Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X263530230921074827
2024-02-09
2025-01-22
Loading full text...

Full text loading...

References

  1. Edgardo Olvera LopezB.D.B. Cardiovascular Disease. StarPearls2022
    [Google Scholar]
  2. BenjaminE.J. ViraniS.S. CallawayC.W. ChamberlainA.M. ChangA.R. ChengS. ChiuveS.E. CushmanM. DellingF.N. DeoR. de FerrantiS.D. FergusonJ.F. FornageM. GillespieC. IsasiC.R. JiménezM.C. JordanL.C. JuddS.E. LacklandD. LichtmanJ.H. LisabethL. LiuS. LongeneckerC.T. LutseyP.L. MackeyJ.S. MatcharD.B. MatsushitaK. MussolinoM.E. NasirK. O’FlahertyM. PalaniappanL.P. PandeyA. PandeyD.K. ReevesM.J. RitcheyM.D. RodriguezC.J. RothG.A. RosamondW.D. SampsonU.K.A. SatouG.M. ShahS.H. SpartanoN.L. TirschwellD.L. TsaoC.W. VoeksJ.H. WilleyJ.Z. WilkinsJ.T. WuJ.H.Y. AlgerH.M. WongS.S. MuntnerP. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association.Circulation201813712e67e49210.1161/CIR.000000000000055829386200
    [Google Scholar]
  3. FarleyA. McLaffertyE. HendryC. The cardiovascular system.Nurs. Stand.2012279353910.7748/ns.27.9.35.s5223240514
    [Google Scholar]
  4. MungerM.A. Van TassellB.W. LaFleurJ. Medication nonadherence: An unrecognized cardiovascular risk factor.Medscape general medicine20079358
    [Google Scholar]
  5. CurryS.J. KristA.H. OwensD.K. BarryM.J. CaugheyA.B. DavidsonK.W. DoubeniC.A. EplingJ.W.Jr KemperA.R. KubikM. LandefeldC.S. MangioneC.M. SilversteinM. SimonM.A. TsengC.W. WongJ.B. Risk assessment for cardiovascular disease with nontraditional risk factors.JAMA2018320327228010.1001/jama.2018.835929998297
    [Google Scholar]
  6. FoxC.S. CoadyS. SorlieP.D. LevyD. MeigsJ.B. D’AgostinoR.B.Sr WilsonP.W. SavageP.J. Trends in cardiovascular complications of diabetes.JAMA2004292202495249910.1001/jama.292.20.249515562129
    [Google Scholar]
  7. McGillH.C.Jr McMahanC.A. GiddingS.S. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study.Circulation200811791216122710.1161/CIRCULATIONAHA.107.71703318316498
    [Google Scholar]
  8. Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis 2020; 9: 2048004020949323.10.1177/204800401668721128286646
  9. Organization, W.HCardiovascular diseases World Health Organization.Cardiovascular diseases. Fact Sheet2007317
    [Google Scholar]
  10. YuH. LuK. ZhuJ. WangJ. Stem cell therapy for ischemic heart diseases.Br. Med. Bull.2017121113515410.1093/bmb/ldw05928164211
    [Google Scholar]
  11. SuarezS. AlmutairiA. ChristmanK. Micro-and nanoparticles for treating cardiovascular disease.J Biomat Sci201534564580
    [Google Scholar]
  12. Rosalyn AbbottP.A. AmbrosioF. AlmarzaA.J. What Is Regenerative Medicine? McGowan Institute for Regenerative Medicine.A program of the University of Pittsburgh and the University of Pittsburgh Medical Center2022
    [Google Scholar]
  13. RubinoC.M. BradleyJ.S. Optimizing therapy with antibacterial agents: Use of pharmacokinetic-pharmacodynamic principles in pediatrics.Paediatr. Drugs20079636136910.2165/00148581‑200709060‑0000318052406
    [Google Scholar]
  14. Liu KKYWX. Nanotechnology meets regenerative medicine: A new frontier? Nanotechnol Rev 2013; 2(1).
  15. Miller-KasprzakE. JagodzińskiP.P. Endothelial progenitor cells as a new agent contributing to vascular repair.Arch. Immunol. Ther. Exp.200755424725910.1007/s00005‑007‑0027‑517659378
    [Google Scholar]
  16. WeaverC.V. GarryD.J. Regenerative biology: A historical perspective and modern applications.Regen. Med.200831638210.2217/17460751.3.1.6318154463
    [Google Scholar]
  17. SunderlandM.E. Regeneration: Thomas Hunt Morgan’s window into development.J. Hist. Biol.201043232536110.1007/s10739‑009‑9203‑220665231
    [Google Scholar]
  18. Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells Developmental Biology. Proceed Nation Acad Sci United States of America 1981; 78(12): 7634-8.
  19. Gianluca SampognaaS.Y.G.b. ForgioneaA. Regenerative medicine: Historical roots and potential strategies in modern medicine.J. Microsc. Ultrastruct.201533101107
    [Google Scholar]
  20. IllingworthC.M. Trapped fingers and amputated finger tips in children.J. Pediatr. Surg.19749685385810.1016/S0022‑3468(74)80220‑44473530
    [Google Scholar]
  21. HorsemanB. “Regeneration of a Finger”, History of Regenerative Medicine.J. Microsc. Ultrastruct.20153310110730023189
    [Google Scholar]
  22. AnatJ. Form and function in regenerative medicine.Introduction2015
    [Google Scholar]
