizarryR.A. Missing data and technical variability in single-cell RNA-sequencing experiments.Biostatistics201819456257810.1093/biostatistics/kxx05329121214
    [Google Scholar]
  86. HaghverdiL. LunA.T.L. MorganM.D. MarioniJ.C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.Nat Biotechnol.2018365421427
    [Google Scholar]
  87. BüttnerM. MiaoZ. WolfF.A. TeichmannS.A. TheisF.J. A test metric for assessing single-cell RNA-seq batch correction.Nat. Methods2019161434910.1038/s41592‑018‑0254‑130573817
    [Google Scholar]
  88. LiX. WangK. LyuY. PanH. ZhangJ. StambolianD. SusztakK. ReillyM.P. HuG. LiM. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.Nat. Commun.2020111233810.1038/s41467‑020‑15851‑332393754
    [Google Scholar]
  89. LeeJ. KoehlerK.R. Skin organoids: A new human model for developmental and translational research.Exp. Dermatol.202130461362010.1111/exd.1429233507537
    [Google Scholar]
  90. SunC. WangL. WangH. HuangT. YaoW. LiJ. ZhangX. Single-cell RNA-seq highlights heterogeneity in human primary Wharton’s jelly mesenchymal stem/stromal cells cultured in vitro.Stem Cell Res. Ther.202011114910.1186/s13287‑020‑01660‑432252818
    [Google Scholar]
  91. JinH. BaeY. KimM. KwonS.J. JeonH. ChoiS. KimS. YangY. OhW. ChangJ. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy.Int. J. Mol. Sci.2013149179861800110.3390/ijms14091798624005862
    [Google Scholar]
  92. SamsonrajR.M. RaiB. SathiyanathanP. PuanK.J. RötzschkeO. HuiJ.H. RaghunathM. StantonL.W. NurcombeV. CoolS.M. Establishing criteria for human mesenchymal stem cell potency.Stem Cells20153361878189110.1002/stem.198225752682
    [Google Scholar]
  93. BustosM.L. HuleihelL. KapetanakiM.G. Lino-CardenasC.L. MrozL. EllisB.M. McVerryB.J. RichardsT.J. KaminskiN. CerdenesN. MoraA.L. RojasM. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response.Am. J. Respir. Crit. Care Med.2014189778779810.1164/rccm.201306‑1043OC24559482
    [Google Scholar]
  94. HuangX. LiuS. WuL. JiangM. HouY. High throughput single cell RNA sequencing, bioinformatics analysis and applications.Adv. Exp. Med. Biol.20181068334310.1007/978‑981‑13‑0502‑3_429943294
    [Google Scholar]
  95. van der MaatenL. HintonG. Visualizing data using t-SNE.J. Mach. Learn. Res.2008925792605
    [Google Scholar]
  96. ZeiselA. Muñoz-ManchadoA.B. CodeluppiS. LönnerbergP. La MannoG. JuréusA. MarquesS. MungubaH. HeL. BetsholtzC. RolnyC. Castelo-BrancoG. Hjerling-LefflerJ. LinnarssonS. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.Science201534762261138114210.1126/science.aaa193425700174
    [Google Scholar]
  97. PiersonE. YauC. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis.Genome Biol.201516124110.1186/s13059‑015‑0805‑z26527291
    [Google Scholar]
  98. BoxP.O. Van Der MaatenL. PostmaE. Van Den HerikJ. Dimensionality reduction: A comparative review.J Mach Learn Res2009106671
    [Google Scholar]
  99. KharchenkoP.V. SilbersteinL. ScaddenD.T. Bayesian approach to single-cell differential expression analysis.Nat. Methods201411774074210.1038/nmeth.296724836921
    [Google Scholar]
  100. HuP. ZhangW. XinH. DengG. Single cell isolation and analysis.Front. Cell Dev. Biol.2016411610.3389/fcell.2016.0011627826548
    [Google Scholar]
  101. MaroufM. MachartP. BansalV. KilianC. MagruderD.S. KrebsC.F. BonnS. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks.Nat. Commun.202011116610.1038/s41467‑019‑14018‑z31919373
    [Google Scholar]
  102. RadisicM. IyerR.K. MurthyS.K. Micro and nanotechnology in cell separation.Int. J. Nanomedicine20061131410.2147/nano.2006.1.1.317722258
    [Google Scholar]
  103. ChapmanM.R. BalakrishnanK.R. LiJ. ConboyM.J. HuangH. MohantyS.K. JabartE. HackJ. ConboyI.M. SohnL.L. Sorting single satellite cells from individual myofibers reveals heterogeneity in cell- surface markers and myogenic capacity.Integr. Biol.20135469270210.1039/c3ib20290a23407661
    [Google Scholar]
  104. ReinhardtM. BaderA. GiriS. Devices for stem cell isolation and delivery: Current need for drug discovery and cell therapy.Expert Rev. Med. Devices201512335336410.1586/17434440.2015.99509425540074
    [Google Scholar]
  105. RodriguesG.M.C. RodriguesC.A.V. FernandesT.G. DiogoM.M. CabralJ.M.S. Clinical scale purification of pluripotent stem cell derivatives for cell based therapies.Biotechnol. J.20151081103111410.1002/biot.20140053525851544
    [Google Scholar]
