Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Nanotechnology seems to provide solutions to the unresolved complications in skin tissue engineering. According to the broad function of nanoparticles, this review article is intended to build a perspective for future success in skin tissue engineering. In the present review, recent studies were reviewed, and essential benefits and challenging issues regarding the application of nanoparticles in skin tissue engineering were summarized. Previous studies indicated that nanoparticles can play essential roles in the improvement of engineered skin. Bio-inspired design of an engineered skin structure first needs to understand the native tissue and mimic that in laboratory conditions. Moreover, a fundamental comprehension of the nanoparticles and their related effects on the final structure can guide researchers in recruiting appropriate nanoparticles. Attention to essential details, including the designation of nanoparticle type according to the scaffold, how to prepare the nanoparticles, and what concentration to use, is critical for the application of nanoparticles to become a reality. In conclusion, nanoparticles were applied to promote scaffold characteristics and angiogenesis, improve cell behavior, provide antimicrobial conditions, and cell tracking.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X291345240110102648
2024-01-26
2025-01-22
Loading full text...

Full text loading...

References

  1. HasanA. MorshedM. MemicA. HassanS. WebsterT. MareiH. Nanoparticles in tissue engineering: Applications, challenges and prospects.Int. J. Nanomed.2018135637565510.2147/IJN.S15375830288038
    [Google Scholar]
  2. ShafiqaA. AzizA.A. MehrdelB. Nanoparticle optical properties: Size dependence of a single gold spherical nanoparticle.J. Phys.: Conf. Series201810831012040
    [Google Scholar]
  3. SuttiponparnitK. JiangJ. SahuM. SuvachittanontS. CharinpanitkulT. BiswasP. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties.Nanoscale Res. Lett.2010612710.1007/s11671‑010‑9772‑127502650
    [Google Scholar]
  4. BrammerK.S. OhS. CobbC.J. BjurstenL.M. HeydeH. JinS. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface.Acta Biomater.2009583215322310.1016/j.actbio.2009.05.00819447210
    [Google Scholar]
  5. MoghimiS.M. HunterA.C. AndresenT.L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective.Annu. Rev. Pharmacol. Toxicol.201252148150310.1146/annurev‑pharmtox‑010611‑13462322035254
    [Google Scholar]
  6. YuanT. GaoL. ZhanW. DiniD. Effect of particle size and surface charge on nanoparticles diffusion in the brain white matter.Pharm. Res.202239476778110.1007/s11095‑022‑03222‑035314997
    [Google Scholar]
  7. LundqvistM. StiglerJ. EliaG. LynchI. CedervallT. DawsonK.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.Proc. Natl. Acad. Sci.200810538142651427010.1073/pnas.080513510518809927
    [Google Scholar]
  8. NosratiH. Banitalebi-DhkordiM. KhodaeiM. SharifiE. AsadpourS. MansouriK. SoleimannejadM. Preparation and in vitro characterization of electrospun scaffolds composed of chitosan, gelatin and 58S bioactive glass nanoparticles for skin tissue engineering.Shahrekord Univ. Med. Sci. J.20222411610.34172/jsums.2022.01
    [Google Scholar]
  9. VermaN. PramanikK. SinghA.K. BiswasA. Design of magnesium oxide nanoparticle incorporated carboxy methyl cellulose/poly vinyl alcohol composite film with novel composition for skin tissue engineering.Mater. Technol.202237870671610.1080/10667857.2021.1873634
    [Google Scholar]
  10. KamnooreD. MukherjeeD. Nayak AmmunjeD. ParasuramanP. TejaB.V. RadhikaM. Hydroxyapatite nanoparticle-enriched thiolated polymer-based biocompatible scaffold can improve skin tissue regeneration.J. Mater. Res.202136214287430610.1557/s43578‑021‑00405‑0
    [Google Scholar]
  11. JohariN. RafatiF. ZohariF. TabariP.G. SamadikuchaksaraeiA. Porous functionally graded scaffolds of poly (ε-caprolactone)/ZnO nanocomposite for skin tissue engineering: Morphological, mechanical and biological evaluation.Mater. Chem. Phys.202228012578610.1016/j.matchemphys.2022.125786
    [Google Scholar]
  12. Radwan-PragłowskaJ. JanusŁ. PiątkowskiM. BogdałD. MatýsekD. Hybrid bilayer PLA/chitosan nanofibrous scaffolds doped with ZnO, Fe3O4, and Au nanoparticles with bioactive properties for skin tissue engineering.Polymers202012115910.3390/polym1201015931936229