  23. SpineG.O.a. Five Benefits of Regenerative MedicineGenesis Orthopaedic and Spine.
    [Google Scholar]
  24. MendezG.F. CowieM.R. The epidemiological features of heart failure in developing countries: A review of the literature.Int. J. Cardiol.2001802-321321910.1016/S0167‑5273(01)00497‑111578717
    [Google Scholar]
  25. SandersonJ.E. TseT.F. Heart failure: A global disease requiring a global response.Br. Heart J.200389658558610.1136/heart.89.6.58512748201
    [Google Scholar]
  26. Lloyd-JonesD.M. LarsonM.G. BeiserA. LevyD. Lifetime risk of developing coronary heart disease.Lancet19993539147899210.1016/S0140‑6736(98)10279‑910023892
    [Google Scholar]
  27. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  28. Fernández-AvilésF. Sanz-RuizR. ClimentA.M. BadimonL. BolliR. CharronD. FusterV. JanssensS. KastrupJ. KimH.S. LüscherT.F. MartinJ.F. MenaschéP. SimariR.D. StoneG.W. TerzicA. WillersonJ.T. WuJ.C. Fernández-AvilésF. TerzicA. BadimonL. BroughtonK. DiFedeD.L. DimmelerS. MadonnaR. PennM.S. SussmanM.A. SluijterJ.P.G. WollertK.C. BalkanW. BolliR. ChamuleauS. CharronD. Fernández-SantosM.E. FusterV. GoliaschG. GyöngyösiM. HareJ.M. LüscherT.F. TompkinsB.A. WinklerJ. Bayés-GenísA. HenryT.D. TaylorD.A. ClimentA.M. LermanA. PelachoB. ProsperF. Sanz-RuizR. PerinE.C. PompilioG. GershB. BartunekJ. DuckersE. FerdinandyP. JanssensS. LosordoD.W. SánchezP.L. ShermanW. WojakowskiW. ZeiherA. KastrupJ. RoncalliJ. MathurA. CreaF. D´AmarioD. PovsicT.J. TraverseJ. Ylä-HerttualaS. Global position paper on cardiovascular regenerative medicine.Eur. Heart J.201738332532254610.1093/eurheartj/ehx24828575280
    [Google Scholar]
  29. JaneR Applications of biomaterials in regenerative medicine.J Stem Cell Res Medicin20194
    [Google Scholar]
  30. NiiT. KatayamaY. Biomaterial-assisted regenerative medicine.Int. J. Mol. Sci.20212216865710.3390/ijms2216865734445363
    [Google Scholar]
  31. ReddyM.S.B. PonnammaD. ChoudharyR. SadasivuniK.K. A comparative review of natural and synthetic biopolymer composite scaffolds.Polymers2021137110510.3390/polym1307110533808492
    [Google Scholar]
  32. Sumrita BhatA.K. Biomaterials in regenerative medicine.J Postgrad Med Educat Res2012462
    [Google Scholar]
  33. SchmidtC.E. BaierJ.M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering.Biomaterials200021222215223110.1016/S0142‑9612(00)00148‑411026628
    [Google Scholar]
  34. PlaceE.S. StevensM.M. Complexity in biomaterials for tissue engineering.Nat. Mater.20098645770
    [Google Scholar]
  35. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.00322125349
    [Google Scholar]
  36. HandI. Natural Biomaterials.OpenWetWare contributors2017
    [Google Scholar]
  37. XuT. MolnarP. GregoryC. DasM. BolandT. HickmanJ.J. Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel.Biomaterials200930264377438310.1016/j.biomaterials.2009.04.04719501396
    [Google Scholar]
  38. O’LearyC. CavanaghB. UngerR.E. KirkpatrickC.J. O’DeaS. O’BrienF.J. CryanS.A. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.Biomaterials20168511111112710.1016/j.biomaterials.2016.01.06526871888
    [Google Scholar]
  39. Nour AlmouemenH.M.K. Computational and Structural Biotechnology Unit2019171759159810.1016/j.csbj.2019.04.008
    [Google Scholar]
  40. MertschingH. WallesT. HofmannM. SchanzJ. KnappW.H. Engineering of a vascularized scaffold for artificial tissue and organ generation.Biomaterials200526336610661710.1016/j.biomaterials.2005.04.04815979139
    [Google Scholar]
  41. HommingaG.N. BumaP. KootH.W.J. van der KraanP.M. van den BergW.B. Chondrocyte behavior in fibrin glue in vitro.Acta Orthop. Scand.199364444144510.3109/174536793089936638213124
    [Google Scholar]
  42. ReisL.A. ChiuL.L.Y. FericN. FuL. RadisicM. Biomaterials in myocardial tissue engineering.J. Tissue Eng. Regen. Med.2016101112810.1002/term.194425066525
    [Google Scholar]
  43. HughesC.S. PostovitL.M. LajoieG.A. Matrigel: A complex protein mixture required for optimal growth of cell culture.Proteomics20101091886189010.1002/pmic.20090075820162561
    [Google Scholar]
  44. Perea-GilI. Prat-VidalC. Bayes-GenisA. In vivo experience with natural scaffolds for myocardial infarction: The times they are a-changin’.Stem Cell Res. Ther.20156124810.1186/s13287‑015‑0237‑426670389
    [Google Scholar]
  45. Tiziana NardoI.C. Francesca Ruini, Silvia Caddeo, Stefano Calzone, Valeria Chiono and Gianluca Ciardelli, CHAPTER 65, Synthetic Biomaterial for Regenerative Medicine Applications, kidney Transplantation, Bioengineering, and Regeneration.Academic Press2017901921
    [Google Scholar]
  46. GosauM. Gesichtsschädelaugmentationen mit porösen Polyethylenimplantaten (Medpor®).Oral Maxillofac. Surg.2006103178184
    [Google Scholar]
  47. MenderesA. BaytekinC. TopcuA. YilmazM. BarutcuA. Craniofacial reconstruction with high-density porous polyethylene implants.J. Craniofac. Surg.200415571972410.1097/00001665‑200409000‑0000415346006
    [Google Scholar]
  48. Gaétan LarocheY.M. GuidoinR MartinW.K MartinL. HowT. DouvilleY. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture.J. Biomed. Mater. Res.19952912152536
    [Google Scholar]
  49. MaryC. MaroisY. KingM.W. LarocheG. DouvilleY. MartinL. GuidoinR. Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery.ASAIO J.199844319920610.1097/00002480‑199805000‑000159617952
    [Google Scholar]
  50. BaleaniM. CristofoliniL. MinariC. ToniA. Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA.Proc. Inst. Mech. Eng. H2003217191210.1243/09544110376259768312578214
    [Google Scholar]
  51. BruensM.L. PietermanH. de WijnJ.R. VaandragerJ.M. Porous polymethylmethacrylate as bone substitute in the craniofacial area.J. Craniofac. Surg.2003141636810.1097/00001665‑200301000‑0001112544223
    [Google Scholar]
  52. IkadaY. TsujiH. Biodegradable polyesters for medical and ecological applications.Macromol. Rapid Commun.200021311713210.1002/(SICI)1521‑3927(20000201)21:3<117::AID‑MARC117>3.0.CO;2‑X
