Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X263333231218065453
2024-01-24
2025-01-22
Loading full text...

Full text loading...

References

  1. GandhimathiC. QuekY.J. EzhilarasuH. RamakrishnaS. BayB-H. SrinivasanD.K. Osteogenic differentiation of mesenchymal stem cells with silica-coated gold nanoparticles for bone tissue engineering.Int. J. Mol. Sci.20192020513510.3390/ijms2020513531623264
    [Google Scholar]
  2. ShahrousvandE. ShahrousvandM. GhollasiM. SeyedjafariE. JouibariI.S. babaeiA. SalimiA. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs.Carbohydr. Polym.201717128129110.1016/j.carbpol.2017.05.02728578965
    [Google Scholar]
  3. SiddiquiN. PramanikK. Development of fibrin conjugated chitosan/nano β-TCP composite scaffolds with improved cell supportive property for bone tissue regeneration.J. Appl. Polym. Sci.20151329app.4153410.1002/app.41534
    [Google Scholar]
  4. LaiG.J. ShalumonK.T. ChenS.H. ChenJ.P. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells.Carbohydr. Polym.201411128829710.1016/j.carbpol.2014.04.09425037354
    [Google Scholar]
  5. EltomA ZhongG MuhammadA Scaffold techniques and designs in tissue engineering functions and purposes: A review.Adv Mater Sci Eng20192019(4): 1-3.10.1155/2019/3429527
    [Google Scholar]
  6. ShamsM. KarimiM. GhollasiM. NezafatiN. SalimiA. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: The effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.Ceram. Int.20184416202112021910.1016/j.ceramint.2018.08.005
    [Google Scholar]
  7. Fernandez de GradoG. KellerL. Idoux-GilletY. WagnerQ. MussetA.M. Benkirane-JesselN. BornertF. OffnerD. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management.J. Tissue Eng.2018910.1177/204173141877681929899969
    [Google Scholar]
  8. ShenC. WitekL. FloresR.L. TovarN. TorroniA. CoelhoP.G. KasperF.K. WongM. YoungS. Three-dimensional printing for craniofacial bone tissue engineering.Tissue Eng. Part A20202623-241303131110.1089/ten.tea.2020.018632842918
    [Google Scholar]
  9. BougioukliS. SugiyamaO. PannellW. OrtegaB. TanM.H. TangA.H. YohoR. OakesD.A. LiebermanJ.R. Gene therapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2–transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow.Hum. Gene Ther.201829450751910.1089/hum.2017.09729212377
    [Google Scholar]
  10. ZhuG. ZhangT. ChenM. YaoK. HuangX. ZhangB. LiY. LiuJ. WangY. ZhaoZ. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds.Bioact. Mater.20216114110414010.1016/j.bioactmat.2021.03.04333997497
    [Google Scholar]
  11. AlonzoM. Alvarez PrimoF. Anil KumarS. MudloffJ.A. DominguezE. FregosoG. OrtizN. WeissW.M. JoddarB. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects.Curr. Opin. Biomed. Eng.20211710024810.1016/j.cobme.2020.10024833718692
    [Google Scholar]
  12. HuS. ChenH. ZhouF. LiuJ. QianY. HuK. YanJ. GuZ. GuoZ. ZhangF. GuN. Superparamagnetic core–shell electrospun scaffolds with sustained release of IONPs facilitating in vitro and in vivo bone regeneration.J. Mater. Chem. B Mater. Biol. Med.20219438980899310.1039/D1TB01261D34494055
    [Google Scholar]
  13. MarkovićD KaradžićI JokanovićV VukovićA VučićV Biological aspects of application of nanomaterials in tissue engineering.Chem Indus Chem Eng Quarter/CICEQ201622214515310.2298/CICEQ141231028M
    [Google Scholar]
  14. SamsonrajR.M. DudakovicA. ManzarB. SenB. DietzA.B. CoolS.M. RubinJ. van WijnenA.J. Osteogenic stimulation of human adipose-derived mesenchymal stem cells using a fungal metabolite that suppresses the polycomb group protein EZH2.Stem Cells Transl. Med.20187219720910.1002/sctm.17‑008629280310
    [Google Scholar]
  15. TabatabaiT.S. Haji-Ghasem-KashaniM. NasiriM. In vitro osteogenic induction of human adipose stem cells co-treated with betaine/osteogenesis differentiation medium.Mol. Biol. Res. Commun.20211029310334316496
    [Google Scholar]
  16. Fernandez-MoureJ.S. CorradettiB. ChanP. Van EpsJ.L. JanecekT. RameshwarP. WeinerB.K. TasciottiE. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: A comparative analysis.Stem Cell Res. Ther.20156120310.1186/s13287‑015‑0193‑z26503337
