Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Inborn Errors of Metabolism (IEMs) are a large heterogeneous group of monogenic disorders that affect specific metabolic pathways. Although the clinical picture is variable and shows a multisystemic impairment, most of these defects encompass neurologic symptoms and signs. The respiratory involvement may represent a late-onset feature of a complex multisystemic disease or the only manifestation of an underlying IEM. The severity of the respiratory disease can range from mild aspecific symptoms, such as tachypnea and respiratory distress in response to metabolic acidosis, to severe conditions, such as respiratory failure and restrictive disease. This review aims to offer an overview of the principal IEMs with neurologic and respiratory involvement, highlighting the significance of early recognition and multidisciplinary management for optimal patient care.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X289178240528052344
2024-06-11
2025-02-17
Loading full text...

Full text loading...

References

  1. Campistol PlanaJ. Epilepsies of metabolic origin in the neonate.Medicine20197932024
    [Google Scholar]
  2. WatersD. AdeloyeD. WoolhamD. WastnedgeE. PatelS. RudanI. Global birth prevalence and mortality from inborn errors of metabolism: A systematic analysis of the evidence.J. Glob. Health20188202110210.7189/jogh.08.02110230479748
    [Google Scholar]
  3. FerreiraC.R. van KarnebeekC.D.M. VockleyJ. BlauN. A proposed nosology of inborn errors of metabolism.Genet. Med.201921110210610.1038/s41436‑018‑0022‑829884839
    [Google Scholar]
  4. García-CazorlaÀ. SaudubrayJ.M. Cellular neurometabolism: A tentative to connect cell biology and metabolism in neurology.J. Inherit. Metab. Dis.20184161043105410.1007/s10545‑018‑0226‑830014209
    [Google Scholar]
  5. ChoudhryS. KhanM. RaoH.A. JalanA. KhanE.A. Etiology and outcome of inborn errors of metabolism.J. Pak. Med. Assoc.20136391112111624601187
    [Google Scholar]
  6. HuW.F. ChahrourM.H. WalshC.A. The diverse genetic landscape of neurodevelopmental disorders.Annu. Rev. Genomics Hum. Genet.201415119521310.1146/annurev‑genom‑090413‑02560025184530
    [Google Scholar]
  7. SpotoG. ValentiniG. SaiaM.C. ButeraA. AmoreG. SalpietroV. NicoteraA.G. Di RosaG. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction.Front. Neurol.20221382621110.3389/fneur.2022.82621135350397
    [Google Scholar]
  8. SaudubrayJ.M. Garcia-CazorlaA. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders.Dialogues Clin. Neurosci.201820430132510.31887/DCNS.2018.20.4/jmsaudubray30936770
    [Google Scholar]
  9. SpotoG. SaiaM.C. AmoreG. GittoE. LoddoG. MainieriG. NicoteraA.G. Di RosaG. Neonatal seizures: An overview of genetic causes and treatment options.Brain Sci.20211110129510.3390/brainsci1110129534679360
    [Google Scholar]
  10. BroomfieldA. KenthJ. BruceI.A. TanH.L. WilkinsonS. Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options.Paediatr. Respir. Rev.201932556510.1016/j.prrv.2019.04.00431101546
    [Google Scholar]
  11. TranC. BarbeyF. LazorR. BonaféL. Pulmonary involvement in adult patients with inborn errors of metabolism.Respiration201794121310.1159/000475762
    [Google Scholar]
  12. XuH. RenD. Lysosomal physiology.Annu. Rev. Physiol.2015771578010.1146/annurev‑physiol‑021014‑07164925668017