    [Google Scholar]
  53. MaZ., K.M. YongT. HeW. RamakrishnaS. Surface engineering of electrospun polyethyleneterephthalate (PET) nanofibers towards development of a new material for blood vessel engineering.Biomaterial20052615
    [Google Scholar]
  54. van WachemP.V. FeijenJ.S.J. BeugelingT. van AkenW. BlaauwE. NieuwenhuisP. MolenaarI. Adhesion and spreading of cultured endothelial cells on modified and unmodified poly (ethylene terephthalate): A morphological study.Biomaterial1989532539
    [Google Scholar]
  55. SáenzA. BrostowW. CastañoV. Ceramic biomaterials: An introductory overview.J. Mater. Educ.1999; 21(5-6): 297-306
    [Google Scholar]
  56. Satyavrata SamavediaL.K.P. Synthetic biomaterials for regenerative medicine applications.Academic Press8199
    [Google Scholar]
  57. StanisławskaA. Biomaterials and implants in cardiac and vascular surgery.Adv Mater Sci201414
    [Google Scholar]
  58. SakrM.A. SakthivelK. HossainT. ShinS.R. SiddiquaS. KimJ. KimK. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering.J. Biomed. Mater. Res. A2022110370872410.1002/jbm.a.3731034558808
    [Google Scholar]
  59. XingM. JiangY. BiW. GaoL. ZhouY.L. RaoS.L. MaL.L. ZhangZ.W. YangH.T. ChangJ. Strontium ions protect hearts against myocardial ischemia/reperfusion injury.Sci. Adv.202173eabe072610.1126/sciadv.abe072633523909
    [Google Scholar]
  60. MusterD. Biomaterials: Hard tissue repair and replacement.SpringerLink1992347380
    [Google Scholar]
  61. JEL. Perspectives on biomaterials, materials.Sci Monog19862527
    [Google Scholar]
  62. MorsinkM. SeverinoP. Luna-CeronE. HussainM.A. SobahiN. ShinS.R. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration.Acta Biomater.202213914115610.1016/j.actbio.2021.11.02234818579
    [Google Scholar]
  63. Beltran-VargasN.E. Peña-MercadoE. Sánchez-GómezC. Garcia-LorenzanaM. RuizJ.C. Arroyo-MayaI. Huerta-YepezS. Campos-TeránJ. Sodium alginate/chitosan scaffolds for cardiac tissue engineering: The influence of its three-dimensional material preparation and the use of gold nanoparticles.Polymers20221416323310.3390/polym1416323336015490
    [Google Scholar]
  64. PeraM.F. ReubinoffB. TrounsonA. Human embryonic stem cells.J. Cell Sci.2000113151010.1242/jcs.113.1.510591620
    [Google Scholar]
  65. MahlaR.S. Stem cells applications in regenerative medicine and disease therapeutics.Int J Cell Biol2016201611694028310.1155/2016/6940283
    [Google Scholar]
  66. ZakrzewskiW. DobrzyńskiM. SzymonowiczM. RybakZ. Stem cells: Past, present, and future.Stem Cell Res. Ther.20191016810.1186/s13287‑019‑1165‑530808416
    [Google Scholar]
  67. Jency GeorgeM.W.A. JeganS.R. MahijaS.P. JosphinJ.S. A review of stem cells in regenerative medicine.International Journal of Scientific Research and Technology201738806815
    [Google Scholar]
  68. StaffB.M.C. Stem cells: What they are and what they do?Myoclinic2022
    [Google Scholar]
  69. NasserM.I. QiX. ZhuS. HeY. ZhaoM. GuoH. ZhuP. Current situation and future of stem cells in cardiovascular medicine.Biomed. Pharmacother.202013211081310.1016/j.biopha.2020.11081333068940
    [Google Scholar]
  70. DahlqvistC. BlokzijlA. ChapmanG. FalkA. DannaeusK. IbâñezC.F. LendahlU. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation.Development2003130246089609910.1242/dev.0083414597575
    [Google Scholar]
  71. FangX. MiaoS. YuY. DingF. HanX. WuH. ZhaoZ.A. WangY. HuS. LeiW. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway.J. Mol. Cell. Cardiol.201913411210.1016/j.yjmcc.2019.06.01431233755
    [Google Scholar]
  72. StepniewskiJ. PacholczakT. SkrzypczykA. CieslaM. SzadeA. SzadeK. BidanelR. LangrzykA. GrochowskiR. VandermeerenF. Kachamakova-TrojanowskaN. JezM. DrabikG. NakanishiM. JozkowiczA. DulakJ. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.IUBMB Life201870212914210.1002/iub.171129316264
    [Google Scholar]
  73. GirlovanuM. SusmanS. SoritauO. Rus-CiucaD. MelincoviciC. ConstantinA.M. MihuC.M. Stem cells-biological update and cell therapy progress.Clujul Med.201588326527126609255
    [Google Scholar]
  74. TerashviliM. BosnjakZ.J. Stem cell therapies in cardiovascular disease.J. Cardiothorac. Vasc. Anesth.201933120922210.1053/j.jvca.2018.04.04830029992
    [Google Scholar]
  75. PartovianC. SimonsM. Stem cell therapies in cardiovascular disease.Drug Discov. Today Ther. Strateg.200851737810.1016/j.ddstr.2008.05.00119343101
    [Google Scholar]
  76. SharmaR. Stem cells in clinical practice and tissue engineering.Curr. Drug Targets2018; 352
    [Google Scholar]
  77. SinghA. SinghA. SenD. Mesenchymal stem cells in cardiac regeneration: A detailed progress report of the last 6 years (2010–2015).Stem Cell Res. Ther.2016718210.1186/s13287‑016‑0341‑027259550
    [Google Scholar]
  78. GuoY. YuY. HuS. ChenY. ShenZ. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases.Cell Death Dis.202011534910.1038/s41419‑020‑2542‑932393744
    [Google Scholar]
  79. MoscaR.S. Potential uses of cord blood in cardiac surgery.J Blood Transfusion2012201256813210.1155/2012/568132
    [Google Scholar]
  80. MehtaA. SequieraG.L. RamachandraC.J.A. SudibyoY. ChungY. ShengJ. WongK.Y. TanT.H. WongP. LiewR. ShimW. Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes.Cardiovasc. Res.2014102349750610.1093/cvr/cvu06024623279
    [Google Scholar]
  81. MusunuruK. SheikhF. GuptaR.M. HouserS.R. MaherK.O. MilanD.J. TerzicA. WuJ.C. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: A scientific statement from the American Heart Association.Circ. Genom. Precis. Med.2018111e00004310.1161/HCG.000000000000004329874173
    [Google Scholar]
  82. SrivastavaD. IveyK.N. Potential of stem-cell-based therapies for heart disease.Nature200644170971097109910.1038/nature0496116810246
    [Google Scholar]
  83. CambriaE. SteigerJ. GünterJ. BoppA. WolintP. HoerstrupS.P. EmmertM.Y. Cardiac regenerative medicine: The potential of a new generation of stem cells.Transfus. Med. Hemother.201643427528110.1159/00044817927721703
