Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Introduction

This study developed a method using machine learning techniques to differentiate between malignant and non-malignant pleural effusions, analyzing texture parameters in computed tomography scans.

Methods

The study involved forty-one patients, with their computed tomography examinations classified into three groups: True Positive - patients with both cytopathological analysis and pleural biopsy indicating malignancy; True Negative - patients with negative results in both tests; and False Negative - patients with negative cytopathological analysis but positive pleural biopsy results. Four machine learning methods were applied across three analyses: True Positive True Negative, True Positive False Negative, and True Negative False Negative. The logistic regression model demonstrated notable effectiveness, achieving an Area Under the Curve of 0.84 ± 0.02 in the True Positive True Negative analysis and 0.81 ± 0.05 in the True Positive False Negative comparison. In the True Negative False Negative analysis, the Naive Bayes model achieved an Area Under the Curve of 0.72 ± 0.02.

Results

Statistically significant differences were observed in the liquid Lactate Dehydrogenase and protein content between the True Positive and True Negative groups (-values of 0.0390 and 0.0249, respectively), and in the liquid pH level between the True Positive and False Negative groups (-value of 0.0254). The use of textural features in combination with machine learning techniques provided a reliable classification for investigating suspected pleural effusion findings. This method represents a potential tool for assisting in clinical diagnosis and decision-making, enhancing the accuracy of pleural effusion assessments.

Conclusion

In conclusion, our approach not only improves diagnostic accuracy but also offers a faster and non-invasive alternative, significantly benefiting clinical decision-making and patient care.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X306397240903054052
2024-09-16
2025-07-07
Loading full text...

Full text loading...