  106. SmithJ.P. BarbatiA.C. SantanaS.M. GleghornJ.P. KirbyB.J. Microfluidic transport in microdevices for rare cell capture.Electrophoresis201233213133314210.1002/elps.20120026323065634
    [Google Scholar]
  107. WuA.Y. MorrowD.M. Clinical use of dieletrophoresis separation for live adipose derived stem cells.J. Transl. Med.20121019910.1186/1479‑5876‑10‑9922594610
    [Google Scholar]
  108. HatchA. PeskoD.M. MurthyS.K. Tag free microfluidic separation of cells against multiple markers.Anal. Chem.201284104618462110.1021/ac300496q22519841
    [Google Scholar]
  109. GothardD. TareR.S. MitchellP.D. DawsonJ.I. OreffoR.O.C. In search of the skeletal stem cell: Isolation and separation strategies at the macro/micro scale for skeletal regeneration.Lab Chip20111171206122010.1039/c0lc00575d21350777
    [Google Scholar]
  110. WillB. SteidlU. Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies.Best Pract. Res. Clin. Haematol.201023339140110.1016/j.beha.2010.06.00621112038
    [Google Scholar]
  111. ZhaoH. ChoiK. Single cell transcriptome dynamics from pluripotency to FLK1+ mesoderm.Development201914623dev.18209710.1242/dev.18209731740535
    [Google Scholar]
  112. MotazedianA. BruverisF.F. KumarS.V. SchiesserJ.V. ChenT. NgE.S. ChidgeyA.P. WellsC.A. ElefantyA.G. StanleyE.G. Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids.Nat. Cell Biol.2020221607310.1038/s41556‑019‑0445‑831907413
    [Google Scholar]
  113. ChavkinN.W. HirschiK.K. Single cell analysis in vascular biology.Front. Cardiovasc. Med.202074210.3389/fcvm.2020.0004232296715
    [Google Scholar]
  114. ShackletonM. VaillantF. SimpsonK.J. StinglJ. SmythG.K. Asselin-LabatM.L. WuL. LindemanG.J. VisvaderJ.E. Generation of a functional mammary gland from a single stem cell.Nature20064397072848810.1038/nature0437216397499
    [Google Scholar]
  115. SaccoA. DoyonnasR. KraftP. VitorovicS. BlauH.M. Self-renewal and expansion of single transplanted muscle stem cells.Nature2008456722150250610.1038/nature0738418806774
    [Google Scholar]
  116. CrisafulliL. FicaraF. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal.Wiley Interdiscip. Rev. RNA2022133e169310.1002/wrna.169334532984
    [Google Scholar]
  117. TorisawaY. SpinaC.S. MammotoT. MammotoA. WeaverJ.C. TatT. CollinsJ.J. IngberD.E. Bone marrow on a chip replicates hematopoietic niche physiology in vitro.Nat. Methods201411666366910.1038/nmeth.293824793454
    [Google Scholar]
  118. FreyO. MisunP.M. FluriD.A. HengstlerJ.G. HierlemannA. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.Nat. Commun.201451425010.1038/ncomms525024977495
    [Google Scholar]
  119. TayS. HugheyJ.J. LeeT.K. LipniackiT. QuakeS.R. CovertM.W. Single-cell NF-κB dynamics reveal digital activation and analogue information processing.Nature2010466730326727110.1038/nature0914520581820
    [Google Scholar]
  120. ToettcherJ.E. GongD. LimW.A. WeinerO.D. Light-based feedback for controlling intracellular signaling dynamics.Nat. Methods201181083783910.1038/nmeth.170021909100
    [Google Scholar]
  121. LubeckE. CaiL. Single-cell systems biology by super-resolution imaging and combinatorial labeling.Nat. Methods20129774374810.1038/nmeth.206922660740
    [Google Scholar]
  122. WarrenL. BryderD. WeissmanI.L. QuakeS.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR.Proc. Natl. Acad. Sci.200610347178071781210.1073/pnas.060851210317098862
    [Google Scholar]
  123. NavinN. KendallJ. TrogeJ. AndrewsP. RodgersL. McIndooJ. CookK. StepanskyA. LevyD. EspositoD. MuthuswamyL. KrasnitzA. McCombieW.R. HicksJ. WiglerM. Tumour evolution inferred by single-cell sequencing.Nature20114727341909410.1038/nature0980721399628
    [Google Scholar]
  124. JaitinD.A. KenigsbergE. Keren-ShaulH. ElefantN. PaulF. ZaretskyI. MildnerA. CohenN. JungS. TanayA. AmitI. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types.Science2014343617277677910.1126/science.124765124531970
    [Google Scholar]
  125. BendallS.C. DavisK.L. AmirE.D. TadmorM.D. SimondsE.F. ChenT.J. ShenfeldD.K. NolanG.P. Pe’erD. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development.Cell2014157371472510.1016/j.cell.2014.04.00524766814
    [Google Scholar]
  126. RitsmaL. EllenbroekS.I.J. ZomerA. SnippertH.J. de SauvageF.J. SimonsB.D. CleversH. van RheenenJ. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging.Nature2014507749236236510.1038/nature1297224531760
    [Google Scholar]
