Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Tuberculosis is a chronic infective respiratory disease that has been known to mankind for centuries and is still responsible for higher rates of morbidity and mortality globally. Repurposing drugs as host-directed therapies as an add-on drug to tuberculosis is a promising scope to study as it may have a significant impact in reducing the treatment duration and complications of tuberculosis. Host-directed therapy is a strategy to target the host and its immune mediators responsible for pro and anti-inflammatory pathways, thus modifying them with drugs to achieve increased bacterial clearance and reduced long-term inflammatory-mediated complications of tuberculosis. Various drugs approved for other indications have been studied in preclinical animal and studies, as well as clinical trials in tuberculosis. These drugs mainly aim to improve mycobacterial clearance and minimize post-TB consequences by suppressing inflammatory mediators. Drugs such as metformin, imatinib, vitamin D, and (Vascular Endothelial Growth Factors) VEGF drugs are studied for their ability to modulate the anti-inflammatory effects, and drugs, such as doxycycline, corticosteroids, and N-acetylcysteine are being studied for their role as pro-inflammatory modulators. This repurposing drug helps in using these drugs as an adjuvant in tuberculosis, for which the safety is already established through various clinical trials post-marketing surveillance. However, the interaction of these drugs with the standard anti-tubercular drugs and with the disease needs to be studied. In the near future, this host-directed therapy might unlock various management approaches not only in tuberculosis but also in other infective diseases as the action of drugs is on the host.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X310509240816053650
2024-08-29
2025-07-09
Loading full text...

Full text loading...

References

  1. JeongE.K. LeeH.J. JungY.J. Host-directed therapies for tuberculosis.Pathogens20221111129110.3390/pathogens1111129136365041
    [Google Scholar]
  2. MatteucciK.C. CorreaA.A.S. CostaD.L. Recent advances in host-directed therapies for tuberculosis and malaria.Front. Cell. Infect. Microbiol.20221290527810.3389/fcimb.2022.90527835669122
    [Google Scholar]
  3. ChushkinM.I. OtsO.N. Impaired pulmonary function after treatment for tuberculosis: The end of the disease?J. Bras. Pneumol.2017431384310.1590/s1806‑3756201600000005328380187
    [Google Scholar]
  4. YangJ. ZhangL. QiaoW. LuoY. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (2020)202345e353
    [Google Scholar]
  5. HeemskerkD. CawsM. MaraisB. FarrarJ. Pathogenesis.In: Schaaf HS, Zumla A, editors. Tuberculosis in Adults and Children. London: Springer; 2015. p. 43-59.10.1007/978‑3‑319‑19132‑4_3.
    [Google Scholar]
  6. TaylorJ. BastosM.L. Lachapelle-ChisholmS. MayoN.E. JohnstonJ. MenziesD. Residual respiratory disability after successful treatment of pulmonary tuberculosis: A systematic review and meta-analysis.EClinicalMedicine20235910197910.1016/j.eclinm.2023.10197937205923
    [Google Scholar]
  7. RavimohanS. KornfeldH. WeissmanD. BissonG.P. Tuberculosis and lung damage: From epidemiology to pathophysiology.Eur. Respir. Rev.20182714717007710.1183/16000617.0077‑201729491034
    [Google Scholar]
  8. SabirN. HussainT. MangiM.H. ZhaoD. ZhouX. Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis.Cell Prolif.2019524e1264910.1111/cpr.1264931199047