    [Google Scholar]
  84. SteinhoffG. NesterukJ. WolfienM. GroßeJ. RuchU. VasudevanP. MüllerP. Stem cells and heart disease-brake or accelerator?Adv. Drug Deliv. Rev.201712022410.1016/j.addr.2017.10.00729054357
    [Google Scholar]
  85. LuiP.P.Y. A practical guide for the isolation and maintenance of stem cells from tendon. Stem Cell Renewal and Cell-Cell Communication.Springer201412714010.1007/7651_2014_92
    [Google Scholar]
  86. MoogR. Mobilization and harvesting of peripheral blood stem cells.Curr. Stem Cell Res. Ther.20061218920110.2174/15748880677695686918220866
    [Google Scholar]
  87. MushaharyD. SpittlerA. KasperC. WeberV. CharwatV. Isolation, cultivation, and characterization of human mesenchymal stem cells.Cytometry A2018931193110.1002/cyto.a.2324229072818
    [Google Scholar]
  88. McKeeC. ChaudhryG.R. Advances and challenges in stem cell culture.Colloids Surf. B Biointerfaces2017159627710.1016/j.colsurfb.2017.07.05128780462
    [Google Scholar]
  89. PerinE.C. LópezJ. Methods of stem cell delivery in cardiac diseases.Nat. Clin. Pract. Cardiovasc. Med.20063S1Suppl. 1S110S11310.1038/ncpcardio044716501616
    [Google Scholar]
  90. ShengC.C. ZhouL. HaoJ. Current stem cell delivery methods for myocardial repair.BioMed Res Int2013201310.1155/2013/547902
    [Google Scholar]
  91. WollertK.C. DrexlerH. Clinical applications of stem cells for the heart.Circ. Res.200596215116310.1161/01.RES.0000155333.69009.6315692093
    [Google Scholar]
  92. BelA. Composite cell sheets: A further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells.Circulation201012211S118S12310.1161/CIRCULATIONAHA.109.927293
    [Google Scholar]
  93. RamireddyA. BrodtC.R. MendizabalA.M. DiFedeD.L. HealyC. GoyalV. AlansariY. CoffeyJ.O. Viles-GonzalezJ.F. HeldmanA.W. GoldbergerJ.J. MyerburgR.J. HareJ.M. MitraniR.D. Effects of transendocardial stem cell injection on ventricular proarrhythmia in patients with ischemic cardiomyopathy: Results from the POSEIDON and TAC-HFT trials.Stem Cells Transl. Med.2017651366137210.1002/sctm.16‑032828252842
    [Google Scholar]
  94. HeldmanA.W. DiFedeD.L. FishmanJ.E. ZambranoJ.P. TrachtenbergB.H. KarantalisV. MushtaqM. WilliamsA.R. SuncionV.Y. McNieceI.K. GhersinE. SotoV. LoperaG. MikiR. WillensH. HendelR. MitraniR. PattanyP. FeigenbaumG. OskoueiB. ByrnesJ. LoweryM.H. SierraJ. PujolM.V. DelgadoC. GonzalezP.J. RodriguezJ.E. BagnoL.L. RouyD. AltmanP. FooC.W.P. da SilvaJ. AndersonE. SchwarzR. MendizabalA. HareJ.M. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial.JAMA20143111627310.1001/jama.2013.28290924247587
    [Google Scholar]
  95. ThompsonC.A. NasseriB.A. MakowerJ. HouserS. McGarryM. LamsonT. PomerantsevaI. ChangJ.Y. GoldH.K. VacantiJ.P. OesterleS.N. Percutaneous transvenous cellular cardiomyoplasty.J. Am. Coll. Cardiol.200341111964197110.1016/S0735‑1097(03)00397‑812798567
    [Google Scholar]
  96. NishimuraK. IshiwataH. SakuragiY. HayashiY. FukudaA. HisatakeK. Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells.Sci. Rep.201991177710.1038/s41598‑018‑37779‑x30741960
    [Google Scholar]
  97. AroraP. SindhuA. DilbaghiN. ChaudhuryA. RajakumarG. RahumanA.A. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.J. Cell. Mol. Med.20121691991200010.1111/j.1582‑4934.2012.01534.x22260258
    [Google Scholar]
  98. AccomassoL. Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview.Stem cells international20162016: 7920358.10.1155/2016/7920358
    [Google Scholar]
  99. WangJ. JokerstJ.V. Stem cell imaging: Tools to improve cell delivery and viability.Stem Cells International20162016924065210.1155/2016/9240652
    [Google Scholar]
  100. TsienR.Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture).Angew. Chem. Int. Ed.200948315612562610.1002/anie.20090191619565590
    [Google Scholar]
  101. SemenovO.V. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation.American J Obstet Gynecol20102022193e1-193. e13
    [Google Scholar]
  102. KubinováE.S Nanotechnologies in regenerative medicine.Official J Study Minimally Invas Ther2010193
    [Google Scholar]
  103. KhangD. CarpenterJ. ChunY.W. ParetaR. WebsterT.J. Nanotechnology for regenerative medicine.Biomed. Microdevices201012457558710.1007/s10544‑008‑9264‑619096767
    [Google Scholar]
  104. WangD.K. RahimiM. FilgueiraC.S. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives.Nanomedicine20213410238710.1016/j.nano.2021.10238733753283
    [Google Scholar]
  105. DengY. ZhangX. ShenH. HeQ. WuZ. LiaoW. YuanM. Application of the nano-drug delivery system in treatment of cardiovascular diseases.Front. Bioeng. Biotechnol.2020748910.3389/fbioe.2019.0048932083068
    [Google Scholar]
  106. ChenJ. SongY. HuangZ. ZhangN. XieX. LiuX. YangH. WangQ. LiM. LiQ. GongH. QianJ. PangZ. GeJ. Modification with CREKA improves cell retention in a rat model of myocardial ischemia reperfusion.Stem Cells201937566367610.1002/stem.298330779865
    [Google Scholar]
  107. DvirT. BauerM. SchroederA. TsuiJ.H. AndersonD.G. LangerR. LiaoR. KohaneD.S. Nanoparticles targeting the infarcted heart.Nano Lett.201111104411441410.1021/nl202588221899318
    [Google Scholar]
  108. LehnerS. Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: An in vivo imaging study in mice.Molecular imaging2012116729010.2310/7290.2012.00010
    [Google Scholar]
  109. TorchilinV.P. NarulaJ. HalpernE. KhawB.A. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium.Biochim. Biophys. Acta Biomembr.199612791758310.1016/0005‑2736(95)00248‑08624365
    [Google Scholar]
  110. ChandaranaM. CurtisA. HoskinsC. The use of nanotechnology in cardiovascular disease.Appl. Nanosci.2018871607161910.1007/s13204‑018‑0856‑z
    [Google Scholar]
  111. MonteiroN. MartinsA. ReisR.L. NevesN.M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface2014111012014045910.1098/rsif.2014.045925401172