    [Google Scholar]
  17. NamjooA. SalimiA. SaeediP. HalabianR. EmamgholiA. Anti-apoptotic effect of Nisin as a prebiotic on human mesenchymal stem cells in harsh condition.Cell Tissue Bank.202111034043109
    [Google Scholar]
  18. BarberiniD.J. FreitasN.P.P. MagnoniM.S. MaiaL. ListoniA.J. HecklerM.C. SudanoM.J. GolimM.A. da Cruz Landim-AlvarengaF. AmorimR.M. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential.Stem Cell Res. Ther.2014512510.1186/scrt41424559797
    [Google Scholar]
  19. GhiasiM. JadidiK. HashemiM. ZareH. SalimiA. AghamollaeiH. Application of mesenchymal stem cells in corneal regeneration.Tissue Cell20217310160010.1016/j.tice.2021.10160034371292
    [Google Scholar]
  20. NohY.K. DuP. KimI.G. KoJ. KimS.W. ParkK. Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells.Biomater. Res.2016201610.1186/s40824‑016‑0055‑527057347
    [Google Scholar]
  21. AliborziG. VahdatiA. MehrabaniD. HosseiniS.E. TamadonA. Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of Guinea pig.Int. J. Stem Cells20169111512310.15283/ijsc.2016.9.1.11527426093
    [Google Scholar]
  22. ChakrabortyS. SinhaS. SenguptaA. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function.FASEB J.2021351e2123410.1096/fj.202002232R33337557
    [Google Scholar]
  23. WangL.T. TingC.H. YenM.L. LiuK.J. SytwuH.K. WuK.K. YenB.L. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation- mediated diseases: review of current clinical trials.J. Biomed. Sci.20162317610.1186/s12929‑016‑0289‑527809910
    [Google Scholar]
  24. Berebichez-FridmanR. Montero-OlveraP.R. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review.Sultan Qaboos Univ. Med. J.201818326410.18295/squmj.2018.18.03.00230607265
    [Google Scholar]
  25. JeonY.J. KimJ. ChoJ.H. ChungH.M. ChaeJ.I. Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy.J. Cell. Biochem.201611751112112510.1002/jcb.2539526448537
    [Google Scholar]
  26. JinC. ZhengY. HuangY. LiuY. JiaL. ZhouY. Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells.Cell Biol. Int.2017411334110.1002/cbin.1069727797128
    [Google Scholar]
  27. RussoV. YuC. BelliveauP. HamiltonA. FlynnL.E. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.Stem Cells Transl. Med.20143220621710.5966/sctm.2013‑012524361924
    [Google Scholar]
  28. ZajdelA. KałuckaM. Kokoszka-MikołajE. WilczokA. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord.Acta Biochim. Pol.201764236536910.18388/abp.2016_148828600911
    [Google Scholar]
  29. D’AlimonteI. MastrangeloF. GiulianiP. PierdomenicoL. MarchisioM. ZuccariniM. Di IorioP. QuaresimaR. CaciagliF. CiccarelliR. Osteogenic differentiation of mesenchymal stromal cells: A comparative analysis between human subcutaneous adipose tissue and dental pulp.Stem Cells Dev.2017261184385510.1089/scd.2016.019028287912
    [Google Scholar]
  30. LiJ. YangB. QianY. WangQ. HanR. HaoT. ShuY. ZhangY. YaoF. WangC. Iota -carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro.J. Biomed. Mater. Res. B Appl. Biomater.201510371498151010.1002/jbm.b.3333925449538
    [Google Scholar]
  31. KonE. RoffiA. FilardoG. TeseiG. MarcacciM. Scaffold-based cartilage treatments: With or without cells? A systematic review of preclinical and clinical evidence.Arthroscopy201531476777510.1016/j.arthro.2014.11.01725633817
    [Google Scholar]
  32. ShimY.H. ZhangR.H. Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach.Aesthetic Plast. Surg.201741481583110.1007/s00266‑017‑0793‑328175966
    [Google Scholar]
  33. MasoumiN. GhollasiM. Raheleh Halabian EftekhariE. GhiasiM. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen. Ther.202323606610.1016/j.reth.2023.04.00137122359
    [Google Scholar]
  34. Fernandez-MoureJ.S. Van EpsJ.L. MennZ.K. CabreraF.J. TasciottiE. WeinerB.K. EllsworthW.A.IV Platelet rich plasma enhances tissue incorporation of biologic mesh.J. Surg. Res.2015199241241910.1016/j.jss.2015.06.03426182999
    [Google Scholar]
  35. CvetkovićV.J. NajdanovićJ.G. Vukelić-NikolićM.Đ. StojanovićS. NajmanS.J. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model.Int. Orthop.201539112173218010.1007/s00264‑015‑2929‑x26231492