  127. FarbehiN. PatrickR. DorisonA. XaymardanM. JanbandhuV. Wystub-LisK. HoJ.W.K. NordonR.E. HarveyR.P. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury.eLife20198e4388210.7554/eLife.4388230912746
    [Google Scholar]
  128. OlaR. KünzelS.H. ZhangF. GenetG. ChakrabortyR. Pibouin-FragnerL. MartinK. SessaW. DubracA. EichmannA. SMAD4 Prevents flow induced arteriovenous malformations by inhibiting casein kinase 2.Circulation2018138212379239410.1161/CIRCULATIONAHA.118.03384229976569
    [Google Scholar]
  129. LengfeldJ.E. LutzS.E. SmithJ.R. DiaconuC. ScottC. KofmanS.B. ChoiC. WalshC.M. RaineC.S. AgalliuI. AgalliuD. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis.Proc. Natl. Acad. Sci.20171147E1168E117710.1073/pnas.160990511428137846
    [Google Scholar]
  130. ZywitzaV. MisiosA. BunatyanL. WillnowT.E. RajewskyN. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis.Cell Rep.201825924572469.e810.1016/j.celrep.2018.11.00330485812
    [Google Scholar]
  131. GolchinA. FarzanehS. PorjabbarB. SadegianF. EstajiM. RanjbarvanP. KanafimahbobM. RanjbariJ. Salehi-NikN. HosseinzadehS. Regenerative medicine under the control of 3D scaffolds: Current state and progress of tissue scaffolds.Curr. Stem Cell Res. Ther.202116220922910.2174/22123946MTA43MzEt432691716
    [Google Scholar]
  132. GolchinA. ShamsF. KangariP. AzariA. HosseinzadehS. Regenerative medicine: Injectable cell-based therapeutics and approved products.Adv. Exp. Med. Biol.20191237759510.1007/5584_2019_41231302869
    [Google Scholar]
  133. ChenC.S. MrksichM. HuangS. WhitesidesG.M. IngberD.E. Geometric control of cell life and death.Science19972761425142810.1126/science.276.5317.1425
    [Google Scholar]
  134. BeltrãoM. DuarteF.M. VianaJ.C. PauloV. A review on in-mold electronics technology.Polym. Eng. Sci.202262496799010.1002/pen.25918
    [Google Scholar]
  135. AlbrechtD. SahR. A microfabricated platform for investigating multicellular organization in 3-D microenvironments.2006Available from: https://www.researchgate.net/profile/Hohyun-Lee/publication/242429036_Nanocomposites_as_Thermoelectric_Materials/links/544272a60cf2e6f0c0f93052/Nanocomposites-as-Thermoelectric-Materials.pdf#page=34
  136. RowatA.C. BirdJ.C. AgrestiJ.J. RandoO.J. WeitzD.A. Tracking lineages of single cells in lines using a microfluidic device.Proc. Natl. Acad. Sci.200910643181491815410.1073/pnas.090316310619826080
    [Google Scholar]
  137. van den HurkM. BardyC. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models.J. Neurosci. Methods201932510835010.1016/j.jneumeth.2019.10835031310823
    [Google Scholar]
  138. VermeshU. VermeshO. WangJ. KwongG.A. MaC. HwangK. HeathJ.R. High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications.Angew. Chem. Int. Ed.201150327378738010.1002/anie.20110224921717543
    [Google Scholar]
  139. KortmannH. KurthF. BlankL.M. DittrichP.S. SchmidA. Towards real time analysis of protein secretion from single cells.Lab Chip20099213047304910.1039/b908679j19823717
    [Google Scholar]
  140. UdeC.C. MiskonA. IdrusR.B.H. Abu BakarM.B. Application of stem cells in tissue engineering for defense medicine.Mil. Med. Res.201851710.1186/s40779‑018‑0154‑929502528
    [Google Scholar]
  141. MatsudaN. ShimizuT. YamatoM. OkanoT. Tissue engineering based on cell sheet technology.Adv. Mater.200719203089309910.1002/adma.200701978
    [Google Scholar]
  142. MobarakiM. AbbasiR. Omidian VandchaliS. GhaffariM. MoztarzadehF. MozafariM. Corneal repair and regeneration: Current concepts and future directions.Front. Bioeng. Biotechnol.2019713510.3389/fbioe.2019.0013531245365
    [Google Scholar]
  143. ZhangY. AtalaA. Urothelial cell culture: Stratified urothelial sheet and three-dimensional growth of urothelial structure.Methods Mol. Biol.201294538339910.1007/978‑1‑62703‑125‑7_2323097119
    [Google Scholar]
  144. TakagiR. YamatoM. KanaiN. MurakamiD. KondoM. IshiiT. OhkiT. NamikiH. YamamotoM. OkanoT. Cell sheet technology for regeneration of esophageal mucosa.World J. Gastroenterol.201218375145515010.3748/WJG.V18.I37.514523066307
    [Google Scholar]
  145. HermannsC. da Silva FilhoO.P. VaithilingamV. van ApeldoornA. The potential of cell sheet technology for beta cell replacement therapy.Curr. Transplant. Rep202299911110
    [Google Scholar]