    [Google Scholar]
  112. NamdariM. CheraghiM. NegahdariB. EatemadiA. DaraeeH. Recent advances in magnetoliposome for heart drug delivery.Artif. Cells Nanomed. Biotechnol.20174561051105710.1080/21691401.2017.129915928272903
    [Google Scholar]
  113. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  114. KajalA. KishoreL. KaurN. GollenR. SinghR. Therapeutic agents for the management of atherosclerosis from herbal sources.Beni. Suef Univ. J. Basic Appl. Sci.20165215616910.1016/j.bjbas.2016.02.004
    [Google Scholar]
  115. PalaR. AnjuV.T. DyavaiahM. BusiS. NauliS.M. Nanoparticle- mediated drug delivery for the treatment of cardiovascular diseases.Int. J. Nanomedicine2020153741376910.2147/IJN.S25087232547026
    [Google Scholar]
  116. GeldenhuysW.J. KhayatM.T. YunJ. NayeemM.A. Drug delivery and Nanoformulations for the cardiovascular system. Research reviews.Drug Deliv.201711324028713881
    [Google Scholar]
  117. BanerjeeS.S. Poly (ethylene glycol)-prodrug conjugates: Concept, design, and applications.J Drug Delivery20122012
    [Google Scholar]
  118. PanQ. XuJ. WenC.J. XiongY.Y. GongZ.T. YangY.J. Nanoparticles: Promising tools for the treatment and prevention of myocardial infarction.Int. J. Nanomedicine2021166719674710.2147/IJN.S32872334621124
    [Google Scholar]
  119. BennettM.R. In-stent stenosis: Pathology and implications for the development of drug eluting stents.Br. Heart J.200389221822410.1136/heart.89.2.21812527687
    [Google Scholar]
  120. AcharyaG. LeeC.H. LeeY. Optimization of cardiovascular stent against restenosis: Factorial design-based statistical analysis of polymer coating conditions.PLoS One201278e4310010.1371/journal.pone.004310022937015
    [Google Scholar]
  121. CutlipD.E. GarrattK.N. NovackV. BarakatM. MerajP. MaillardL. ErglisA. JauharR. PopmaJ.J. StolerR. SilberS. CutlipD. AllaqabandS. CaputoR. BeoharN. BrownD. GarrattK. JauharR. GeorgeJ. VargheseV. HuthM. LarrainG. LeeT. MalikA. MartinS. McGarryT. PhillipsC. ShahA. StolerR. BallM. PriceR.J. RossiJ. TaylorC. TollesonT. NicholsonW. KesanakurthyS. ShoukfehM. FinnA. DevireddyC. ShoultzC. RobbinsM. KieszR. MenonP. WeilenmannD. SievertH. ErglisA. StankovicG. BerlandJ. DelarcheN. HirschJ.L. MaillardL. ShayneJ. SerraA. Fernandez-OrtizA. MonassierJ-P. SilberS. 9-month clinical and angiographic outcomes of the COBRA polyzene-F nanocoated coronary stent system.JACC Cardiovasc. Interv.201710216016710.1016/j.jcin.2016.10.03728104210
    [Google Scholar]
  122. FerreiraL. Nanoparticles as tools to study and control stem cells.J. Cell. Biochem.2009108474675210.1002/jcb.2230319708027
    [Google Scholar]
  123. SridharanI. KimT. WangR. Adapting collagen/CNT matrix in directing hESC differentiation.Biochem. Biophys. Res. Commun.2009381450851210.1016/j.bbrc.2009.02.07219233124
    [Google Scholar]
  124. LundA.W. YenerB. StegemannJ.P. PlopperG.E. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination.Tissue Eng. Part B Rev.200915337138010.1089/ten.teb.2009.027019505193
    [Google Scholar]
  125. GhaediM. SoleimaniM. ShabaniI. DuanY. LotfiA. Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold.Cell. Mol. Biol. Lett.20121718910610.2478/s11658‑011‑0040‑x22207333
    [Google Scholar]
  126. KamN.W.S. JanE. KotovN.A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein.Nano Lett.20099127327810.1021/nl802859a19105649
    [Google Scholar]
  127. ChoB.H.S. ParkJ.R. NakamuraM.T. OdintsovB.M. WalligM.A. ChungB.H. Synthetic dimyristoylphosphatidylcholine liposomes assimilating into high-density lipoprotein promote regression of atherosclerotic lesions in cholesterol-fed rabbits.Exp. Biol. Med.2010235101194120310.1258/ebm.2010.00932020876082
    [Google Scholar]
  128. WinterP.M. CaruthersS.D. ZhangH. WilliamsT.A. WicklineS.A. LanzaG.M. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis.JACC Cardiovasc. Imaging20081562463410.1016/j.jcmg.2008.06.00319356492
    [Google Scholar]
  129. FredmanG. KamalyN. SpolituS. MiltonJ. GhorpadeD. ChiassonR. KuriakoseG. PerrettiM. FarokhzadO. TabasI. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice.Sci. Transl. Med.20157275275ra2010.1126/scitranslmed.aaa106525695999
    [Google Scholar]
  130. LobattoM.E. FayadZ.A. SilveraS. VucicE. CalcagnoC. ManiV. DicksonS.D. NicolayK. BanciuM. SchiffelersR.M. MetselaarJ.M. van BlooisL. WuH.S. FallonJ.T. RuddJ.H. FusterV. FisherE.A. StormG. MulderW.J.M. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis.Mol. Pharm.2010762020202910.1021/mp100309y21028895
    [Google Scholar]
  131. ReddyM.K. VasirJ.K. SahooS.K. JainT.K. YallapuM.M. LabhasetwarV. Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery.Circ. Cardiovasc. Interv.20081320921610.1161/CIRCINTERVENTIONS.108.83001820031680
    [Google Scholar]
  132. LibbyP. RidkerP.M. HanssonG.K. Progress and challenges in translating the biology of atherosclerosis.Nature2011473734731732510.1038/nature1014621593864
    [Google Scholar]
  133. PetersD. KastantinM. KotamrajuV.R. KarmaliP.P. GujratyK. TirrellM. RuoslahtiE. Targeting atherosclerosis by using modular, multifunctional micelles.Proc. Natl. Acad. Sci. USA2009106249815981910.1073/pnas.090336910619487682
    [Google Scholar]
  134. MyersonJ. HeL. LanzaG. TollefsenD. WicklineS. Thrombin‐inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis.J. Thromb. Haemost.2011971292130010.1111/j.1538‑7836.2011.04339.x21605330
    [Google Scholar]
  135. AshtariK. NazariH. KoH. TebonP. AkhshikM. AkbariM. AlhosseiniS.N. MozafariM. MehraviB. SoleimaniM. ArdehaliR. Ebrahimi WarkianiM. AhadianS. KhademhosseiniA. Electrically conductive nanomaterials for cardiac tissue engineering.Adv. Drug Deliv. Rev.201914416217910.1016/j.addr.2019.06.00131176755
    [Google Scholar]
  136. FeinerR. EngelL. FleischerS. MalkiM. GalI. ShapiraA. Shacham-DiamandY. DvirT. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.Nat. Mater.201615667968510.1038/nmat459026974408