    [Google Scholar]
  13. ParentiG. MedinaD.L. BallabioA. The rapidly evolving view of lysosomal storage diseases.EMBO Mol. Med.2021132e1283610.15252/emmm.20201283633459519
    [Google Scholar]
  14. MarquesA.R.A. SaftigP. Lysosomal storage disorders – challenges, concepts and avenues for therapy: Beyond rare diseases.J. Cell Sci.20191322jcs22173910.1242/jcs.22173930651381
    [Google Scholar]
  15. ZhouJ. LinJ. LeungW.T. WangL. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management.Intractable Rare Dis. Res.2020911910.5582/irdr.2020.0101132201668
    [Google Scholar]
  16. Shapiroe.g. EisengartJ.B. The natural history of neurocognition in MPS disorders: A review.Mol. Genet. Metab.2021133183410.1016/j.ymgme.2021.03.00233741271
    [Google Scholar]
  17. LevyP.A. Inborn errors of metabolism: Part 1: Overview.Pediatr. Rev.200930413113810.1542/pir.30.4.13119339386
    [Google Scholar]
  18. BruniS. LaveryC. BroomfieldA. The diagnostic journey of patients with mucopolysaccharidosis I: A real-world survey of patient and physician experiences.Mol. Genet. Metab. Rep.20168677310.1016/j.ymgmr.2016.07.00627536552
    [Google Scholar]
  19. ShihS.L. LeeY.J. LinS.P. SheuC.Y. BlickmanJ.G. Airway changes in children with mucopolysaccharidoses. CT evaluation.Acta Radiol.2002431404310.1034/j.1600‑0455.2002.430108.x11972460
    [Google Scholar]
  20. ClarkeL.A. GiuglianiR. GuffonN. JonesS.A. KeenanH.A. Munoz-RojasM.V. OkuyamaT. ViskochilD. WhitleyC.B. WijburgF.A. MuenzerJ. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry.Clin. Genet.201996428128910.1111/cge.1358331194252
    [Google Scholar]
  21. WassersteinM.P. OrsiniJ.J. GoldenbergA. CagganaM. LevyP.A. BreilynM. GelbM.H. The future of newborn screening for lysosomal disorders.Neurosci. Lett.202176013608010.1016/j.neulet.2021.13608034166724
    [Google Scholar]
  22. MichaudM BelmatougN CatrosF AncellinS TouatiG LevadeT GachesF. Mucopolysaccharidoses: When to think about it?Rev Med Interne202041318018810.1016/j.revmed.2019.11.010
    [Google Scholar]
  23. ZapolnikP. PyrkoszA. Gene therapy for mucopolysaccharidosis type II—A review of the current possibilities.Int. J. Mol. Sci.20212211549010.3390/ijms2211549034070997
    [Google Scholar]
  24. Seker YilmazB. DavisonJ. JonesS.A. BaruteauJ. Novel therapies for mucopolysaccharidosis type III.J. Inherit. Metab. Dis.202144112914710.1002/jimd.1231632944950
    [Google Scholar]
  25. ArnP. BruceI.A. WraithJ.E. TraversH. FalletS. Airway-related symptoms and surgeries in patients with mucopolysaccharidosis I.Ann. Otol. Rhinol. Laryngol.2015124319820510.1177/000348941455015425214650
    [Google Scholar]
  26. SandhoffK. Metabolic and cellular bases of sphingolipidoses.Biochem. Soc. Trans.20134161562156810.1042/BST2013008324256255
    [Google Scholar]
  27. RosenbloomB.E. WeinrebN.J. Gaucher disease: A comprehensive review.Crit. Rev. Oncog.201318316317510.1615/CritRevOncog.201300606023510062
    [Google Scholar]
  28. FerreiraC.R. GahlW.A. Lysosomal storage diseases.Transl. Sci. Rare Dis.201721-217110.3233/TRD‑16000529152458
    [Google Scholar]
  29. VanierM.T. Niemann–Pick diseases.Handb. Clin. Neurol.20131131717172110.1016/B978‑0‑444‑59565‑2.00041‑123622394
    [Google Scholar]