  146. ItabaN. NodaI. OkaH. KonoY. OkinakaK. YokobataT. OkazakiS. MorimotoM. ShiotaG. Hepatic cell sheets engineered from human mesenchymal stem cells with a single small molecule compound IC-2 ameliorate acute liver injury in mice.Regen. Ther.20189455710.1016/j.reth.2018.07.00130525075
    [Google Scholar]
  147. RoganH. IlaganF. YangF. Comparing single cell versus pellet encapsulation of mesenchymal stem cells in three-dimensional hydrogels for cartilage regeneration.Tissue Eng Part A.20192519-201404140210.1089/ten.tea.2018.0289
    [Google Scholar]
  148. TuragaD. MatthysO.B. HookwayT.A. JoyD.A. CalvertM. McDevittT.C. Single-cell determination of cardiac microtissue structure and function using light sheet microscopy.Tissue Engineering Part C: Methods202026420721510.1089/ten.tec.2020.0020
    [Google Scholar]
  149. HamledariH. AsghariP. JayousiF. AguirreA. MaarefY. BarszczewskiT. SerT. MooreE. WassermanW. Klein GeltinkR. TevesS. TibbitsG.F. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation.Front. Cardiovasc. Med.2022996765910.3389/fcvm.2022.96765936061558
    [Google Scholar]
  150. ChenR. HeJ. WangY. GuoY. ZhangJ. PengL. WangD. LinQ. ZhangJ. GuoZ. LiL. Qualitative transcriptional signatures for evaluating the maturity degree of pluripotent stem cell-derived cardiomyocytes.Stem Cell Res. Ther.201910111310.1186/s13287‑019‑1205‑130925936
    [Google Scholar]
  151. KannanS. FaridM. LinB.L. MiyamotoM. KwonC. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level.PLOS Comput. Biol.2021179e100930510.1371/journal.pcbi.100930534534204
    [Google Scholar]
  152. ChenW. TeschendorffA.E. Estimating differentiation potency of single cells using single-cell entropy (SCENT).Methods Mol. Biol.2019193512513910.1007/978‑1‑4939‑9057‑3_930758824
    [Google Scholar]
  153. LamY.Y. KeungW. ChanC.H. GengL. WongN. Brenière-LetuffeD. LiR.A. CheungY.F. Single-cell transcriptomics of engineered cardiac tissues from patient-specific induced pluripotent stem cell–derived cardiomyocytes reveals abnormal developmental trajectory and intrinsic contractile defects in hypoplastic right heart syndrome.J. Am. Heart Assoc.2020920e01652810.1161/JAHA.120.01652833059525
    [Google Scholar]
  154. GaoY. TangM. LeungE. SvirskisD. ShellingA. WuZ. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells.RSC Advances20201032190891910510.1039/D0RA02801K35518295
    [Google Scholar]
  155. Marín-SedeñoE. de MorentinX.M. Pérez-PomaresJ.M. Gómez- CabreroD. Ruiz-VillalbaA. Understanding the adult mammalian heart at single-cell RNA-Seq resolution.Front. Cell Dev. Biol.2021964527610.3389/fcell.2021.64527634055776
    [Google Scholar]
  156. KeithM.C.L. TangX.L. TokitaY. LiQ. GhafghaziS. MooreJ.IV HongK.U. ElmoreB. AmraotkarA. GanzelB.L. GrubbK.J. FlahertyM.P. HuntG. VajraveluB. WysoczynskiM. BolliR. Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs.PLoS One2015104e012422710.1371/journal.pone.012422725905721
    [Google Scholar]
  157. GreaneyA.M. AdamsT.S. Brickman RaredonM.S. GubbinsE. SchuppJ.C. EnglerA.J. GhaediM. YuanY. KaminskiN. NiklasonL.E. Platform effects on regeneration by pulmonary basal cells as evaluated by single-cell RNA sequencing.Cell Rep.2020301242504265.e610.1016/j.celrep.2020.03.00432209482
    [Google Scholar]
  158. ChenR. WuX. JiangL. ZhangY. Single-cell RNA-seq reveals hypothalamic cell diversity.Cell Rep.201718133227324110.1016/j.celrep.2017.03.00428355573
    [Google Scholar]
  159. LiQ. ChengZ. ZhouL. DarmanisS. NeffN.F. OkamotoJ. GulatiG. BennettM.L. SunL.O. ClarkeL.E. MarschallingerJ. YuG. QuakeS.R. Wyss-CorayT. BarresB.A. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing.Neuron20191012207223.e1010.1016/j.neuron.2018.12.00630606613
    [Google Scholar]
  160. BaiR. LiL. LiuM. YanS. MiaoC. LiR. LuoY. LiuT. LinB. JiY. LuY. Paper-based 3D scaffold for multiplexed single cell secretomic analysis.Anal. Chem.20189095825583210.1021/acs.analchem.8b0036229630353
    [Google Scholar]
  161. SatoS. RancourtA. SatoY. SatohM.S. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny.Sci. Rep.2016612332810.1038/srep2332827003384
    [Google Scholar]
  162. SchroederT. Imaging stem-cell-driven regeneration in mammals.Nature2008453719334535110.1038/nature0704318480816
    [Google Scholar]
  163. SpillerD.G. WoodC.D. RandD.A. WhiteM.R.H. Measurement of single-cell dynamics.Nature2010465729973674510.1038/nature0923220535203
    [Google Scholar]
  164. XuJ. DuY. DengH. Direct lineage reprogramming: Strategies, mechanisms, and applications.Cell Stem Cell201516211913410.1016/j.stem.2015.01.01325658369