    [Google Scholar]
  9. KrugS. ParveenS. BishaiW.R. Host-directed therapies: Modulating inflammation to treat tuberculosis.Front. Immunol.20211266091610.3389/fimmu.2021.66091633953722
    [Google Scholar]
  10. JeeB. Understanding the early host immune response against Mycobacterium tuberculosis. Cent. Eur. J. Immunol.20204519910310.5114/ceji.2020.9471132425687
    [Google Scholar]
  11. FatimaS. BhaskarA. DwivediV.P. Repurposing immunomodulatory drugs to combat tuberculosis.Front. Immunol.20211264548510.3389/fimmu.2021.64548533927718
    [Google Scholar]
  12. OglesbyW. KaraA.M. GranadosH. CervantesJ.L. Metformin in tuberculosis: Beyond control of hyperglycemia.Infection201947569770210.1007/s15010‑019‑01322‑531119504
    [Google Scholar]
  13. MaY. PangY. ShuW. LiuY.H. GeQ.P. DuJ. LiL. GaoW.W. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: Experiences from 3-year follow-up.Eur. J. Clin. Microbiol. Infect. Dis.20183771259126310.1007/s10096‑018‑3242‑629679254
    [Google Scholar]
  14. PhuphuakratA. Efficacy of metformin for sputum conversion in patients with active pulmonary tuberculosis.NCT Patent 052159902022
    [Google Scholar]
  15. KornfeldH.A. Safety and Tolerability of Metformin in People With Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) (METHOD).2023Available From: https://clinicaltrials.gov/study/NCT04930744
  16. PadmapriydarsiniC. MamulwarM. MohanA. ShanmugamP. GomathyN.S. ManeA. SinghU.B. PavankumarN. KadamA. KumarH. SureshC. ReddyD. DeviP. RameshP.M. SekarL. JawaharS. ShandilR.K. SinghM. MenonJ. GuleriaR. Randomized trial of metformin with anti-tuberculosis drugs for early sputum conversion in adults with pulmonary tuberculosis.Clin. Infect. Dis.202275342543410.1093/cid/ciab96434849651
    [Google Scholar]
  17. PedersenT.R. Pleiotropic effects of statins: Evidence against benefits beyond LDL-cholesterol lowering.Am. J. Cardiovasc. Drugs201010Suppl. 1101710.2165/1158822‑S0‑000000000‑0000021391729
    [Google Scholar]
  18. Meregildo-RodriguezE.D. Chunga-ChévezE.V. GianmarcoR.L. Vásquez-TiradoG.A. Further insights into to the role of statins against active tuberculosis: Systematic review and meta-analysis.Infez. Med.202230219420335693063
    [Google Scholar]
  19. WallisR.S. O’GarraA. SherA. WackA. Host-directed immunotherapy of viral and bacterial infections: Past, present and future.Nat. Rev. Immunol.202323212113310.1038/s41577‑022‑00734‑z35672482
    [Google Scholar]
  20. OlufemiA. Treating Tuberculosis With the Lipid Lowering Drug Atorvastatin in Nigeria(ATORvastatin in Pulmonary TUBerculosis) (ATORTUB).2021Available From: https://clinicaltrials.gov/study/NCT04721795
  21. TahirF. Anti-tuberculous effects of statin therapy: A review of literature.Cureus.202012e7404
    [Google Scholar]
  22. KilinçG. SarisA. OttenhoffT.H.M. HaksM.C. Host-directed therapy to combat mycobacterial infections.Immunol. Rev.20213011628310.1111/imr.1295133565103
    [Google Scholar]
  23. National Institute of Allergy and Infectious Diseases (NIAID)A Clinical Trial of the Safety, Pharmacokinetics and Hematologic Effects of Imatinib on Myelopoiesis in Adults When Given With and Without Isoniazid and Rifabutin (IMPACT-TB).2022Available From: https://clinicaltrials.gov/study/NCT03891901
  24. AhmedS. RaqibR. GuðmundssonG.H. BergmanP. AgerberthB. RekhaR.S. Host-directed therapy as a novel treatment strategy to overcome tuberculosis: targeting immune modulation.Antibiotics (Basel)2020912110.3390/antibiotics901002131936156