References

  1. ChubbS.P. WilliamsR.A. Biochemical analysis of pleural fluid and ascites.Clin. Biochem. Rev.2018392395030473591
    [Google Scholar]
  2. YousafZ. AtaF. ChaudharyH. KrauseF. IlligensB.M.W. SiepmannT. Etiology, pathological characteristics, and clinical management of black pleural effusion.Medicine20221018e2813010.1097/MD.000000000002813035212269
    [Google Scholar]
  3. PorcelJ. LightR. Pleural fluid analysis for evaluating pleural effusions.Curr. Respir. Med. Rev.20084321722510.2174/157339808785161369
    [Google Scholar]
  4. PorcelJ. The diagnostic utility of pleural fluid tests in clinical practice.Curr. Respir. Med. Rev.20128538339010.2174/157339812803832485
    [Google Scholar]
  5. AroraR.D. BosterJ. Malignant pleural effusion.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  6. JanyB. WelteT. Pleural effusion in adults—Etiology, diagnosis, and treatment.Dtsch. Arztebl. Int.20191162137738610.3238/arztebl.2019.037731315808
    [Google Scholar]
  7. ThomasR. LeeY.C.G. Causes and management of common benign pleural effusions.Thorac. Surg. Clin.20132312542, v-vi10.1016/j.thorsurg.2012.10.00423206715
    [Google Scholar]
  8. KarkhanisV. JoshiJ. Pleural effusion: Diagnosis, treatment, and management.Open Access Emerg. Med.20124315210.2147/OAEM.S2994227147861
    [Google Scholar]
  9. GokceM. AltinsoyB. PiskinO. BahadirB. Uniportal VATS pleural biopsy in the diagnosis of exudative pleural effusion: Awake or intubated?J. Cardiothorac. Surg.20211619510.1186/s13019‑021‑01461‑733879212
    [Google Scholar]
  10. RL MedfordA. MaskellN. New developments in the management of pleural effusions.Curr. Respir. Med. Rev.20062330531110.2174/157339806778018926
    [Google Scholar]
  11. CanteyE.P. WalterJ.M. CorbridgeT. BarsukJ.H. Complications of thoracentesis.Curr. Opin. Pulm. Med.201622437838510.1097/MCP.000000000000028527093476
    [Google Scholar]
  12. JiangB. LiX. YinY. ZhangQ. ZangT. SongW. WangX. KangJ. HerthF.J.F. HouG. Ultrasound elastography: A novel tool for the differential diagnosis of pleural effusion.Eur. Respir. J.2019542180201810.1183/13993003.02018‑201831151959
    [Google Scholar]
  13. PotterA.L. BajajS.S. YangC.F.J. The 2021 USPSTF lung cancer screening guidelines: A new frontier.Lancet Respir. Med.20219768969110.1016/S2213‑2600(21)00210‑133965004
    [Google Scholar]
  14. de KoningH.J. van der AalstC.M. de JongP.A. ScholtenE.T. NackaertsK. HeuvelmansM.A. LammersJ.W.J. WeeninkC. Yousaf-KhanU. HorewegN. van ’t WesteindeS. ProkopM. MaliW.P. Mohamed HoeseinF.A.A. van OoijenP.M.A. AertsJ.G.J.V. den BakkerM.A. ThunnissenE. VerschakelenJ. VliegenthartR. WalterJ.E. ten HaafK. GroenH.J.M. OudkerkM. Reduced lung-cancer mortality with volume CT screening in a randomized trial.N. Engl. J. Med.2020382650351310.1056/NEJMoa191179331995683
    [Google Scholar]
  15. GarinN. MartiC. SchefflerM. StirnemannJ. PrendkiV. Computed tomography scan contribution to the diagnosis of community-acquired pneumonia.Curr. Opin. Pulm. Med.201925324224810.1097/MCP.000000000000056730730311
    [Google Scholar]
  16. FergusonJ.H. Resolution of empyema thoracis after patient refusal of surgical intervention: A case series and review of the literature.Curr. Respir. Med. Rev.202015430931410.2174/1573398X15666190702164539
    [Google Scholar]
  17. Pinto LeiteN. PereiraJ.M. CunhaR. PintoP. SirlinC. CT evaluation of appendicitis and its complications: Imaging techniques and key diagnostic findings.AJR Am. J. Roentgenol.2005185240641710.2214/ajr.185.2.0185040616037513
    [Google Scholar]
  18. HooperC. LeeY.C.G. MaskellN. BTS Pleural Guideline Group Investigation of a unilateral pleural effusion in adults: British thoracic society pleural disease guideline 2010.Thorax201065Suppl. 2ii4ii1710.1136/thx.2010.13697820696692
    [Google Scholar]
  19. BecherT. BußmeyerM. LautenschlägerI. SchädlerD. WeilerN. FrerichsI. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients.Br. J. Anaesth.201812061219122810.1016/j.bja.2018.02.03029793589
    [Google Scholar]
  20. Sunita Agarwala KumarA. DharaA.K. ThakurS.B. SadhuA. NandiD. Special convolutional neural network for identification and positioning of interstitial lung disease patterns in computed tomography images.Pattern Recognit. Image Anal.202131473073810.1134/S1054661821040027
    [Google Scholar]
  21. SamarinA. SavelevA. ToropovA. DzestelovaA. MalykhV. MikhailovaE. MotykoA. One-staged attention-based neoplasms recognition method for single-channel monochrome computer tomography snapshots.Pattern Recognit. Image Anal.202232364565010.1134/S1054661822030361
    [Google Scholar]
  22. ParekhV. JacobsM.A. Radiomics: A new application from established techniques.Expert Rev. Precis. Med. Drug Dev.20161220722610.1080/23808993.2016.116401328042608
    [Google Scholar]
  23. GuoY. LoganH.L. GlueckD.H. MullerK.E. Selecting a sample size for studies with repeated measures.BMC Med. Res. Methodol.201313110010.1186/1471‑2288‑13‑10023902644
    [Google Scholar]
  24. AlobaidliS. McQuaidS. SouthC. PrakashV. EvansP. NisbetA. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning.Br. J. Radiol.20148710422014036910.1259/bjr.2014036925051978
    [Google Scholar]
  25. AlmeidaM.A.M. SantosI.A.X. Classification models for skin tumor detection using texture analysis in medical images.J. Imaging2020665110.3390/jimaging606005134460597
    [Google Scholar]
  26. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  27. DemsˇarJ. Orange: Data mining toolbox in Python.J. Mach. Learn. Res.20131423492353
    [Google Scholar]
  28. CarterJ.V. PanJ. RaiS.N. GalandiukS. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves.Surgery201615961638164510.1016/j.surg.2015.12.02926962006
    [Google Scholar]
  29. RenZ. HuY. XuL. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms.Respir. Res.201920122010.1186/s12931‑019‑1197‑531619240
    [Google Scholar]
  30. LiC. HouL. SharmaB.Y. LiH. ChenC. LiY. ZhaoX. HuangH. CaiZ. ChenH. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion.Comput. Methods Programs Biomed.201815321122510.1016/j.cmpb.2017.10.02229157454
    [Google Scholar]
  31. LiY. TianS. HuangY. DongW. Driverless artificial intelligence framework for the identification of malignant pleural effusion.Transl. Oncol.202114110089610.1016/j.tranon.2020.10089633045678
    [Google Scholar]
  32. ChenZ. ChenK. LouY. ZhuJ. MaoW. SongZ. Machine learning applied to near-infrared spectra for clinical pleural effusion classification.Sci. Rep.2021111941110.1038/s41598‑021‑87736‑433941795
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X306397240903054052
Loading
/content/journals/crmr/10.2174/011573398X306397240903054052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test