    [Google Scholar]
  165. FaleyS.L. CoplandM. WlodkowicD. KolchW. SealeK.T. WikswoJ.P. CooperJ.M. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells.Lab Chip20099182659266410.1039/b902083g19704981
    [Google Scholar]
  166. YehC.F. HsuC.H. Chapter 7 - Microfluidic Techniques for Single- Cell Culture.Single-Cell OmicsAcademic Press2019113715110.1016/B978‑0‑12‑814919‑5.00007‑5
    [Google Scholar]
  167. OngS.G. HuberB.C. Hee LeeW. KodoK. EbertA.D. MaY. NguyenP.K. DieckeS. ChenW.Y. WuJ.C. Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell–derived cardiomyocytes after acute myocardial infarction.Circulation2015132876277110.1161/CIRCULATIONAHA.114.01523126304668
    [Google Scholar]
  168. WangP. RobertL. PelletierJ. DangW.L. TaddeiF. WrightA. JunS. Robust growth of escherichia coli.Curr. Biol.201020121099110310.1016/j.cub.2010.04.04520537537
    [Google Scholar]
  169. RosenthalK. OehlingV. DusnyC. SchmidA. Beyond the bulk: Disclosing the life of single microbial cells.FEMS Microbiol. Rev.201741675178010.1093/femsre/fux04429029257
    [Google Scholar]
  170. BrennanM.A. RosenthalA.Z. Single-cell RNA sequencing elucidates the structure and organization of microbial communities.Front. Microbiol.20211271312810.3389/fmicb.2021.71312834367118
    [Google Scholar]
  171. LinB. TaoY. Whole-cell biocatalysts by design.Microb. Cell Fact.201716110610.1186/s12934‑017‑0724‑728610636
    [Google Scholar]
  172. FritzschF.S.O. DusnyC. FrickO. SchmidA. Single-cell analysis in biotechnology, systems biology, and biocatalysis.Annu. Rev. Chem. Biomol. Eng.20123112915510.1146/annurev‑chembioeng‑062011‑08105622468600
    [Google Scholar]
  173. BinderD. DrepperT. JaegerK.E. DelvigneF. WiechertW. KohlheyerD. GrünbergerA. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.Metab. Eng.20174214515610.1016/j.ymben.2017.06.00928645641
    [Google Scholar]
  174. JammesF.C. MaerklS.J. How single-cell immunology is benefiting from microfluidic technologies.Microsyst. Nanoeng.2020614510.1038/s41378‑020‑0140‑834567657
    [Google Scholar]
  175. NdaoA. HsuL. CaiW. HaJ. ParkJ. ContractorR. LoY. KantéB. ParkJ. ContractorR. LoY. KantéB. KantéB. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum.Nanophotonics2020951081108610.1515/nanoph‑2020‑0008
    [Google Scholar]
  176. LabartaE. de los SantosM.J. EscribáM.J. PellicerA. HerraizS. Mitochondria as a tool for oocyte rejuvenation.Fertil. Steril.2019111221922610.1016/j.fertnstert.2018.10.03630611551
    [Google Scholar]
  177. ParkJ.Y. MorganM. SachsA.N. SamorezovJ. TellerR. ShenY. PientaK.J. TakayamaS. Single cell trapping in larger microwells capable of supporting cell spreading and proliferation.Microfluid. Nanofluidics20108226326810.1007/s10404‑009‑0503‑920352022
    [Google Scholar]
  178. A microfluidics-based, single cell printing and microplate imaging workflow optimized for monoclonality.
    [Google Scholar]
  179. WengL. EllettF. EddJ. WongK.H.K. UygunK. IrimiaD. StottS.L. TonerM. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability.Lab Chip201717234077408810.1039/C7LC00883J29068447
    [Google Scholar]
  180. ZhangW. Optimizing micro-vortex chamber for living single cell rotation.Degree master of science arizona state university2011
    [Google Scholar]
  181. LinC.H. HsiaoY.H. ChangH.C. YehC.F. HeC.K. SalmE.M. ChenC. ChiuI.M. HsuC.H. A microfluidic dual-well device for high-throughput single-cell capture and culture.Lab Chip201515142928293810.1039/C5LC00541H26060987
    [Google Scholar]
  182. Cortés-LlanosB. WangY. SimsC.E. AllbrittonN.L. A technology of a different sort: Microraft arrays.Lab Chip202121173204321810.1039/D1LC00506E34346456
    [Google Scholar]
  183. LeeS.H. ParkM. ParkC.G. KimB.H. LeeJ. ChoiS. NamS. ParkS.H. ChoyY.B. Implantable micro-chip for controlled delivery of diclofenac sodium.J. Control. Release2014196525910.1016/j.jconrel.2014.09.01925270113
    [Google Scholar]
  184. FayyadJ. SampsonN.A. HwangI. AdamowskiT. Aguilar-GaxiolaS. Al-HamzawiA. AndradeL.H.S.G. BorgesG. de GirolamoG. FlorescuS. GurejeO. HaroJ.M. HuC. KaramE.G. LeeS. Navarro-MateuF. O’NeillS. PennellB.E. PiazzaM. Posada-VillaJ. ten HaveM. TorresY. XavierM. ZaslavskyA.M. KesslerR.C. The descriptive epidemiology of DSM-IV Adult ADHD in the world health organization world mental health surveys.Atten. Defic. Hyperact. Disord.201791476510.1007/s12402‑016‑0208‑327866355