    [Google Scholar]
  137. MalkiM. FleischerS. ShapiraA. DvirT. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR.Nano Lett.20181874069407310.1021/acs.nanolett.7b0492429406721
    [Google Scholar]
  138. BashshurR.L. ShannonG.W. SmithB.R. AlversonD.C. AntoniottiN. BarsanW.G. BashshurN. BrownE.M. CoyeM.J. DoarnC.R. FergusonS. GrigsbyJ. KrupinskiE.A. KvedarJ.C. LinkousJ. MerrellR.C. NesbittT. PoropatichR. RheubanK.S. SandersJ.H. WatsonA.R. WeinsteinR.S. YellowleesP. The empirical foundations of telemedicine interventions for chronic disease management.Telemed. J. E Health201420976980010.1089/tmj.2014.998124968105
    [Google Scholar]
  139. TangJ. SuT. HuangK. DinhP.U. WangZ. VandergriffA. HensleyM.T. CoresJ. AllenT. LiT. SproulE. MihalkoE. LoboL.J. RuterboriesL. LynchA. BrownA. CaranasosT.G. ShenD. StoufferG.A. GuZ. ZhangJ. ChengK. Targeted repair of heart injury by stem cells fused with platelet nanovesicles.Nat. Biomed. Eng.201821172610.1038/s41551‑017‑0182‑x29862136
    [Google Scholar]
  140. TangJ. WangJ. GuoL. KongX. YangJ. ZhengF. ZhangL. HuangY. Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction.Mol. Cells201029191910.1007/s10059‑010‑0001‑720016947
    [Google Scholar]
  141. MirotsouM. JayawardenaT.M. SchmeckpeperJ. GnecchiM. DzauV.J. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart.J. Mol. Cell. Cardiol.201150228028910.1016/j.yjmcc.2010.08.00520727900
    [Google Scholar]
  142. TangY.L. ZhaoQ. QinX. ShenL. ChengL. GeJ. PhillipsM.I. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction.Ann. Thorac. Surg.200580122923710.1016/j.athoracsur.2005.02.07215975372
    [Google Scholar]
  143. BarnesC.P. SellS.A. BolandE.D. SimpsonD.G. BowlinG.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds.Adv. Drug Deliv. Rev.200759141413143310.1016/j.addr.2007.04.02217916396
    [Google Scholar]
  144. EngelE. MichiardiA. NavarroM. LacroixD. PlanellJ.A. Nanotechnology in regenerative medicine: The materials side.Trends Biotechnol.2008261394710.1016/j.tibtech.2007.10.00518036685
    [Google Scholar]
  145. CuiZ. YangB. LiR.K. Application of biomaterials in cardiac repair and regeneration.Engineering20162114114810.1016/J.ENG.2016.01.028
    [Google Scholar]
  146. KhanK. GasbarrinoK. MahmoudI. MakhoulG. YuB. DufresneL. DaskalopoulouS.S. SchwertaniA. CecereR. Bioactive scaffolds in stem-cell-based therapies for cardiac repair: Protocol for a meta-analysis of randomized controlled preclinical trials in animal myocardial infarction models.Syst. Rev.20187122510.1186/s13643‑018‑0845‑z30518435
    [Google Scholar]
  147. DoA.V. KhorsandB. GearyS.M. SalemA.K. 3D printing of scaffolds for tissue regeneration applications.Adv. Healthc. Mater.20154121742176210.1002/adhm.20150016826097108
    [Google Scholar]
  148. Cruz-SamperioR. JordanM. PerrimanA. Cell augmentation strategies for cardiac stem cell therapies.Stem Cells Transl. Med.202110685586610.1002/sctm.20‑048933660953
    [Google Scholar]
  149. TaghaviS. GeorgeJ.C. Homing of stem cells to ischemic myocardium.Am. J. Transl. Res.20135440441123724164
    [Google Scholar]
  150. KarpovA.A. UdalovaD.V. PlissM.G. GalagudzaM.M. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells.Cell Prolif.2017502e1231610.1111/cpr.1231627878916
    [Google Scholar]
  151. WonY.W. PatelA.N. BullD.A. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient.Biomaterials201435215627563510.1016/j.biomaterials.2014.03.07024731711
    [Google Scholar]
  152. SegersV.F. LeeR.T. Biomaterials to enhance stem cell function in the heart.Circulat Res20111098910922
    [Google Scholar]
  153. XiaoW. GreenT.I.P. LiangX. DelintR.C. PerryG. RobertsM.S. Le VayK. BackC.R. AscioneR. WangH. RaceP.R. PerrimanA.W. Designer artificial membrane binding proteins to direct stem cells to the myocardium.Chem. Sci.201910327610761810.1039/C9SC02650A31588312
    [Google Scholar]
  154. ArmstrongJ.P. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue.Nat Communicat20156116
    [Google Scholar]
  155. RasouliM. RahimiA. SoleimaniM. keshelS.H. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions.Acta Histochem.2021123715178510.1016/j.acthis.2021.15178534500185
    [Google Scholar]
  156. BrizziM.F. TaroneG. DefilippiP. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche.Curr. Opin. Cell Biol.201224564565110.1016/j.ceb.2012.07.00122898530
    [Google Scholar]
  157. GattazzoF. UrciuoloA. BonaldoP. Extracellular matrix: A dynamic microenvironment for stem cell niche.Biochim. Biophys. Acta, Gen. Subj.2014184082506251910.1016/j.bbagen.2014.01.01024418517
    [Google Scholar]
  158. AvigdorA. GoichbergP. ShivtielS. DarA. PeledA. SamiraS. KolletO. HershkovizR. AlonR. HardanI. Ben-HurH. NaorD. NaglerA. LapidotT. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow.Blood200410382981298910.1182/blood‑2003‑10‑361115070674
    [Google Scholar]
  159. Smith-BerdanS. NguyenA. HassaneinD. ZimmerM. UgarteF. CirizaJ. LiD. García-OjedaM.E. HinckL. ForsbergE.C. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches.Cell Stem Cell201181728310.1016/j.stem.2010.11.03021211783
    [Google Scholar]
  160. HungH.S. ChangC.H. ChangC.J. TangC.M. KaoW.C. LinS.Z. HsiehH.H. ChuM.Y. SunW.S. HsuS. In vitro study of a novel nanogold-collagen composite to enhance the mesenchymal stem cell behavior for vascular regeneration.PLoS One201498e10401910.1371/journal.pone.010401925093502
    [Google Scholar]
  161. SunY. LuY. YinL. LiuZ. The roles of nanoparticles in stem cell-based therapy for cardiovascular disease.Front. Bioeng. Biotechnol.2020894710.3389/fbioe.2020.0094732923434
    [Google Scholar]
  162. La FrancescaS. Nanotechnology and stem cell therapy for cardiovascular diseases: Potential applications.Methodist DeBakey Cardiovasc. J.201281283510.14797/mdcj‑8‑1‑2822891108
    [Google Scholar]
  163. LaiR.C. ChenT.S. LimS.K. Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease.Regen. Med.20116448149210.2217/rme.11.3521749206