    [Google Scholar]
  25. PapagniR. PellegrinoC. Di GennaroF. PattiG. RicciardiA. NovaraR. CotugnoS. MussoM. GuidoG. RongaL. StolfaS. BavaroD.F. RomanelliF. TotaroV. LattanzioR. De IacoG. PalmieriF. SaracinoA. GualanoG. Impact of vitamin D in prophylaxis and treatment in tuberculosis patients.Int. J. Mol. Sci.2022237386010.3390/ijms2307386035409219
    [Google Scholar]
  26. TamaraL. KartasasmitaC.B. AlamA. GurnidaD.A. Effects of vitamin D supplementation on resolution of fever and cough in children with pulmonary tuberculosis: A randomized double-blind controlled trial in Indonesia.J Glob Health.20221204015
    [Google Scholar]
  27. HayfordF.E.A. DolmanR.C. BlaauwR. NienaberA. SmutsC.M. MalanL. RicciC. The effects of anti-inflammatory agents as host-directed adjunct treatment of tuberculosis in humans: A systematic review and meta-analysis.Respir. Res.202021122310.1186/s12931‑020‑01488‑932847532
    [Google Scholar]
  28. SulimanA.M. BekS.A. ElkhatimM.S. HusainA.A. MismarA.Y. EldeanM.Z.S. LengyelZ. ElazzazyS. RasulK.I. OmarN.E. Tuberculosis following programmed cell death receptor-1 (PD-1) inhibitor in a patient with non-small cell lung cancer. Case report and literature review.Cancer Immunol. Immunother.202170493594410.1007/s00262‑020‑02726‑133070259
    [Google Scholar]
  29. Navarro-TriviñoF.J. Pérez-LópezI. Ruíz-VillaverdeR. Doxycycline, an antibiotic or an anti-inflammatory agent? The Most Common uses in dermatology.Actas Dermo-Sifiliográficas2020111756156610.1016/j.adengl.2019.12.01432401726
    [Google Scholar]
  30. ElkingtonP.T. D’ArmientoJ.M. FriedlandJ.S. Tuberculosis immunopathology: The neglected role of extracellular matrix destruction.Sci. Transl. Med.201137171ps610.1126/scitranslmed.300184721346167
    [Google Scholar]
  31. DalviP. SinghA. TrivediH. GhanchiF. ParmarD. MistryS. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms.Ann. Thorac. Med.20116422122610.4103/1817‑1737.8477721977068
    [Google Scholar]
  32. MiowQ.H. VallejoA.F. WangY. HongJ.M. BaiC. TeoF.S.W. Doxycycline host-directed therapy in human pulmonary tuberculosis.J Clin Invest.202113115e141895
    [Google Scholar]
  33. WynnT.A. Integrating mechanisms of pulmonary fibrosis.J. Exp. Med.201120871339135010.1084/jem.2011055121727191
    [Google Scholar]
  34. GodfreyM.S. FriedmanL.N. Tuberculosis and biologic therapies.Clin. Chest Med.201940472173910.1016/j.ccm.2019.07.00331731980
    [Google Scholar]
  35. WallisR.S. KyambaddeP. JohnsonJ.L. HorterL. KittleR. PohleM. DucarC. MillardM. Mayanja-KizzaH. WhalenC. OkweraA. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis.AIDS200418225726410.1097/00002030‑200401230‑0001515075543
    [Google Scholar]
  36. LinX. WeiM. SongF. XueD. WangY. N-acetylcysteine (NAC) attenuating apoptosis and autophagy in RAW264.7 cells in response to incubation with mycolic acid from bovine Mycobacterium tuberculosis complex.Pol. J. Microbiol.202069222322910.33073/pjm‑2020‑02632548987
    [Google Scholar]
  37. VilchèzeC JacobsWR The promises and limitations of N-acetylcysteine as a potentiator of first-line and second-line tuberculosis drugs.Antimicrob Agents Chemother.2021655e0170320
    [Google Scholar]
  38. The Aurum Institute NPCAdjunctive NAC in Adult Patients With Pulmonary Tuberculosis (NAC-TB).2021Available From: https://clinicaltrials.gov/study/NCT03702738
  39. The Aurum Institute NPCA Pan-TB Regimen Targeting Host and Microbe (panTB-HM).2023Available From: https://clinicaltrials.gov/study/NCT05686356