  30. MinaiO.A. SullivanE.J. StollerJ.K. Pulmonary involvement in Niemann–Pick disease: Case report and literature review.Respir. Med.200094121241125110.1053/rmed.2000.094211192962
    [Google Scholar]
  31. RoszellB.R. TaoJ.Q. YuK.J. HuangS. BatesS.R. Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung.Am. J. Physiol. Lung Cell. Mol. Physiol.20123029L919L93210.1152/ajplung.00383.201122367786
    [Google Scholar]
  32. JoD.S. ChoD.H. Peroxisomal dysfunction in neurodegenerative diseases.Arch. Pharm. Res.201942539340610.1007/s12272‑019‑01131‑230739266
    [Google Scholar]
  33. WaterhamH.R. FerdinandusseS. WandersR.J.A. Human disorders of peroxisome metabolism and biogenesis.Biochim. Biophys. Acta Mol. Cell Res.20161863592293310.1016/j.bbamcr.2015.11.01526611709
    [Google Scholar]
  34. KlouwerF.C.C. BerendseK. FerdinandusseS. WandersR.J.A. EngelenM. Poll-TheB.T. Zellweger spectrum disorders: Clinical overview and management approach.Orphanet J. Rare Dis.201510115110.1186/s13023‑015‑0368‑926627182
    [Google Scholar]
  35. TinnionR.J. DavidsonN. MoranP. WrightM. HarigopalS. Rhizomelic chondrodysplasia punctata: A classic ‘spot’ diagnosis.BMJ Case Rep.20112011bcr012011374710.1136/bcr.01.2011.374722692643
    [Google Scholar]
  36. WhiteA.L. ModaffP. Holland-MorrisF. PauliR.M. Natural history of rhizomelic chondrodysplasia punctata.Am. J. Med. Genet. A.2003118A433234210.1002/ajmg.a.2000912687664
    [Google Scholar]
  37. PurdueP.E. SkonecznyM. YangX. ZhangJ.W. LazarowP.B. Rhizomelic chondrodysplasia punctata, a peroxisomal biogenesis disorder caused by defects in Pex7p, a peroxisomal protein import receptor: A minireview.Neurochem. Res.199924458158610.1023/A:102395711017110227689
    [Google Scholar]
  38. KarabayırN. KeskindemirciG. AdalE. KorkmazO. A case of rhizomelic chondrodysplasia punctata in newborn.Case Rep. Med.201420141310.1155/2014/87967924715923
    [Google Scholar]
  39. IrvingM.D. ChittyL.S. MansourS. HallC.M. Chondrodysplasia punctata: A clinical diagnostic and radiological review.Clin. Dysmorphol.200817422924110.1097/MCD.0b013e3282fdcc7018978650
    [Google Scholar]
  40. AbousamraO. KandulaV. DukerA.L. RogersK.J. BoberM.B. MackenzieW.G. Cervical spine deformities in children with rhizomelic chondrodysplasia punctata.J. Pediatr. Orthop.2019399e680e68610.1097/BPO.000000000000101431503224
    [Google Scholar]
  41. GeramiR. BarkhordariS. Antenatal ultrasonographic diagnosis of rhizomelic chondrodysplasia punctata.J. Ultrasound2022262539542Advance online publication10.1007/s40477‑022‑00737‑536315400
    [Google Scholar]
  42. BravermanN.E. MoserA.B. Functions of plasmalogen lipids in health and disease.Biochim. Biophys. Acta Mol. Basis Dis.2012182291442145210.1016/j.bbadis.2012.05.00822627108
    [Google Scholar]
  43. OswaldG. LawsonC. RaymondG. GoldenW.C. BravermanN. Rhizomelic chondrodysplasia punctata type I and fulminant neonatal respiratory failure, a case report and discussion of pathophysiology.Am. J. Med. Genet. A.2011155123160316310.1002/ajmg.a.3433122052861
    [Google Scholar]
  44. FiumaraA. BaroneR. Del CampoG. StrianoP. JaekenJ. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs).JIMD Rep.201527939910.1007/8904_2015_49726453362
    [Google Scholar]