    [Google Scholar]
  164. QuiatD. OlsonE.N. MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment.J. Clin. Invest.20131231111810.1172/JCI6287623281405
    [Google Scholar]
  165. SchäfflerA. BüchlerC. Concise review: Adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies.Stem Cells200725481882710.1634/stemcells.2006‑058917420225
    [Google Scholar]
  166. MimeaultM. BatraS.K. Concise review: Recent advances on the significance of stem cells in tissue regeneration and cancer therapies.Stem Cells200624112319234510.1634/stemcells.2006‑006616794264
    [Google Scholar]
  167. MimeaultM. HaukeR. BatraS.K. Stem cells: A revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies.Clin. Pharmacol. Ther.200782325226410.1038/sj.clpt.610030117671448
    [Google Scholar]
  168. MadonnaR. Van LaakeL.W. BotkerH.E. DavidsonS.M. De CaterinaR. EngelF.B. EschenhagenT. Fernandez-AvilesF. HausenloyD.J. HulotJ.S. LecourS. LeorJ. MenaschéP. PesceM. PerrinoC. PrunierF. Van LinthoutS. YtrehusK. ZimmermannW.H. FerdinandyP. SluijterJ.P.G. ESC working group on cellular biology of the heart: position paper for cardiovascular research: Tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure.Cardiovasc. Res.2019115348850010.1093/cvr/cvz01030657875
    [Google Scholar]
  169. Camci-UnalG. CutticaD. AnnabiN. DemarchiD. KhademhosseiniA. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.Biomacromolecules20131441085109210.1021/bm301985623419055
    [Google Scholar]
  170. WangC. VarshneyR. WangD.J.A. herapeutic cell delivery and fate control in hydrogels and hydrogel hybrids.Adv Drug Deliv Rev2010627-869971010.1016/j.addr.2010.02.001
    [Google Scholar]
  171. TiburcyM. DidiéM. BoyO. ChristallaP. DökerS. NaitoH. KarikkinethB.C. El-ArmoucheA. GrimmM. NoseM. EschenhagenT. ZiesenissA. KatschinskiD.M. HamdaniN. LinkeW.A. YinX. MayrM. ZimmermannW.H. Terminal differentiation, advanced organotypic maturation, and modeling of hypertrophic growth in engineered heart tissue.Circ. Res.2011109101105111410.1161/CIRCRESAHA.111.25184321921264
    [Google Scholar]
  172. YangJ. YamatoM. NishidaK. OhkiT. KanzakiM. SekineH. ShimizuT. OkanoT. Cell delivery in regenerative medicine: The cell sheet engineering approach.J. Control. Release2006116219320310.1016/j.jconrel.2006.06.02216890320
    [Google Scholar]
  173. NaritaT. ShintaniY. IkebeC. KanekoM. CampbellN.G. CoppenS.R. UppalR. SawaY. YashiroK. SuzukiK. The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure.Mol. Ther.201321486086710.1038/mt.2013.923358187
    [Google Scholar]
  174. Sanchez-RexachE. MeaurioE. SarasuaJ.R. Recent developments in drug eluting devices with tailored interfacial properties.Adv. Colloid Interface Sci.201724918119110.1016/j.cis.2017.05.00528532663
    [Google Scholar]
  175. AhmadDr. Regenerative medicine vs. conventional pain treatment.Advanced Sports Spine2022
    [Google Scholar]
  176. ZitaM. Transforming healthcare through regenerative medicine.BMC Med.20161411510.1186/s12916‑016‑0669‑427510095
    [Google Scholar]
  177. BerthiaumeF. MaguireT.J. YarmushM.L. Tissue engineering and regenerative medicine: History, progress, and challenges.Annu. Rev. Chem. Biomol. Eng.20112140343010.1146/annurev‑chembioeng‑061010‑11425722432625
    [Google Scholar]
  178. GroundsM.D. Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances.Clin. Exp. Pharmacol. Physiol.201845439040010.1111/1440‑1681.1289929193254
    [Google Scholar]
  179. VerjansR. van BilsenM. SchroenB. Reviewing the limitations of adult mammalian cardiac regeneration: Noncoding RNAs as regulators of cardiomyogenesis.Biomolecules202010226210.3390/biom1002026232050588
    [Google Scholar]
  180. WuP. DengG. SaiX. GuoH. HuangH. ZhuP. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes.Biosci. Rep.2021416BSR2020083310.1042/BSR2020083333057659
    [Google Scholar]
  181. VolarevicV. MarkovicB.S. GazdicM. VolarevicA. JovicicN. ArsenijevicN. ArmstrongL. DjonovV. LakoM. StojkovicM. Ethical and safety issues of stem cell-based therapy.Int. J. Med. Sci.2018151364510.7150/ijms.2166629333086
    [Google Scholar]
  182. DresselhausM. Fifty years in studying carbon-based materials.Phys. Scr.20122012146: 014002
    [Google Scholar]
  183. SeabraA.B. PaulaA.J. de LimaR. AlvesO.L. DuránN. Nanotoxicity of graphene and graphene oxide.Chem. Res. Toxicol.201427215916810.1021/tx400385x24422439
    [Google Scholar]
  184. HarikV.M. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.Toxicol. Lett.2017273698510.1016/j.toxlet.2017.03.01628341208
    [Google Scholar]
  185. WangY.J. LarssonM. HuangW-T. ChiouS-H. NichollsS.J. ChaoJ-I. LiuD-M. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs.Prog. Polym. Sci.20165715317810.1016/j.progpolymsci.2016.01.002
    [Google Scholar]
  186. LabuscaL. HereaD.D. MashayekhiK. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives.World J. Stem Cells2018105435610.4252/wjsc.v10.i5.4329849930
    [Google Scholar]
  187. IkutaY. KameiN. IshikawaM. AdachiN. OchiM. In vivo kinetics of mesenchymal stem cells transplanted into the knee joint in a rat model using a novel magnetic method of localization.Clin. Transl. Sci.20158546747410.1111/cts.1228425963065
    [Google Scholar]
  188. GolchinA. ChatziparasidouA. RanjbarvanP. NiknamZ. ArdeshirylajimiA. Embryonic stem cells in clinical trials: Current overview of developments and challenges.Adv. Exp. Med. Biol.20201312193710.1007/5584_2020_59233159303
    [Google Scholar]
  189. GuptaR. LosordoD.W. Challenges in the translation of cardiovascular cell therapy.J. Nucl. Med.201051Suppl 1122S127S10.2967/jnumed.109.06830420395342
    [Google Scholar]
  190. VanneauxV. Induced pluripotent stem cells for clinical use.Update on mesenchymal and induced pluripotent stem cells.IntechOpen2019
    [Google Scholar]
  191. LukomskaB. Challenges and controversies in human mesenchymal stem cell therapy.Stem Cells Inter2019201910.1155/2019/9628536