  40. PellegriniJ.M. MartinC. MorelliM.P. SchanderJ.A. TateosianN.L. AmianoN.O. RolandelliA. PalmeroD.J. LeviA. CiallellaL. ColomboM.I. GarcíaV.E. PGE2 displays immunosuppressive effects during human active tuberculosis.Sci. Rep.20211111355910.1038/s41598‑021‑92667‑134193890
    [Google Scholar]
  41. RangelMJ. Estrada GarcíaGI. De La Luz GarcíaHM. AguilarLD. MarquezR. HernándezPR. The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis.Immunology2002106225726610.1046/j.1365‑2567.2002.01403.x12047755
    [Google Scholar]
  42. Mayer-BarberK.D. AndradeB.B. OlandS.D. AmaralE.P. BarberD.L. GonzalesJ. DerrickS.C. ShiR. KumarN.P. WeiW. YuanX. ZhangG. CaiY. BabuS. CatalfamoM. SalazarA.M. ViaL.E. BarryC.E.III SherA. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk.Nature201451175079910310.1038/nature1348924990750
    [Google Scholar]
  43. Fundació Institut Germans Trias i PujolAdjunctive Acetylsalicylic Acid and Ibuprofen for Tuberculosis (SMA-TB).2023Available From: https://clinicaltrials.gov/study/NCT04575519
  44. Fundació Institut Germans Trias i PujolPotential Efficacy and Safety of Using Adjunctive Ibuprofen for XDR-TB Tuberculosis (NSAIDS-XDRTB).2019Available From: https://clinicaltrials.gov/study/NCT02781909
  45. MeintjesG. StekC. BlumenthalL. ThienemannF. SchutzC. BuyzeJ. RavinettoR. van LoenH. NairA. JacksonA. ColebundersR. MaartensG. WilkinsonR.J. LynenL. Prednisone for the prevention of paradoxical tuberculosis-associated IRIS.N. Engl. J. Med.2018379201915192510.1056/NEJMoa180076230428290
    [Google Scholar]
  46. SchutzC. DavisA.G. SossenB. LaiR.P.J. NtsekheM. HarleyY.X.R. WilkinsonR.J. Corticosteroids as an adjunct to tuberculosis therapy.Expert Rev. Respir. Med.2018121088189110.1080/17476348.2018.151562830138039
    [Google Scholar]
  47. HeidaryM. EbrahimiSA. KargariA. Kiani NejadA. YashmiI. MotaharM. TakiE. KhoshnoodS. Mechanism of action, resistance, synergism, and clinical implications of azithromycin.J. Clin. Lab. Anal.2022366e2442710.1002/jcla.2442735447019
    [Google Scholar]
  48. AlffenaarJ.W.C.A. Azithromycin as Host-directed Therapy for Pulmonary Tuberculosis.2022Available From: https://clinicaltrials.gov/study/NCT03160638
  49. RaoM. ValentiniD. ZumlaA. MaeurerM. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis.Int. J. Infect. Dis.201869788410.1016/j.ijid.2018.02.02129501835
    [Google Scholar]
  50. MaigaM. AmmermanN.C. MaigaM.C. TounkaraA. SiddiquiS. PolisM. MurphyR. BishaiW.R. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment.J. Infect. Dis.2013208351251910.1093/infdis/jit18723641020
    [Google Scholar]
  51. SubbianS. TsenovaL. HollowayJ. PeixotoB. O’BrienP. DartoisV. KhetaniV. ZeldisJ.B. KaplanG. Adjunctive phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model.EBioMedicine2016410411410.1016/j.ebiom.2016.01.01526981575
    [Google Scholar]
  52. van DoornC.L.R. SteenbergenS.A.M. WalburgK.V. OttenhoffT.H.M. Pharmacological poly (ADP-Ribose) polymerase inhibitors decrease Mycobacterium tuberculosis survival in human macrophages.Front. Immunol.20211271202110.3389/fimmu.2021.71202134899683
    [Google Scholar]
  53. CrossG.B. SariI.P. KityoC. LuQ. PokharkarY. MoorakondaR.B. ThiH.N. DoQ. DalayV.B. GutierrezE. BalanagV.M. CastilloR.J. MugerwaH. FanusiF. KwanP. ChewK.L. PatonN.I. KityoC. MugerwaH. TumukundeD. AkolJ. QuyetD. NguyenH. HoangX.S. DoanT.H. DalayV. GutierrezE. BalanagV. CastilloR.J. BarceloM. VetoR.G.M.S. BaliwaganM.B.R. BalaneG. GeronimoA. FloresR.R. PokharkarY. MoorakondaR.B. LuQ. NgX. TanS. PatonN.I. CrossG.B. SariI.P. ChewK.L. FanusiF. KwanP. KelleherA.D. ChangC. Rosuvastatin adjunctive therapy for rifampicin-susceptible pulmonary tuberculosis: A phase 2b, randomised, open-label, multicentre trial.Lancet Infect. Dis.202323784785510.1016/S1473‑3099(23)00067‑136966799
