Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Pulmonary fibrosis (PF) is a fatal disease distinguished by structural destruction and dysfunction, accompanied by continuous accumulation of fibroblasts, which eventually leads to lung failure. Preclinical studies have shown that the administration of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be a safe and effective treatment for PF. The purpose of our meta-analysis is to evaluate the efficacy of MSC-EVs therapy and identify therapeutic aspects related to PF.

Methods

Our study (up to April 6, 2022) identified English and Chinese, preclinical, controlled, and studies to examine the application of MSC-EVs in the treatment of PF. The risk of bias (ROB) is assessed using the SYRCLE bias risk tool. The primary outcomes include collagen content, α-smooth muscle actin (α-SMA), hydroxyproline (HYP) content, and transforming growth factor-β1 (TGF-β1).

Results

Thirteen studies were included in this meta-analysis. Ten studies evaluated the collagen content, five studies evaluated the α-SMA, five studies evaluated the HYP content, and six studies evaluated the TGF-β1. Compared to the control group, MSC-EVs therapy was associated with a significant reduction of collagen accumulation, α-SMA, HYP content, and TGF-β1.

Conclusion

The administration of MSC-EVs is beneficial for the treatment of rodent PF models. However, the safety and effectiveness of the application in human PF diseases have yet to be confirmed. The application of MSC-EVs in the treatment of PF needs to be further standardized in terms of source, route of administration, and culture method.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/1574888X18666230817111559
2024-02-01
2025-01-22
Loading full text...

Full text loading...