    [Google Scholar]
  185. BrouzesE. MedkovaM. SavenelliN. MarranD. TwardowskiM. HutchisonJ.B. RothbergJ.M. LinkD.R. PerrimonN. SamuelsM.L. Droplet microfluidic technology for single-cell high-throughput screening.Proc Natl Acad Sci.2009106341419520010.1073/pnas.0903542106
    [Google Scholar]
  186. MaJ. TranG. WanA.M.D. YoungE.W.K. KumachevaE. IscoveN.N. ZandstraP.W. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection.Sci. Rep.2021111677710.1038/s41598‑021‑86087‑433762663
    [Google Scholar]
  187. ChungJ. IngramP.N. Bersano-BegeyT. YoonE. Traceable clonal culture and chemodrug assay of heterogeneous prostate carcinoma PC3 cells in microfluidic single cell array chips.Biomicrofluidics20148606410310.1063/1.490082325553180
    [Google Scholar]
  188. ChengY.H. ChenY.C. BrienR. YoonE. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.Lab Chip201616193708371710.1039/C6LC00778C27510097
    [Google Scholar]
  189. ChengY.H. ChenY.C.T. LinE. BrienR. JungS. ChenY.T. LeeW. HaoZ. SahooS. Min KangH. CongJ. BurnessM. NagrathS. S WichaM. YoonE. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells.Nat. Commun.2019101216310.1038/s41467‑019‑10122‑231092822
    [Google Scholar]
  190. ChenC. LiP. GuoT. ChenS. XuD. ChenH. Generation of dynamic concentration profile using a microfluidic device integrating pneumatic microvalves.Biosensors2022121086810.3390/bios1210086836291005
    [Google Scholar]
  191. LuoZ. GüvenS. GozenI. ChenP. TasogluS. AnchanR.M. BaiB. DemirciU. Deformation of a single mouse oocyte in a constricted microfluidic channel.Microfluid. Nanofluidics201519488389010.1007/s10404‑015‑1614‑026696793
    [Google Scholar]
  192. AliasA.B. HuangH.Y. YaoD.J. A review on microfluidics: An aid to assisted reproductive technology.Molecules20212614435410.3390/molecules2614435434299629
    [Google Scholar]
  193. DongY. WangZ. ShiQ. Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma.Proteomics20202013190022410.1002/pmic.20190022431960581
    [Google Scholar]
  194. MelinJ. QuakeS.R. Microfluidic large-scale integration: The evolution of design rules for biological automation.Annu. Rev. Biophys. Biomol. Struct.200736121323110.1146/annurev.biophys.36.040306.13264617269901
    [Google Scholar]
  195. DettingerP. WangW. AhmedN. ZhangY. LoefflerD. KullT. EtzrodtM. LengerkeC. SchroederT. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation.Lab Chip202020224246425410.1039/D0LC00687D33063816
    [Google Scholar]
  196. CampJ.G. WollnyD. TreutleinB. Single-cell genomics to guide human stem cell and tissue engineering.Nat Methods201815966166710.1038/s41592‑018‑0113‑0
    [Google Scholar]
  197. SonesonC. RobinsonM.D. Bias, robustness and scalability in single-cell differential expression analysis.Nat. Methods201815425526110.1038/nmeth.461229481549
    [Google Scholar]
  198. JohansenN. QuonG. scAlign: A tool for alignment, integration, and rare cell identification from scRNA-seq data.Genome Biol.201920116610.1186/s13059‑019‑1766‑431412909
    [Google Scholar]
  199. WengL. LeeG.Y. LiuJ. KapurR. TothT.L. TonerM. On-chip oocyte denudation from cumulus–oocyte complexes for assisted reproductive therapy.Lab Chip201818243892390210.1039/C8LC01075G30465050
    [Google Scholar]
  200. RosenbergA.B. RocoC.M. MuscatR.A. KuchinaA. SampleP. YaoZ. GraybuckL.T. PeelerD.J. MukherjeeS. ChenW. PunS.H. SellersD.L. TasicB. SeeligG. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.Science2018360638517618210.1126/science.aam899929545511
    [Google Scholar]
  201. TrapnellC. CacchiarelliD. GrimsbyJ. PokharelP. LiS. MorseM. LennonN.J. LivakK.J. MikkelsenT.S. RinnJ.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol.201432438138610.1038/nbt.285924658644
    [Google Scholar]
  202. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  203. AlpertA. MooreL.S. DubovikT. Shen-OrrS.S. Alignment of single-cell trajectories to compare cellular expression dynamics.Nat. Methods201815426727010.1038/nmeth.462829529018
    [Google Scholar]
  204. SmithA.A. VollrathA. BradfieldC.A. CravenM. Clustered alignments of gene-expression time series data.Bioinformatics20092512i119i112710.1093/bioinformatics/btp20619477977
    [Google Scholar]
  205. MaliP. ChengL. Concise review: Human cell engineering: Cellular reprogramming and genome editing.Stem Cells2012301758110.1002/stem.73521905170