    [Google Scholar]
  54. MoosaM.S. MaartensG. GunterH. AllieS. ChughlayM.F. SetshediM. WassermanS. SteadD.F. HickmanN. StewartA. SonderupM. SpearmanC.W. CohenK. A randomized controlled trial of intravenous n-acetylcysteine in the management of anti-tuberculosis drug–induced liver injury.Clin. Infect. Dis.2021739e3377e338310.1093/cid/ciaa125532845997
    [Google Scholar]
  55. SafeI.P. LacerdaM.V.G. PrintesV.S. Praia MarinsA.F. Rebelo RabeloA.L. CostaA.A. TavaresM.A. JesusJ.S. SouzaA.B. Beraldi-MagalhãesF. NevesC.P. MonteiroW.M. SampaioV.S. AmaralE.P. GomesR.S. AndradeB.B. Cordeiro-SantosM. Safety and efficacy of N-acetylcysteine in hospitalized patients with HIV-associated tuberculosis: An open-label, randomized, phase II trial (RIPENACTB Study).PLoS One2020156e023538110.1371/journal.pone.023538132589648
    [Google Scholar]
  56. WangW. DuZ. NiM. WangZ. LiangM. ShengH. ZhangA. YangJ. Aspirin enhances the clinical efficacy of anti-tuberculosis therapy in pulmonary tuberculosis in patients with type 2 diabetes mellitus.Infect. Dis. (Lond.)2020521072172910.1080/23744235.2020.177817732552387
    [Google Scholar]
  57. TörökM.E. BangN.D. ChauT.T.H. YenN.T.B. ThwaitesG.E. Thi QuyH. DungN.H. HienT.T. ChinhN.T. Thi Thanh HoangH. WolbersM. FarrarJ.J. Dexamethasone and long-term outcome of tuberculous meningitis in Vietnamese adults and adolescents.PLoS One2011612e2782110.1371/journal.pone.002782122174748
    [Google Scholar]
  58. Mayanja-KizzaH. Jones-LopezE. OkweraA. WallisR.S. EllnerJ.J. MugerwaR.D. WhalenC.C. Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: A phase 2 clinical trial in Uganda.J. Infect. Dis.2005191685686510.1086/42799515717259
    [Google Scholar]
  59. DattaM. ViaL.E. KamounW.S. LiuC. ChenW. SeanoG. WeinerD.M. SchimelD. EnglandK. MartinJ.D. GaoX. XuL. BarryC.E.III JainR.K. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery.Proc. Natl. Acad. Sci. USA201511261827183210.1073/pnas.142456311225624495
    [Google Scholar]
  60. FlynnJ.L. GoldsteinM.M. ChanJ. TrieboldK.J. PfefferK. LowensteinC.J. SchrelberR. MakT.W. BloomB.R. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice.Immunity19952656157210.1016/1074‑7613(95)90001‑27540941
    [Google Scholar]
  61. BergerN.A. BessonV.C. BoularesA.H. BürkleA. ChiarugiA. ClarkR.S. CurtinN.J. CuzzocreaS. DawsonT.M. DawsonV.L. HaskóG. LiaudetL. MoroniF. PacherP. RadermacherP. SalzmanA.L. SnyderS.H. SorianoF.G. StrosznajderR.P. SümegiB. SwansonR.A. SzaboC. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases.Br. J. Pharmacol.2018175219222210.1111/bph.1374828213892
    [Google Scholar]
  62. O’ConnorG. KrishnanN. Fagan-MurphyA. CassidyJ. O’LearyS. RobertsonB.D. KeaneJ. O’SullivanM.P. CryanS.A. Inhalable poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating all-trans-Retinoic acid (ATRA) as a host-directed, adjunctive treatment for Mycobacterium tuberculosis infection.Eur. J. Pharm. Biopharm.201913415316510.1016/j.ejpb.2018.10.02030385419
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X310509240816053650
Loading
/content/journals/crmr/10.2174/011573398X310509240816053650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test