References

  1. YuQ.Y. TangX.X. Irreversibility of Pulmonary Fibrosis.Aging Dis.2022131738610.14336/AD.2021.073035111363
    [Google Scholar]
  2. LvX. LiK. HuZ. Autophagy and Pulmonary Fibrosis.Adv. Exp. Med. Biol.2020120756957910.1007/978‑981‑15‑4272‑5_4032671775
    [Google Scholar]
  3. BirjandiS.Z. PalchevskiyV. XueY.Y. CD4+CD25hiFoxp3+ Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis.Am. J. Pathol.201618682008202010.1016/j.ajpath.2016.03.02027317904
    [Google Scholar]
  4. NiK. LiuM. ZhengJ. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice.Am. J. Respir. Cell Mol. Biol.201858668469510.1165/rcmb.2017‑0326OC29220578
    [Google Scholar]
  5. LiD.Y. LiR.F. SunD.X. PuD.D. ZhangY.H. Mesenchymal stem cell therapy in pulmonary fibrosis: A meta-analysis of preclinical studies.Stem Cell Res. Ther.202112146110.1186/s13287‑021‑02496‑234407861
    [Google Scholar]
  6. TzouvelekisA. BonellaF. SpagnoloP. Update on therapeutic management of idiopathic pulmonary fibrosis.Ther. Clin. Risk Manag.20151135937025767391
    [Google Scholar]
  7. LiuY. ChenS. YuL. Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation.Int. Immunopharmacol.202210810872810.1016/j.intimp.2022.10872835397395
    [Google Scholar]
  8. PrasseA. HolleJ.U. Müller-QuernheimJ. Lungenfibrose.Internist (Berl.)201051161310.1007/s00108‑009‑2406‑y19956919
    [Google Scholar]
  9. SalehM. Fotook KiaeiS.Z. KavianpourM. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis.Stem Cell Res. Ther.20221317110.1186/s13287‑022‑02746‑x35168663
    [Google Scholar]
  10. LedererD.J. KawutS.M. SonettJ.R. Successful bilateral lung transplantation for pulmonary fibrosis associated with the Hermansky-Pudlak syndrome.J. Heart Lung Transplant.200524101697169910.1016/j.healun.2004.11.01516210149
    [Google Scholar]
  11. PojdaZ. MachajE. KurzykA. Mesenchymal stem cells.Postepy Biochem.201359218719724044283
    [Google Scholar]
  12. MaY. LiuX. LongY. ChenY. Emerging Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Chronic Respiratory Diseases: An Overview of Recent Progress.Front. Bioeng. Biotechnol.20221084504210.3389/fbioe.2022.84504235284423
    [Google Scholar]
  13. WeissA.R.R. DahlkeM.H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs.Front. Immunol.201910119110.3389/fimmu.2019.0119131214172
    [Google Scholar]
  14. MonselA. ZhuY. GudapatiV. LimH. LeeJ.W. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases.Expert Opin. Biol. Ther.201616785987110.1517/14712598.2016.117080427011289
    [Google Scholar]
  15. HuangK. KangX. WangX. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats.Mol. Med. Rep.20151131685169210.3892/mmr.2014.298125411925
    [Google Scholar]
  16. GadE.S. SalamaA.A.A. El-ShafieM.F. ArafaH.M.M. AbdelsalamR.M. KhattabM. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow–Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats.Inflammation202043112313410.1007/s10753‑019‑01101‑231646446
    [Google Scholar]
  17. ChenS. CuiG. PengC. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats.Stem Cell Res. Ther.20189111010.1186/s13287‑018‑0846‑929673394
    [Google Scholar]
  18. KusumaG.D. MenicaninD. GronthosS. Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua.PLoS One20151010e014124610.1371/journal.pone.014124626484666
    [Google Scholar]
  19. LeeH.Y. HongI.S. Double‐edged sword of mesenchymal stem cells: Cancer‐promoting versus therapeutic potential.Cancer Sci.2017108101939194610.1111/cas.1333428756624
    [Google Scholar]
  20. WangS. GuoL. GeJ. Excess Integrins Cause Lung Entrapment of Mesenchymal Stem Cells.Stem Cells201533113315332610.1002/stem.208726148841
    [Google Scholar]
  21. ZhaoX. ZhaoY. SunX. XingY. WangX. YangQ. Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis.Front. Bioeng. Biotechnol.2020857505710.3389/fbioe.2020.57505733251195
    [Google Scholar]
  22. QiuG. ZhengG. GeM. Functional proteins of mesenchymal stem cell-derived extracellular vesicles.Stem Cell Res. Ther.201910135910.1186/s13287‑019‑1484‑631779700
    [Google Scholar]
  23. MansouriN. WillisG.R. Fernandez-GonzalezA. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes.JCI Insight2019421e12806010.1172/jci.insight.12806031581150
    [Google Scholar]
  24. XieL. ZengY. Therapeutic Potential of Exosomes in Pulmonary Fibrosis.Front. Pharmacol.20201159097210.3389/fphar.2020.59097233343360
    [Google Scholar]
  25. ShenZ. HuangW. LiuJ. TianJ. WangS. RuiK. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases.Front. Immunol.20211274919210.3389/fimmu.2021.74919234646275
    [Google Scholar]
  26. LiuH. DengS. HanL. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy.Colloids Surf. B Biointerfaces2022209Pt 111216310.1016/j.colsurfb.2021.11216334736220
    [Google Scholar]
  27. FujitaY. KadotaT. ArayaJ. OchiyaT. KuwanoK. Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases.J. Clin. Med.201871035510.3390/jcm710035530322213