    [Google Scholar]
  36. LeeJ. LeeS. LeeC.Y. SeoH.H. ShinS. ChoiJ.W. KimS.W. ParkJ.C. LimS. HwangK.C. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death.Stem Cell Res. Ther.20178119510.1186/s13287‑017‑0647‑628931423
    [Google Scholar]
  37. HaoZ. SongZ. HuangJ. HuangK. PanettaA. GuZ. WuJ. The scaffold microenvironment for stem cell based bone tissue engineering.Biomater. Sci.2017581382139210.1039/C7BM00146K28447671
    [Google Scholar]
  38. PrévôtM. HegmannE. From biomaterial, biomimetic, and polymer to biodegradable and biocompatible liquid crystal elastomer cell scaffolds. Advances in bioinspired and biomedical materials.ACS Publications2017Vol. 2345
    [Google Scholar]
  39. GuoB. MaP.X. Conducting polymers for tissue engineering.Biomacromolecules20181961764178210.1021/acs.biomac.8b0027629684268
    [Google Scholar]
  40. PrasadhS. WongR.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects.Oral Sci. Int.2018152485510.1016/S1348‑8643(18)30005‑3
    [Google Scholar]
  41. XieY. LiM.N. ChenH.Q. ZhangB. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch.Food Chem.201927435135910.1016/j.foodchem.2018.09.03430372951
    [Google Scholar]
  42. MishraR. VarshneyR. DasN. SircarD. RoyP. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering.Eur. Polym. J.201911915516810.1016/j.eurpolymj.2019.07.007
    [Google Scholar]
  43. BernardiS. ReF. BosioK. DeyK. AlmiciC. MalagolaM. GuizziP. SartoreL. RussoD. Chitosan-Hydrogel polymeric scaffold acts as an independent primary inducer of osteogenic differentiation in human mesenchymal stromal cells.Materials20201316354610.3390/ma1316354632796668
    [Google Scholar]
  44. GandhimathiC. VenugopalJ.R. BhaarathyV. RamakrishnaS. KumarS.D. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration.Int. J. Nanomedicine201494709472225336949
    [Google Scholar]
  45. EzhilarasuH. RamalingamR. DhandC. LakshminarayananR. SadiqA. GandhimathiC. RamakrishnaS. BayB.H. VenugopalJ.R. SrinivasanD.K. Biocompatible aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous scaffolds for skin tissue engineering.Int. J. Mol. Sci.20192020517410.3390/ijms2020517431635374
    [Google Scholar]
  46. Sobreiro-AlmeidaR. MelicaM.E. LasagniL. OsórioH. RomagnaniP. NevesN.M. Particulate kidney extracellular matrix: Bioactivity and proteomic analysis of a novel scaffold from porcine origin.Biomater. Sci.20219118619810.1039/D0BM01272F33174559
    [Google Scholar]
  47. ChristmanK.L. Biomaterials for tissue repair.Science2019363642534034110.1126/science.aar295530679357
    [Google Scholar]
  48. PadashA. HalabianR. SalimiA. KazemiN.M. ShahrousvandM. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker.Hum. Cell202134231032410.1007/s13577‑020‑00449‑033090371
    [Google Scholar]
  49. AzizipourE. AghamollaeiH. HalabianR. PoormoghadamD. SaffariM. EntezariM. SalimiA. A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro.Int. J. Biol. Macromol.202117456257210.1016/j.ijbiomac.2021.01.00233434552
    [Google Scholar]
  50. RohaniZ. GhollasiM. AghamollaeiH. SaidiH. HalabianR. KheirollahzadehF. PoormoghadamD. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field.Cell Tissue Res.2022390339941110.1007/s00441‑022‑03691‑036152061
    [Google Scholar]
  51. SalimiA. GhiasiM. KoraniM. Karimi ZarchiA. Involved molecular mechanisms in stem cells differentiation into chondrocyte: A review.J Appl Biotechnol Rep.202183234241
    [Google Scholar]
  52. ZakrzewskiW. DobrzyńskiM. SzymonowiczM. RybakZ. Stem cells: Past, present, and future.Stem Cell Res. Ther.20191016810.1186/s13287‑019‑1165‑530808416
    [Google Scholar]
  53. EftekhariE. GhollasiM. HalabianR. SoltanyzadehM. EnderamiS.E. Nisin and non-essential amino acids: New perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro.Hum. Cell20213441142115210.1007/s13577‑021‑00537‑933899160
    [Google Scholar]
  54. MunirahS. Zainul IbrahimZ. RozlinA. Exploring the islamic perspective on tissue engineering principles and practice.GJAT20144294010.7187/GJAT642014.04.02
    [Google Scholar]