    [Google Scholar]
  192. SquillaroT. PelusoG. GalderisiU. Clinical trials with mesenchymal stem cells: An update.Cell Transplant.201625582984810.3727/096368915X68962226423725
    [Google Scholar]
  193. T HarrisD. Cord blood stem cells: Current uses and future challenges.AIMS Cell Tissue Eng20171215816410.3934/celltissue.2017.2.158
    [Google Scholar]
  194. HarrisD.T. BadowskiM. AhmadN. GaballaM.A. The potential of cord blood stem cells for use in regenerative medicine.Expert Opin. Biol. Ther.2007791311132210.1517/14712598.7.9.131117727322
    [Google Scholar]
  195. GarbernJ.C. LeeR.T. Cardiac stem cell therapy and the promise of heart regeneration.Cell Stem Cell201312668969810.1016/j.stem.2013.05.00823746978
    [Google Scholar]
  196. SunR. LiX. LiuM. ZengY. ChenS. ZhangP. Advances in stem cell therapy for cardiovascular disease (Review).Int. J. Mol. Med.2016381232910.3892/ijmm.2016.260727220939
    [Google Scholar]
  197. MaT. SunJ. ZhaoZ. LeiW. ChenY. WangX. YangJ. ShenZ. A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases.Stem Cell Res. Ther.20178112410.1186/s13287‑017‑0585‑328583198
    [Google Scholar]
  198. MathurA. Fernández-AvilésF. DimmelerS. HauskellerC. JanssensS. MenascheP. WojakowskiW. MartinJ.F. ZeiherA. The consensus of the Task Force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for the treatment of acute myocardial infarction and heart failure: Update 2016.Eur. Heart J.201738392930293510.1093/eurheartj/ehw64028204458
    [Google Scholar]
  199. TurksenK. Adult stem cells and cardiac regeneration.Stem Cell Rev.20139553754010.1007/s12015‑013‑9448‑123775698
    [Google Scholar]
  200. KesslerP.D. ByrneB.J. Myoblast cell grafting into heart muscle: Cellular biology and potential applications.Annu. Rev. Physiol.199961121924210.1146/annurev.physiol.61.1.21910099688
    [Google Scholar]
  201. MackD. Using biomaterials for fetal stem cell isolation, expansion and directed-differentiation. Biomaterials and Regenerative Medicine.Cambridge University Press20156479
    [Google Scholar]
  202. Petsche ConnellJ. Camci-UnalG. KhademhosseiniA. JacotJ.G. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications.Tissue Eng. Part B Rev.201319436837910.1089/ten.teb.2012.056123350771
    [Google Scholar]
  203. HuangP. LiY. NasserM.I. GuoH. HuangH. ZhaoM. ZhuP. Urine-derived induced pluripotent stem cells in cardiovascular disease.Cardiol. Res. Pract.202020201810.1155/2020/356351932377426
    [Google Scholar]
  204. ZhuF.L. ZhangN. MaX.J. YangJ. SunW.P. ShenY.Q. WenY.M. YuanS.S. ZhaoD. ZhangH.B. FengY.M. Circulating hematopoietic stem/progenitor cells are associated with coronary stenoses in patients with coronary heart disease.Sci. Rep.201991168010.1038/s41598‑018‑38298‑530737465
    [Google Scholar]
  205. YamoahM.A. ThaiP.N. ZhangX.D. Transgene delivery to human induced pluripotent stem cells using nanoparticles.Pharmaceuticals202114433410.3390/ph1404033433917388
    [Google Scholar]
  206. YokoyamaR. IiM. TabataY. HoshigaM. IshizakaN. AsahiM. AsahiM. Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction.Stem Cells Transl. Med.20198101055106710.1002/sctm.18‑024431157513
    [Google Scholar]
  207. SarathkumarE. VictorM. MenonJ.A. JibinK. PadminiS. JayasreeR.S. Nanotechnology in cardiac stem cell therapy: Cell modulation, imaging and gene delivery.RSC Advances20211155345723458810.1039/D1RA06404E35494731
    [Google Scholar]
  208. KimD.H. Kshitiz SmithR.R. KimP. AhnE.H. KimH.N. MarbánE. SuhK.Y. LevchenkoA. Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration.Integr. Biol.2012491019103310.1039/c2ib20067h22890784
    [Google Scholar]
  209. SantosoM.R. YangP.C. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction.Stem cells international20162016419879010.1155/2016/4198790
    [Google Scholar]
  210. ZhaoC. TanA. PastorinG. HoH.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.Biotechnol. Adv.201331565466810.1016/j.biotechadv.2012.08.00122902273
    [Google Scholar]
  211. LiuW.H. ChangY.L. LoW.L. LiH.Y. HsiaoC.W. PengC.H. ChiouS.H. MaH.I. ChenS.J. Human induced pluripotent stem cell and nanotechnology-based therapeutics.Cell Transplant.201524112185219510.3727/096368914X68511325299513
    [Google Scholar]
  212. LuoW. GongY. QiuF. YuanY. JiaW. LiuZ. GaoL. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair.Am. J. Physiol. Heart Circ. Physiol.20213205H1959H197410.1152/ajpheart.00855.202033769916
    [Google Scholar]
  213. SintovA.C. Velasco-AguirreC. Gallardo-ToledoE. ArayaE. KoganM.J. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier.Int. Rev. Neurobiol.201613019922710.1016/bs.irn.2016.06.00727678178
    [Google Scholar]
  214. TokunagaM. Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction.J Mol2010496972983
    [Google Scholar]
  215. SimpsonD. LiuH. FanT.H.M. NeremR. DudleyS.C.Jr A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling.Stem Cells20072592350235710.1634/stemcells.2007‑013217525236
    [Google Scholar]
  216. JinJ. Transplantation of mesenchymal stem cells within a poly (lactide-co-ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model.Circulation200911214715320031708
    [Google Scholar]
  217. LinY.D. YehM.L. YangY.J. TsaiD.C. ChuT.Y. ShihY.Y. ChangM.Y. LiuY.W. TangA.C.L. ChenT.Y. LuoC.Y. ChangK.C. ChenJ.H. WuH.L. HungT.K. HsiehP.C.H. Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs.Circulation201012211_suppl_1S132S14110.1161/CIRCULATIONAHA.110.93951220837904
    [Google Scholar]
  218. AugustineR. DanP. SosnikA. KalarikkalN. TranN. VincentB. ThomasS. MenuP. RouxelD. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation.Nano Res.201710103358337610.1007/s12274‑017‑1549‑8
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X263530230921074827
Loading
/content/journals/cscr/10.2174/011574888X263530230921074827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test