    [Google Scholar]
  13. ChungE. NamS.Y. RiclesL.M. EmelianovS. SuggsL. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications.Int. J. Nanomed.2013832533610.2147/IJN.S3671123345978
    [Google Scholar]
  14. PengL.H. WeiW. ShanY.H. ZhangT.Y. ZhangC.Z. WuJ.H. YuL. LinJ. LiangW.Q. KhangG. GaoJ.Q. β-cyclodextrin-linked polyethylenimine nanoparticles facilitate gene transfer and enhance the angiogenic capacity of mesenchymal stem cells for wound repair and regeneration.J. Biomed. Nanotechnol.201511468069010.1166/jbn.2015.197026310074
    [Google Scholar]
  15. JinG. PrabhakaranM.P. NadappuramB.P. SinghG. KaiD. RamakrishnaS. Electrospun poly(L-Lactic Acid)-co-Poly( ϵ -caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering.J. Biomater. Sci. Polym. Ed.201223182337235210.1163/156856211X61739922244047
    [Google Scholar]
  16. WangG. QianG. ZanJ. QiF. ZhaoZ. YangW. PengS. ShuaiC. A co-dispersion nanosystem of graphene oxide @silicon-doped hydroxyapatite to improve scaffold properties.Mater. Des.202119910939910.1016/j.matdes.2020.109399
    [Google Scholar]
  17. RezvaniniaM. BagheriF. BaheiraeiN. Effects of kartogenin/PLGA nanoparticles on silk scaffold properties and stem cell fate.Bioinspired, Biomimet. Nanobiomater.2021102455310.1680/jbibn.20.00047
    [Google Scholar]
  18. KhalidH. IqbalH. ZeeshanR. NasirM. SharifF. AkramM. IrfanM. KhanF.A. ChaudhryA.A. KhanA.F. Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration.Polym. Bull.202178127199721810.1007/s00289‑020‑03475‑y
    [Google Scholar]
  19. KumariS SinghBN SrivastavaP Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application.3 Biotech201993102
    [Google Scholar]
  20. NasiriG. AzarpiraN. AlizadehA. ZebarjadS.M. AminshahidiM. AlaviO. KamaliM. Fabrication and evaluation of poly (vinyl alcohol)/gelatin fibrous scaffold containing ZnO nanoparticles for skin tissue engineering applications.Mater. Today Commun.20223310447610.1016/j.mtcomm.2022.104476
    [Google Scholar]
  21. PeterM. GaneshN. SelvamuruganN. NairS.V. FuruikeT. TamuraH. JayakumarR. Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications.Carbohydr. Polym.201080368769410.1016/j.carbpol.2009.11.050
    [Google Scholar]
  22. BabithaS. KorrapatiP.S. Biodegradable zein–polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering.Biomed. Mater.201712505500810.1088/1748‑605X/aa7d5a28944761
    [Google Scholar]
  23. PanA. ZhongM. WuH. PengY. XiaH. TangQ. HuangQ. WeiL. XiaoL. PengC. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing.Nanomedicine20181451619162810.1016/j.nano.2018.04.00729698728
    [Google Scholar]
  24. LosiP. BrigantiE. ErricoC. LisellaA. SanguinettiE. ChielliniF. SoldaniG. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice.Acta Biomater.2013987814782110.1016/j.actbio.2013.04.01923603001
    [Google Scholar]
  25. GuL. LiX. JiangJ. GuoG. WuH. WuM. ZhuH. Stem cell tracking using effective self-assembled peptide-modified superparamagnetic nanoparticles.Nanoscale20181034159671597910.1039/C7NR07618E29916501
    [Google Scholar]
  26. MeirR. MotieiM. PopovtzerR. Gold nanoparticles for in vivo cell tracking.Nanomedicine20149132059206910.2217/nnm.14.12925343353
    [Google Scholar]
  27. KimS.H. ParkJ.H. KwonJ.S. ChoJ.G. ParkK.G. ParkC.H. YooJ.J. AtalaA. ChoiH.S. KimM.S. LeeS.J. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering.Biomaterials202025812026710.1016/j.biomaterials.2020.12026732781325
    [Google Scholar]
  28. JeonM. HalbertM.V. StephenZ.R. ZhangM. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives.Adv. Mater.20213323190653910.1002/adma.20190653932495404
    [Google Scholar]
  29. ChengS.H. YuD. TsaiH.M. MorshedR.A. KanojiaD. LoL.W. LeoniL. GovindY. ZhangL. AboodyK.S. LesniakM.S. ChenC.T. BalyasnikovaI.V. Dynamic in vivo SPECT imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma.J. Nucl. Med.201657227928410.2967/jnumed.115.16300626564318
    [Google Scholar]
  30. ChhourP. NahaP.C. O’NeillS.M. LittH.I. ReillyM.P. FerrariV.A. CormodeD.P. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography.Biomaterials2016879310310.1016/j.biomaterials.2016.02.00926914700
    [Google Scholar]
  31. JinD. XiP. WangB. ZhangL. EnderleinJ. van OijenA.M. Nanoparticles for super-resolution microscopy and single-molecule tracking.Nat. Methods201815641542310.1038/s41592‑018‑0012‑429808018