    [Google Scholar]
  206. GrathA. DaiG. Direct cell reprogramming for tissue engineering and regenerative medicine.J. Biol. Eng.20191311410.1186/s13036‑019‑0144‑930805026
    [Google Scholar]
  207. ShiZ. ZhangJ. ChenS. LiY. LeiX. QiaoH. ZhuQ. HuB. ZhouQ. JiaoJ. Conversion of fibroblasts to parvalbumin neurons by one transcription factor, ascl1, and the chemical compound forskolin.J. Biol. Chem.201629126135601357010.1074/jbc.M115.70980827137935
    [Google Scholar]
  208. ChandaS. AngC.E. DavilaJ. PakC. MallM. LeeQ.Y. AhleniusH. JungS.W. SüdhofT.C. WernigM. Generation of induced neuronal cells by the single reprogramming factor ASCL1.Stem Cell Reports20143228229610.1016/j.stemcr.2014.05.02025254342
    [Google Scholar]
  209. TsunemotoR. LeeS. SzűcsA. ChubukovP. SokolovaI. BlanchardJ.W. EadeK.T. BruggemannJ. WuC. TorkamaniA. SannaP.P. BaldwinK.K. Diverse reprogramming codes for neuronal identity.Nature2018557770537538010.1038/s41586‑018‑0103‑529743677
    [Google Scholar]
  210. ChenW. WangX. WeiG. HuangY. ShiY. LiD. QiuS. ZhouB. CaoJ. ChenM. QinP. JinW. NiT. Single-cell transcriptome analysis reveals six subpopulations reflecting distinct cellular fates in senescent mouse embryonic fibroblasts.Front. Genet.20201186710.3389/fgene.2020.0086732849838
    [Google Scholar]
  211. La MannoG. GyllborgD. CodeluppiS. Molecular diversity of midbrain development in mouse, human, and stem cells.cell20161672566580
    [Google Scholar]
  212. VergaraH.M. PapeC. MeechanK.I. ZinchenkoV. GenoudC. WannerA.A. MutemiK.N. TitzeB. TemplinR.M. BertucciP.Y. SimakovO. DürichenW. MachadoP. SavageE.L. SchermellehL. SchwabY. FriedrichR.W. KreshukA. TischerC. ArendtD. Whole-body integration of gene expression and single-cell morphology.Cell20211841848194837.e2210.1016/j.cell.2021.07.01734380046
    [Google Scholar]
  213. LähnemannD. KösterJ. SzczurekE. McCarthyD.J. HicksS.C. RobinsonM.D. VallejosC.A. CampbellK.R. BeerenwinkelN. MahfouzA. PinelloL. SkumsP. StamatakisA. AttoliniC.S.O. AparicioS. BaaijensJ. BalvertM. BarbansonB. CappuccioA. CorleoneG. DutilhB.E. FlorescuM. GuryevV. HolmerR. JahnK. LoboT.J. KeizerE.M. KhatriI. KielbasaS.M. KorbelJ.O. KozlovA.M. KuoT.H. LelieveldtB.P.F. MandoiuI.I. MarioniJ.C. MarschallT. MölderF. NiknejadA. RączkowskaA. ReindersM. RidderJ. SalibaA.E. SomarakisA. StegleO. TheisF.J. YangH. ZelikovskyA. McHardyA.C. RaphaelB.J. ShahS.P. SchönhuthA. Eleven grand challenges in single-cell data science.Genome Biol.20202113110.1186/s13059‑020‑1926‑632033589
    [Google Scholar]
  214. BurkhardtD.B. StanleyJ.S.III TongA. PerdigotoA.L. GiganteS.A. HeroldK.C. WolfG. GiraldezA.J. van DijkD. KrishnaswamyS. Quantifying the effect of experimental perturbations at single-cell resolution.Nat. Biotechnol.202139561962910.1038/s41587‑020‑00803‑533558698
    [Google Scholar]
  215. ShalemO. SanjanaN.E. HartenianE. ShiX. ScottD.A. MikkelsenT.S. HecklD. EbertB.L. RootD.E. DoenchJ.G. ZhangF. Genome-scale CRISPR-Cas9 knockout screening in human cells.Science20143436166848710.1126/science.124700524336571
    [Google Scholar]
  216. WangT. WeiJ.J. SabatiniD.M. LanderE.S. Genetic screens in human cells using the CRISPR-Cas9 system.Science20143436166808410.1126/science.124698124336569
    [Google Scholar]
  217. LecaultV. VaninsbergheM. SekulovicS. KnappD.J.H.F. WohrerS. BowdenW. VielF. McLaughlinT. JarandeheiA. MillerM. FalconnetD. WhiteA.K. KentD.G. CopleyM.R. TaghipourF. EavesC.J. HumphriesR.K. PiretJ.M. HansenC.L. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays.Nat Methods.201187581610.1038/nmeth.1614
    [Google Scholar]
  218. AdamsonB. NormanT.M. JostM. ChoM.Y. NuñezJ.K. ChenY. VillaltaJ.E. GilbertL.A. HorlbeckM.A. HeinM.Y. PakR.A. GrayA.N. GrossC.A. DixitA. ParnasO. RegevA. WeissmanJ.S. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response.Cell2016167718671882.e2110.1016/j.cell.2016.11.04827984733
    [Google Scholar]
  219. XieS. DuanJ. LiB. ZhouP. HonG.C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells.Mol. Cell2017662285299.e510.1016/j.molcel.2017.03.00728416141
    [Google Scholar]
  220. JaitinD.A. WeinerA. YofeI. Lara-AstiasoD. Keren-ShaulH. DavidE. SalameT.M. TanayA. van OudenaardenA. AmitI. Dissecting immune circuits by linking CRISPR-pooled screens with single-Cell RNA-Seq.Cell2016167718831896.e1510.1016/j.cell.2016.11.03927984734
    [Google Scholar]