  55. LuP. ZhouT. XuC. LuY. Mammary stem cells, where art thou?Wiley Interdiscip. Rev. Dev. Biol.201986e35710.1002/wdev.35731322329
    [Google Scholar]
  56. LaurentiE. GöttgensB. From haematopoietic stem cells to complex differentiation landscapes.Nature2018553768941842610.1038/nature2502229364285
    [Google Scholar]
  57. TrohatouO. RoubelakisM.G. Mesenchymal stem/stromal cells in regenerative medicine: Past, present, and future.Cell. Reprogram.201719421722410.1089/cell.2016.006228520465
    [Google Scholar]
  58. Alonso-GoulartV. FerreiraL.B. DuarteC.A. LimaI.L. FerreiraE.R. OliveiraB.C. VargasL.N. MoraesD.D. SilvaI.B.B. FariaR.O. SouzaA.G. Castro-FiliceL.S. Mesenchymal stem cells from human adipose tissue and bone repair: A literature review.Biotechnology Research and Innovation201821748010.1016/j.biori.2017.10.005
    [Google Scholar]
  59. CaplanA.I. Mesenchymal stem cells: Time to change the name!Stem Cells Transl. Med.2017661445145110.1002/sctm.17‑005128452204
    [Google Scholar]
  60. RasiniV. DominiciM. KlubaT. SiegelG. LusentiG. NorthoffH. HorwitzE.M. SchäferR. Mesenchymal stromal/stem cells markers in the human bone marrow.Cytotherapy201315329230610.1016/j.jcyt.2012.11.00923312449
    [Google Scholar]
  61. AmiriB GhollasiM ShahrousvandM KamaliM SalimiA Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles.Differentiation; research in biological diversity201692414815810.1016/j.diff.2016.08.001
    [Google Scholar]
  62. SadatpoorS. SalehiZ. RahbanD. SalimiA. Manipulated mesenchymal stem cells applications in neurodegenerative diseases.Int. J. Stem Cells2020131244510.15283/ijsc1903132114741
    [Google Scholar]
  63. BellagambaB.C. AbreuB.R.R. GrivicichI. MarkarianC.F. ChemE. CamassolaM. NardiN.B. DihlR.R. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro.Genet. Mol. Biol.201639112913410.1590/1678‑4685‑GMB‑2015‑005727007906
    [Google Scholar]
  64. DzoboK. Multipotent human mesenchymal stem/stromal cells: An updated review on historical background.Recent Trends and Advances in their Clinical Applications2021
    [Google Scholar]
  65. HeoJ.S. ChoiY. KimH.S. KimH.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.Int. J. Mol. Med.201637111512510.3892/ijmm.2015.241326719857
    [Google Scholar]
  66. MorcosMW Al-JalladH HamdyR Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration.Biomed Res Int.2015201584297510.1155/2015/842975
    [Google Scholar]
  67. MosnaF. SensebéL. KramperaM. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide.Stem Cells Dev.201019101449147010.1089/scd.2010.014020486777
    [Google Scholar]
  68. ZukP.A. ZhuM. AshjianP. De UgarteD.A. HuangJ.I. MizunoH. AlfonsoZ.C. FraserJ.K. BenhaimP. HedrickM.H. Human adipose tissue is a source of multipotent stem cells.Mol. Biol. Cell200213124279429510.1091/mbc.e02‑02‑010512475952
    [Google Scholar]
  69. De UgarteD.A. MorizonoK. ElbarbaryA. AlfonsoZ. ZukP.A. ZhuM. DragooJ.L. AshjianP. ThomasB. BenhaimP. ChenI. FraserJ. HedrickM.H. Comparison of multi-lineage cells from human adipose tissue and bone marrow.Cells Tissues Organs2003174310110910.1159/00007115012835573
    [Google Scholar]
  70. FoiretJ. MinonzioJ.G. ChappardC. TalmantM. LaugierP. Combined estimation of thickness and velocities using ultrasound guided waves: A pioneering study on in vitro cortical bone samples.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20146191478148810.1109/TUFFC.2014.306225167148
    [Google Scholar]
  71. LiX. BaiJ. JiX. LiR. XuanY. WangY. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation.Int. J. Mol. Med.201434369570410.3892/ijmm.2014.182124970492
    [Google Scholar]
  72. ShigunovP. Sotelo-SilveiraJ. KuligovskiC. de AguiarA.M. RebelattoC.K. MoutinhoJ.A. BrofmanP.S. KriegerM.A. GoldenbergS. MunroeD. CorreaA. DallagiovannaB. PUMILIO-2 is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells.Stem Cells Dev.201221221722710.1089/scd.2011.014321649561
    [Google Scholar]
  73. JankowskiM. DompeC. SibiakR. WąsiatyczG. MozdziakP. JaśkowskiJ.M. AntosikP. KempistyB. Dyszkiewicz-KonwińskaM. In vitro cultures of adipose-derived stem cells: An overview of methods, molecular analyses, and clinical applications.Cells202098178310.3390/cells908178332726947