    [Google Scholar]
  32. PesericoA. Di BerardinoC. RussoV. CapacchiettiG. Di GiacintoO. CancielloA. Camerano Spelta RapiniC. BarboniB. Nanotechnology-assisted cell tracking.Nanomaterials2022129141410.3390/nano1209141435564123
    [Google Scholar]
  33. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials202010229210.3390/nano1002029232050443
    [Google Scholar]
  34. SambergM.E. MenteP. HeT. KingM.W. Monteiro-RiviereN.A. In vitro biocompatibility and antibacterial efficacy of a degradable poly(L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles.Ann. Biomed. Eng.20144271482149310.1007/s10439‑013‑0929‑924150238
    [Google Scholar]
  35. Mohiti-AsliM. PourdeyhimiB. LoboaE.G. Skin tissue engineering for the infected wound site: Biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus.Tissue Eng. Part C Methods2014201079079710.1089/ten.tec.2013.045824494739
    [Google Scholar]
  36. SrivastavaC.M. PurwarR. GuptaA.P. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering.Int. J. Biol. Macromol.201913043745310.1016/j.ijbiomac.2018.12.25530738903
    [Google Scholar]
  37. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdałD. MatysekD. ČablikV. Microwave-assisted synthesis and characterization of antibacterial O -crosslinked chitosan hydrogels doped with TiO 2 nanoparticles for skin regeneration.Int. J. Polym. Mater.2019681588189010.1080/00914037.2018.1517351
    [Google Scholar]
  38. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  39. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine2020152555256210.2147/IJN.S24676432368040
    [Google Scholar]
  40. RanjanS. RamalingamC. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation.Environ. Chem. Lett.201614448749410.1007/s10311‑016‑0586‑y
    [Google Scholar]
  41. NguyenN.Y.T. GrellingN. WettelandC.L. RosarioR. LiuH. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms.Sci. Rep.2018811626010.1038/s41598‑018‑34567‑530389984
    [Google Scholar]
  42. AzarpiraN. KavianiM. SarvestaniF.S. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis.Tissue Cell20217210153910.1016/j.tice.2021.10153933838351
    [Google Scholar]
  43. XieZ. ParasC.B. WengH. PunnakitikashemP. SuL.C. VuK. TangL. YangJ. NguyenK.T. Dual growth factor releasing multi-functional nanofibers for wound healing.Acta Biomater.20139129351935910.1016/j.actbio.2013.07.03023917148
    [Google Scholar]
  44. GuoG. LiX. YeX. QiJ. FanR. GaoX. WuY. ZhouL. TongA. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent.Int. J. Nanomedicine2016113993400910.2147/IJN.S10435027574428
    [Google Scholar]
  45. FeldmanD. OsborneS. Fibrin as a tissue adhesive and scaffold with an angiogenic agent (FGF-1) to enhance burn graft healing in vivo and clinically.J. Funct. Biomater.2018946810.3390/jfb904006830486230
    [Google Scholar]
  46. BaiY. BaiL. ZhouJ. ChenH. ZhangL. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis.Cell. Immunol.2018323193210.1016/j.cellimm.2017.10.00829111157
    [Google Scholar]
  47. WagnerE.R. ParryJ. DadsetanM. BravoD. RiesterS.M. Van WijnenA.J. YaszemskiM.J. KakarS. VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold.Connect. Tissue Res.201859654254910.1080/03008207.2018.142414529513041
    [Google Scholar]
  48. AdibfarA. AmoabedinyG. Baghaban EslaminejadM. MohamadiJ. BagheriF. Zandieh DoulabiB. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells.Mater. Sci. Eng. C20189379079910.1016/j.msec.2018.08.03730274113
    [Google Scholar]
  49. CuiL. LiangJ. LiuH. ZhangK. LiJ. Nanomaterials for angiogenesis in skin tissue engineering.Tissue Eng. Part B Rev.202026320321610.1089/ten.teb.2019.033731964266
    [Google Scholar]
  50. KhanR.S. RatherA.H. WaniT.U. RatherS. Abdal-hayA. SheikhF.A. A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications.Mater. Today Commun.20223210391410.1016/j.mtcomm.2022.103914
    [Google Scholar]
  51. PesaraklouA. Mahdavi-ShahriN. HassanzadehH. GhasemiM. KazemiM. MousaviN.S. MatinM.M. Use of cerium oxide nanoparticles: A good candidate to improve skin tissue engineering.Biomed. Mater.201914303500810.1088/1748‑605X/ab067930754036
    [Google Scholar]
  52. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X291345240110102648
Loading
/content/journals/cscr/10.2174/011574888X291345240110102648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test