    [Google Scholar]
  28. BandeiraE. OliveiraH. SilvaJ.D. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis.Respir. Res.201819110410.1186/s12931‑018‑0802‑329843724
    [Google Scholar]
  29. WanX. ChenS. FangY. ZuoW. CuiJ. XieS. Mesenchymal stem cell‐derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA‐29b‐3p in idiopathic pulmonary fibrosis.J. Cell. Physiol.2020235118613862510.1002/jcp.2970632557673
    [Google Scholar]
  30. HigginsJ.P.T. ThompsonS.G. Quantifying heterogeneity in a meta-analysis.Stat. Med.200221111539155810.1002/sim.118612111919
    [Google Scholar]
  31. XiaoK. HeW. GuanW. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury.Cell Death Dis.2020111086310.1038/s41419‑020‑03034‑333060560
    [Google Scholar]
  32. ShiL. RenJ. LiJ. Extracellular vesicles derived from umbilical cord mesenchymal stromal cells alleviate pulmonary fibrosis by means of transforming growth factor-β signaling inhibition.Stem Cell Res. Ther.202112123010.1186/s13287‑021‑02296‑833845892
    [Google Scholar]
  33. XuC. HouL. ZhaoJ. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1.Ecotoxicol. Environ. Saf.202223311330210.1016/j.ecoenv.2022.11330235189518
    [Google Scholar]
  34. ZhangE. GengX. ShanS. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis.Toxicol. Mech. Methods202131965566610.1080/15376516.2021.195025034225584
    [Google Scholar]
  35. ZhouJ. LinY. KangX. LiuZ. ZhangW. XuF. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1.Stem Cell Res. Ther.20211219610.1186/s13287‑020‑02083‑x33536061
    [Google Scholar]
  36. XuC. ZhaoJ. LiQ. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model.Stem Cell Res. Ther.202011150310.1186/s13287‑020‑02023‑933239075
    [Google Scholar]
  37. YangJ. HuH. ZhangS. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transitionNan Fang Yi Ke Da Xue Xue Bao202040798899432895166
    [Google Scholar]
  38. GaoY. SunJ. DongC. ZhaoM. HuY. JinF. Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Alleviate PM2.5-Induced Lung Injury and Pulmonary Fibrosis.Med. Sci. Monit.202026e92278210.12659/MSM.92278232304204
    [Google Scholar]
  39. LeeM-R. LeeG-H. LeeH-Y. BAX inhibitor-1-associated V-ATPase glycosylation enhances collagen degradation in pulmonary fibrosis.Cell Death Dis.201453e111310.1038/cddis.2014.8624625972
    [Google Scholar]
  40. YangK. PalmJ. KönigJ. Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury.Int. J. Radiat. Biol.2007831066567610.1080/0955300070155897717729161
    [Google Scholar]
  41. Escalona-NandezI. Guerrero-EscaleraD. Estanes-HernándezA. Ortíz-OrtegaV. TovarA.R. Pérez-MonterC. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions.Biochem. Biophys. Res. Commun.2015458475175610.1016/j.bbrc.2015.01.14525686501
    [Google Scholar]
  42. LiP. WuG. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth.Amino Acids2018501293810.1007/s00726‑017‑2490‑628929384
    [Google Scholar]
  43. KhalilN. XuY.D. O’ConnorR. DuronioV. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK.J. Biol. Chem.200528052430004300910.1074/jbc.M51044120016246848
    [Google Scholar]
  44. RuizV. OrdóñezR.M. BerumenJ. Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis.Am. J. Physiol. Lung Cell. Mol. Physiol.20032855L1026L103610.1152/ajplung.00183.200312882763
    [Google Scholar]
  45. DingH. ChenJ. QinJ. ChenR. YiZ. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells.Mol. Med.20212712210.1186/s10020‑021‑00283‑633663392
    [Google Scholar]
  46. KirkhamA.M. BaileyA.J.M. TieuA. MSC-Derived Extracellular Vesicles in Preclinical Animal Models of Bone Injury: A Systematic Review and Meta-Analysis.Stem Cell Rev. Rep.20221831054106610.1007/s12015‑021‑10208‑934313927
    [Google Scholar]
  47. NjockM.S. GuiotJ. HenketM.A. Sputum exosomes: Promising biomarkers for idiopathic pulmonary fibrosis.Thorax201974330931210.1136/thoraxjnl‑2018‑21189730244194
    [Google Scholar]
  48. TieuA. LaluM.M. SlobodianM. An analysis of mesenchymal stem cell-derived extracellular vesicles for preclinical use.ACS Nano20201489728974310.1021/acsnano.0c0136332697573
    [Google Scholar]
  49. WangJ. HuangR. XuQ. Mesenchymal stem cell–derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p.Crit. Care Med.20207e599e61010.1097/CCM.000000000000431532317602
    [Google Scholar]
  50. LouG. YangY. LiuF. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis.J. Cell. Mol. Med.201721112963297310.1111/jcmm.1320828544786
    [Google Scholar]
  51. HooijmansC.R. RoversM.M. de VriesR.B.M. LeenaarsM. Ritskes-HoitingaM. LangendamM.W. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑4324667063
    [Google Scholar]
/content/journals/cscr/10.2174/1574888X18666230817111559
Loading
/content/journals/cscr/10.2174/1574888X18666230817111559
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test