    [Google Scholar]
  74. PatiF. SongT.H. RijalG. JangJ. KimS.W. ChoD.W. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.Biomaterials20153723024110.1016/j.biomaterials.2014.10.01225453953
    [Google Scholar]
  75. VozziG. CoralloC. CartaS. FortinaM. GattazzoF. GallettiM. GiordanoN. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: In vitro evidences.J. Biomed. Mater. Res. A201410251415142110.1002/jbm.a.3482323775901
    [Google Scholar]
  76. ZhouW. StukelJ.M. CebullH.L. WillitsR.K. Tuning the mechanical properties of poly(Ethylene Glycol) microgel-based scaffolds to increase 3d schwann cell proliferation.Macromol. Biosci.201616453554410.1002/mabi.20150033626726886
    [Google Scholar]
  77. KimI.G. HwangM.P. DuP. KoJ. HaC. DoS.H. ParkK. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.Biomaterials201550758610.1016/j.biomaterials.2015.01.05425736498
    [Google Scholar]
  78. ShahrousvandM. SadeghiG.M.M. ShahrousvandE. GhollasiM. SalimiA. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.Colloids Surf. B Biointerfaces201715629230410.1016/j.colsurfb.2017.04.05928544961
    [Google Scholar]
  79. Dumic-CuleI. PecinaM. JelicM. JankolijaM. PopekI. GrgurevicL. VukicevicS. Biological aspects of segmental bone defects management.Int. Orthop.20153951005101110.1007/s00264‑015‑2728‑425772279
    [Google Scholar]
  80. DecambronA. ManasseroM. BensidhoumM. LecuelleB. Logeart-AvramoglouD. PetiteH. ViateauV. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model.Bone Joint Res.20176420821510.1302/2046‑3758.64.BJR‑2016‑0236.R128408376
    [Google Scholar]
  81. MurphyJ. TorreD. Vision.Educ. Manage. Adm. Leadersh.201543217719710.1177/1741143214523017
    [Google Scholar]
  82. KrontirasP. GatenholmP. HäggD.A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds.J. Biomed. Mater. Res. B Appl. Biomater.2015103119520310.1002/jbm.b.3319824819827
    [Google Scholar]
  83. IaquintaM.R. MazzoniE. BononiI. RotondoJ.C. MazziottaC. MontesiM. SprioS. TampieriA. TognonM. MartiniF. Adult stem cells for bone regeneration and repair.Front. Cell Dev. Biol.2019726810.3389/fcell.2019.0026831799249
    [Google Scholar]
  84. ChenM. LeD.Q.S. KjemsJ. BüngerC. LysdahlH. Improvement of distribution and osteogenic differentiation of human mesenchymal stem cells by hyaluronic acid and β-tricalcium phosphate-coated polymeric scaffold in vitro.Biores. Open Access20154136337310.1089/biores.2015.002126487981
    [Google Scholar]
  85. KarbalaeiMahdiA. ShahrousvandM. JavadiH.R. GhollasiM. NorouzF. KamaliM. SalimiA. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers.Mater. Sci. Eng. C2017781195120210.1016/j.msec.2017.04.083
    [Google Scholar]
  86. MotaC. PuppiD. ChielliniF. ChielliniE. Additive manufacturing techniques for the production of tissue engineering constructs.J. Tissue Eng. Regen. Med.20159317419010.1002/term.163523172792
    [Google Scholar]
  87. VoinovaV. BonartsevaG. BonartsevA. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells.World J. Stem Cells2019111076478610.4252/wjsc.v11.i10.76431692924
    [Google Scholar]
  88. BonartsevA ZharkovaI VoinovaV KuznetsovaE ZhuikovV MakhinaT MyshkinaV PotashnikovaD ChesnokovaD KhaydapovaD. Poly (3-hydroxybutyrate)/poly (ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells.3 Biotech.201888110
    [Google Scholar]
  89. SunH. YangH.L. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering.Chin. Med. J. (Engl.)201512881121112710.4103/0366‑6999.15512125881610
    [Google Scholar]
  90. BirhanuG. Akbari JavarH. SeyedjafariE. Zandi-KarimiA. Dusti TelgerdM. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.Artif. Cells Nanomed. Biotechnol.20184661274128110.1080/21691401.2017.136792828835133
    [Google Scholar]
  91. SorayaZ. GhollasiM. HalabianR. EftekhariE. TabasiA. SalimiA. Donepezil hydrochloride as a novel inducer for osteogenic differentiation of mesenchymal stem cells on PLLA scaffolds in vitro.Biotechnol. J.2021169210011210.1002/biot.20210011234170068
    [Google Scholar]