  221. Alda-CatalinasC. Eckersley-MaslinM.A. ReikW. Pooled CRISPR-activation screening coupled with single-cell RNA-seq in mouse embryonic stem cells.STAR Protocols20212210042610.1016/j.xpro.2021.10042633899013
    [Google Scholar]
  222. ShamsF. GolchinA. AzariA. Mohammadi AmirabadL. ZareinF. KhosraviA. ArdeshirylajimiA. Nanotechnology-based products for cancer immunotherapy.Mol. Biol. Rep.20224921389141210.1007/s11033‑021‑06876‑y34716502
    [Google Scholar]
  223. BrunelloL. Genome-scale single-cell CRISPR screens.Nat. Rev. Genet.202223845945910.1038/s41576‑022‑00517‑135760907
    [Google Scholar]
  224. ReplogleJ.M. NormanT.M. XuA. HussmannJ.A. ChenJ. CoganJ.Z. MeerE.J. TerryJ.M. RiordanD.P. SrinivasN. FiddesI.T. ArthurJ.G. AlvaradoL.J. PfeifferK.A. MikkelsenT.S. WeissmanJ.S. AdamsonB. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing.Nat. Biotechnol.20203895496110.1038/s41587‑020‑0470‑y
    [Google Scholar]
  225. LopezR. RegierJ. ColeM.B. JordanM.I. YosefN. Deep generative modeling for single-cell transcriptomics.Nat. Methods201815121053105810.1038/s41592‑018‑0229‑230504886
    [Google Scholar]
  226. KiselevV.Y. YiuA. HembergM. Scmap: Projection of single-cell RNA-seq data across data sets.Nat. Methods201815535936210.1038/nmeth.464429608555
    [Google Scholar]
  227. RohartF. EslamiA. MatigianN. BougeardS. Lê CaoK.A. MINT: A multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms.BMC Bioinformatics201718112810.1186/s12859‑017‑1553‑828241739
    [Google Scholar]
  228. MuraroM.J. DharmadhikariG. GrünD. GroenN. DielenT. JansenE. van GurpL. EngelseM.A. CarlottiF. de KoningE.J.P. van OudenaardenA. A single-cell transcriptome atlas of the human pancreas.Cell Syst.201634385394.e310.1016/j.cels.2016.09.00227693023
    [Google Scholar]
  229. RissoD. NgaiJ. SpeedT.P. DudoitS. Normalization of RNA-seq data using factor analysis of control genes or samples.Nat. Biotechnol.201432989690210.1038/nbt.293125150836
    [Google Scholar]
  230. DixitA. ParnasO. LiB. ChenJ. FulcoC.P. Jerby-ArnonL. MarjanovicN.D. DionneD. BurksT. RaychowdhuryR. AdamsonB. NormanT.M. LanderE.S. WeissmanJ.S. FriedmanN. RegevA. Perturb-Seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens.Cell2016167718531866.e1710.1016/j.cell.2016.11.03827984732
    [Google Scholar]
  231. SubramanianA. NarayanR. CorselloS.M. PeckD.D. NatoliT.E. LuX. GouldJ. DavisJ.F. TubelliA.A. AsieduJ.K. LahrD.L. HirschmanJ.E. LiuZ. DonahueM. JulianB. KhanM. WaddenD. SmithI.C. LamD. LiberzonA. ToderC. BagulM. OrzechowskiM. EnacheO.M. PiccioniF. JohnsonS.A. LyonsN.J. BergerA.H. ShamjiA.F. BrooksA.N. VrcicA. FlynnC. RosainsJ. TakedaD.Y. HuR. DavisonD. LambJ. ArdlieK. HogstromL. GreensideP. GrayN.S. ClemonsP.A. SilverS. WuX. ZhaoW.N. Read-ButtonW. WuX. HaggartyS.J. RoncoL.V. BoehmJ.S. SchreiberS.L. DoenchJ.G. BittkerJ.A. RootD.E. WongB. GolubT.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles.Cell2017171614371452.e1710.1016/j.cell.2017.10.04929195078
    [Google Scholar]
  232. YuF. CatoL.D. WengC. LiggettL.A. JeonS. XuK. ChiangC.W.K. WiemelsJ.L. WeissmanJ.S. de SmithA.J. SankaranV.G. Variant to function mapping at single-cell resolution through network propagation.Nat. Biotechnol.202240111644165310.1038/s41587‑022‑01341‑y35668323
    [Google Scholar]
  233. HodgeR.D. BakkenT.E. MillerJ.A. SmithK.A. BarkanE.R. GraybuckL.T. CloseJ.L. LongB. PennO. YaoZ. EggermontJ. HolltT. LeviB.P. ShehataS.I. AevermannB. BellerA. BertagnolliD. BrounerK. CasperT. CobbsC. DalleyR. DeeN. DingS.L. EllenbogenR.G. FongO. GarrenE. GoldyJ. GwinnR.P. HirschsteinD. KeeneC.D. KeshkM. KoA.L. LathiaK. MahfouzA. MaltzerZ. McGrawM. NguyenT.N. NyhusJ. OjemannJ.G. OldreA. ParryS. ReynoldsS. RimorinC. ShapovalovaN.V. SomasundaramS. SzaferA. ThomsenE.R. TieuM. ScheuermannR.H. YusteR. SunkinS.M. LelieveldtB. FengD. NgL. BernardA. HawrylyczM. PhillipsJ.W. TasicB. ZengH. JonesA.R. KochC. LeinE.S. Conserved cell types with divergent features between human and mouse cortexBioRxiv201838482610.1101/384826
    [Google Scholar]
  234. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.02416904174
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X265479231127065541
Loading
/content/journals/cscr/10.2174/011574888X265479231127065541
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): drop-seq; sc-RNA-seq; Single-cell technology; smart-seq; stem cell; tissue engineering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test