  92. GandhimathiC. VenugopalJ.R. RamakrishnaS. SrinivasanD.K. Electrospun-electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration.J. Appl. Polym. Sci.2018135424675610.1002/app.46756
    [Google Scholar]
  93. CaetanoG.F. BártoloP.J. DomingosM. OliveiraC.C. LeiteM.N. FradeM.A.C. Osteogenic differentiation of adipose-derived mesenchymal stem cells into Polycaprolactone (PCL) scaffold.Procedia Eng.2015110596610.1016/j.proeng.2015.07.010
    [Google Scholar]
  94. HoseinzadehS. AtashiA. SoleimaniM. AlizadehE. ZarghamiN. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell. Dev. Biol. Anim.201652447948710.1007/s11626‑015‑9992‑x26822432
    [Google Scholar]
  95. LiY. YangW. LiX. ZhangX. WangC. MengX. PeiY. FanX. LanP. WangC. LiX. GuoZ. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.ACS Appl. Mater. Interfaces20157105715572410.1021/acsami.5b0033125711714
    [Google Scholar]
  96. JinM. KimB.S. SeoS.H. KimM. KangY.G. ShinJ.W. ChoK.H. ShinM.C. YoonC. MinK.A. Synergistic effect of growth factor releasing polymeric nanoparticles and ultrasound stimulation on osteogenic differentiation.Pharmaceutics202113445710.3390/pharmaceutics1304045733801692
    [Google Scholar]
  97. Faia-TorresA.B. Guimond-LischerS. RottmarM. CharnleyM. GorenT. Maniura-WeberK. SpencerN.D. ReisR.L. TextorM. NevesN.M. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients.Biomaterials201435339023903210.1016/j.biomaterials.2014.07.01525106771
    [Google Scholar]
  98. ParkJ.B. The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression.J. Surg. Res.201217319910410.1016/j.jss.2010.09.01021035140
    [Google Scholar]
  99. CoelhoM.J. FernandesM.H. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation.Biomaterials200021111095110210.1016/S0142‑9612(99)00192‑110817261
    [Google Scholar]
  100. LangenbachF. HandschelJ. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro.Stem Cell Res. Ther.20134511710.1186/scrt32824073831
    [Google Scholar]
  101. MengF. XueX. YinZ. GaoF. WangX. GengZ. Research progress of exosomes in bone diseases: Mechanism, diagnosis and therapy.Front. Bioeng. Biotechnol.20221086662710.3389/fbioe.2022.86662735497358
    [Google Scholar]
  102. WangY. LinQ. ZhangH. WangS. CuiJ. HuY. LiuJ. LiM. ZhangK. ZhouF. JingY. GengZ. SuJ. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator.Bioact. Mater.20232827328310.1016/j.bioactmat.2023.05.01837303851
    [Google Scholar]
  103. WangS. JiaJ. ChenC. lncRNA-KCNQ1OT1: A potential target in exosomes derived from adipose-derived stem cells for the treatment of osteoporosis.Stem Cells Int.2021202111710.1155/2021/769000634712334
    [Google Scholar]
  104. Kyung KimD. LeeS. KimM. JeongY. LeeS. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells.Chem. Eng. J.202140612708010.1016/j.cej.2020.127080
    [Google Scholar]
  105. ViningK.H. MooneyD.J. Mechanical forces direct stem cell behaviour in development and regeneration.Nat. Rev. Mol. Cell Biol.2017181272874210.1038/nrm.2017.10829115301
    [Google Scholar]
  106. CaoL. WangJ. HouJ. XingW. LiuC. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2.Biomaterials201435268469810.1016/j.biomaterials.2013.10.00524140042
    [Google Scholar]
  107. MarenzanaM. ArnettT.R. The key role of the blood supply to bone.Bone Res.20131320321510.4248/BR20130300126273504
    [Google Scholar]
  108. PaduanoF. MarrelliM. AmanteaM. RengoC. RengoS. GoldbergM. SpagnuoloG. TatulloM. Adipose tissue as a strategic source of mesenchymal stem cells in bone regeneration: A topical review on the most promising craniomaxillofacial applications.Int. J. Mol. Sci.20171810214010.3390/ijms1810214029027958
    [Google Scholar]
  109. HsiaoS.T.F. AsgariA. LokmicZ. SinclairR. DustingG.J. LimS.Y. DilleyR.J. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue.Stem Cells Dev.201221122189220310.1089/scd.2011.067422188562
    [Google Scholar]
  110. PengH. UsasA. OlshanskiA. HoA.M. GearhartB. CooperG.M. HuardJ. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis.J. Bone Miner. Res.200520112017202710.1359/JBMR.05070816234975
    [Google Scholar]
  111. RosenV. BMP2 signaling in bone development and repair.Cytokine Growth Factor Rev.2009205-647548010.1016/j.cytogfr.2009.10.01819892583
    [Google Scholar]
  112. BianconeL. BrunoS. DeregibusM.C. TettaC. CamussiG. Therapeutic potential of mesenchymal stem cell-derived microvesicles.Nephrol. Dial. Transplant.20122783037304210.1093/ndt/gfs16822851627
    [Google Scholar]
  113. KangT. JonesT.M. NaddellC. BacanamwoM. CalvertJ.W. ThompsonW.E. BondV.C. ChenY.E. LiuD. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31.Stem Cells Transl. Med.20165444045010.5966/sctm.2015‑017726933040
    [Google Scholar]
  114. MarędziakM. MaryczK. LewandowskiD. SiudzińskaA. ŚmieszekA. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)—a new approach in veterinary regenerative medicine. In Vitro Cell. Dev. Biol. Anim.201551323024010.1007/s11626‑014‑9828‑025428200
    [Google Scholar]
  115. ShafieeA. SeyedjafariE. SoleimaniM. AhmadbeigiN. DinarvandP. GhaemiN. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue.Biotechnol. Lett.20113361257126410.1007/s10529‑011‑0541‑821287233
    [Google Scholar]
  116. LeeK. KimH. KimJ.M. KimJ.R. KimK.J. KimY.J. ParkS.I. JeongJ.H. MoonY. LimH.S. BaeD.W. KwonJ. KoC.Y. KimH.S. ShinH.I. JeongD. Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function.J. Cell. Mol. Med.201115102082209410.1111/j.1582‑4934.2010.01230.x21159123
    [Google Scholar]
  117. FollmarK.E. DeCroosF.C. PrichardH.L. WangH.T. ErdmannD. OlbrichK.C. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells.Tissue Eng.200612123525353310.1089/ten.2006.12.352517518688
    [Google Scholar]
  118. HankensonK.D. DishowitzM. GrayC. SchenkerM. Angiogenesis in bone regeneration.Injury201142655656110.1016/j.injury.2011.03.03521489534
    [Google Scholar]
  119. KrausD. DeschnerJ. JägerA. WenghoeferM. BayerS. JepsenS. AllamJ.P. NovakN. MeyerR. WinterJ. Human β-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells.J. Cell. Physiol.20122273994100310.1002/jcp.2280821520074
    [Google Scholar]
  120. RomagnoliC. BrandiM.L. Adipose mesenchymal stem cells in the field of bone tissue engineering.World J. Stem Cells20146214415210.4252/wjsc.v6.i2.14424772241
    [Google Scholar]
  121. JiC. AnnabiN. KhademhosseiniA. DehghaniF. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2.Acta Biomater.2011741653166410.1016/j.actbio.2010.11.04321130905
    [Google Scholar]
  122. RodriguesS. CostaA.M.R. GrenhaA. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios.Carbohydr. Polym.201289128228910.1016/j.carbpol.2012.03.01024750635
    [Google Scholar]
  123. ShamsiM. KarimiM. GhollasiM. NezafatiN. ShahrousvandM. KamaliM. SalimiA. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly- l -lactic acid nanofibers fabricated by electrospinning method.Mater. Sci. Eng. C20177811412310.1016/j.msec.2017.02.16528575950
    [Google Scholar]
  124. MeleL. VitielloP.P. TirinoV. PainoF. De RosaA. LiccardoD. PapaccioG. DesiderioV. Changing paradigms in cranio-facial regeneration: Current and new strategies for the activation of endogenous stem cells.Front. Physiol.201676210.3389/fphys.2016.0006226941656
    [Google Scholar]
  125. SamadianH. KhastarH. EhteramiA. SalehiM. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study.Sci. Rep.20211111387710.1038/s41598‑021‑93367‑634230542
    [Google Scholar]
  126. GhorbaniF.M. KaffashiB. ShokrollahiP. SeyedjafariE. ArdeshirylajimiA. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation.Carbohydr. Polym.201511813314210.1016/j.carbpol.2014.10.07125542118
    [Google Scholar]
  127. SteeleJ.A.M. McCullenS.D. CallananA. AutefageH. AccardiM.A. DiniD. StevensM.M. Combinatorial scaffold morphologies for zonal articular cartilage engineering.Acta Biomater.20141052065207510.1016/j.actbio.2013.12.03024370641
    [Google Scholar]
  128. CulbreathC.J. GaerkeB. TaylorM.S. McCullenS.D. MeffordO.T. Effect of infill on resulting mechanical properties of additive manufactured bioresorbable polymers for medical devices.Materialia20201210073210.1016/j.mtla.2020.100732
    [Google Scholar]
  129. OsathanonT. ChuenjitkuntawornB. NowwaroteN. SupapholP. SastravahaP. SubbalekhaK. PavasantP. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study.Tissue Eng. Regen. Med.201411323924610.1007/s13770‑014‑0015‑x
    [Google Scholar]
  130. RozilaI. AzariP. MunirahS. SafwaniW.K.Z.W. Pingguan-MurphyB. ChuaK.H. Polycaprolactone-based scaffolds facilitates osteogenic differentiation of human adipose-derived stem cells in a co- culture system.Polymers202113459710.3390/polym1304059733671175
    [Google Scholar]
  131. IrmakG. DemirtaşT.T. Çetin AltındalD. ÇalışM. GümüşderelioğluM. Sustained release of 17β-estradiol stimulates osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on chitosan-hydroxyapatite scaffolds.Cells Tissues Organs20141991375010.1159/00036236225115579
    [Google Scholar]
  132. NorouzF. HalabianR. SalimiA. GhollasiM. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.Mater. Sci. Eng. C201910310985710.1016/j.msec.2019.10985731349533
    [Google Scholar]
  133. De LucaA. VitranoI. CostaV. RaimondiL. CarinaV. BellaviaD. ConoscentiG. Di FalcoR. PaviaF.C. La CarrubbaV. BrucatoV. GiavaresiG. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair.J. Biosci. Bioeng.2020129225025710.1016/j.jbiosc.2019.08.00131506241
    [Google Scholar]
  134. WangY. SunN. ZhangY. ZhaoB. ZhangZ. ZhouX. ZhouY. LiuH. ZhangY. LiuJ. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold.Sci. Rep.201991796010.1038/s41598‑019‑44478‑830626917
    [Google Scholar]
  135. ZhengZ. CuiZ. SiJ. YuS. WangQ. ChenW. TurngL.S. Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating.ACS Omega2019446382639110.1021/acsomega.9b0040431459762
    [Google Scholar]
  136. MaryczK. AlickaM. Kornicka-GarbowskaK. PolnarJ. Lis-BartosA. WigluszR.J. RoeckenM. NedelecJ.M. Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: Design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles.J. Biomed. Mater. Res. B Appl. Biomater.202010841398141110.1002/jbm.b.3448831513334
    [Google Scholar]
  137. ArrigoniE. StancoD. DellaviaC. de GirolamoL. BriniA.T. GiancamilloA.D. DomeneghiniC. CarnelliD. CampagnolM. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization.J. Orthop. Sci.201318233133910.1007/s00776‑012‑0349‑y23344932
    [Google Scholar]
  138. LinZ.Y. DuanZ.X. GuoX.D. LiJ.F. LuH.W. ZhengQ.X. QuanD.P. YangS.H. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo.J. Control. Release2010144219019510.1016/j.jconrel.2010.02.01620184932
    [Google Scholar]
  139. DuJ. ZuoY. LinL. HuangD. NiuL. WeiY. WangK. LinQ. ZouQ. LiY. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.J. Mech. Behav. Biomed. Mater.20188815015910.1016/j.jmbbm.2018.08.02830172080
    [Google Scholar]
  140. CalabreseG. DolcimascoloA. CarusoG. ForteS. miR-19a is involved in progression and malignancy of anaplastic thyroid cancer cells.OncoTargets Ther.2019129571958310.2147/OTT.S22173332009794
    [Google Scholar]
  141. LuZ. Roohani-EsfahaniS.I. WangG. ZreiqatH. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.Nanomedicine20128450751510.1016/j.nano.2011.07.01221839050
    [Google Scholar]
  142. DetschR. BoccacciniA.R. The role of osteoclasts in bone tissue engineering.J. Tissue Eng. Regen. Med.20159101133114910.1002/term.185124478169
    [Google Scholar]
  143. GoonooN. Bhaw-LuximonA. PassanhaP. EstevesS.R. JhurryD. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.201710561667168410.1002/jbm.b.3367427080439
    [Google Scholar]
  144. NerantzakiM. KoliakouI. KaloyianniM.G. KoumentakouI. SiskaE. DiamantiE. KarakassidesM.A. BoccacciniA.R. BikiarisD.N. A biomimetic approach for enhancing adhesion and osteogenic differentiation of adipose-derived stem cells on poly(butylene succinate) composites with bioactive ceramics and glasses.Eur. Polym. J.20178715917310.1016/j.eurpolymj.2016.12.014
    [Google Scholar]
  145. CarvalhoL.T. VieiraT.A. ZhaoY. CelliA. MedeirosS.F. LacerdaT.M. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides.Int. J. Biol. Macromol.20211831514153910.1016/j.ijbiomac.2021.05.02533989687
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X263333231218065453
Loading
/content/journals/cscr/10.2174/011574888X263333231218065453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test