  45. NicoteraA.G. SpotoG. CalìF. RomeoG. MusumeciA. VinciM. FiumaraA. BaroneR. Di RosaG. MusumeciS.A. A novel homozygous mutation in a patient with CDG type Ig: New report of a case with a mild phenotype.Mol. Syndromol.202112532733210.1159/00051660634602961
    [Google Scholar]
  46. SilverG. BahlS. CordeiroD. ThakralA. AtheyT. Mercimek-AndrewsS. Prevalence of congenital disorders of glycosylation in childhood epilepsy and effects of anti-epileptic drugs on the transferrin isoelectric focusing test.Genes2021128122710.3390/genes1208122734440401
    [Google Scholar]
  47. FranciscoR. Marques-da-SilvaD. BrasilS. PascoalC. dos Reis FerreiraV. MoravaE. JaekenJ. The challenge of CDG diagnosis.Mol. Genet. Metab.201912611510.1016/j.ymgme.2018.11.00330454869
    [Google Scholar]
  48. BogdańskaA. LipińskiP. Szymańska-RożekP. Jezela-StanekA. RokickiD. SochaP. Tylki-SzymańskaA. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: Long-term follow-up.Orphanet J. Rare Dis.20211611710.1186/s13023‑020‑01657‑533407696
    [Google Scholar]
  49. SaudubrayJ.M. SedelF. WalterJ.H. Clinical approach to treatable inborn metabolic diseases: An introduction.J. Inherit. Metab. Dis.2006292-326127410.1007/s10545‑006‑0358‑016763886
    [Google Scholar]
  50. CannavòL. PerroneS. ViolaV. MarsegliaL. Di RosaG. GittoE. Oxidative stress and respiratory diseases in preterm newborns.Int. J. Mol. Sci.202122221250410.3390/ijms22221250434830385
    [Google Scholar]
  51. Van VlietD. DerksT.G.J. van RijnM. de GrootM.J. MacDonaldA. Heiner-FokkemaM.R. van SpronsenF.J. Single amino acid supplementation in aminoacidopathies: A systematic review.Orphanet J. Rare Dis.201491710.1186/1750‑1172‑9‑724422943
    [Google Scholar]
  52. FerreiraC.R. Van KarnebeekC.D.M. Inborn errors of metabolism.Handb. Clin. Neurol.201916244948110.1016/B978‑0‑444‑64029‑1.00022‑931324325
    [Google Scholar]
  53. Van HoveJ.L.K. CoughlinC.II SwansonM. HennermannJ.B. Nonketotic hyperglycinemia.GeneReviewsUniversity of Washington, SeattleSeattle (WA)200219932023
    [Google Scholar]
  54. BhumikaS. BasalingappaK.M. GopenathT.S. BasavarajuS. Glycine encephalopathy.Egypt. J. Neurol. Psychiat. Neurosurg.202258113210.1186/s41983‑022‑00567‑636415754
    [Google Scholar]
  55. PanayiotouE. SpikeK. MorleyC. BeltekiG. Ventilator respiratory graphic diagnosis of hiccupping in non-ketotic hyperglycinaemia.BMJ Case Rep.20172017bcr-2017-22026710.1136/bcr‑2017‑22026728794088
    [Google Scholar]
  56. ÇataltepeS. Van MarterL.J. KozakewichH. WesselD.L. LeeP.J. LevyH.L. Pulmonary hypertension associated with nonketotic hyperglycinaemia.J. Inherit. Metab. Dis.200023213714410.1023/A:100561371535110801055
    [Google Scholar]
  57. StoneW.L. BasitH. JaishankarG.B. Urea cycle disorders.StatPearls Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  58. SummarM.L. MewN.A. Inborn errors of metabolism with hyperammonemia.Pediatr. Clin. North Am.201865223124610.1016/j.pcl.2017.11.00429502911
    [Google Scholar]
  59. BarmoreW. AzadF. StoneW.L. Physiology, urea cycle.StatPearls Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  60. SmithW. KishnaniP.S. LeeB. SinghR.H. RheadW.J. Sniderman KingL. SmithM. SummarM. Urea cycle disorders: Clinical presentation outside the newborn period.Crit. Care Clin.2005214Suppl.S9S1710.1016/j.ccc.2005.05.00716227115
    [Google Scholar]
  61. EndoF MatsuuraT YanagitaK MatsudaI Clinical manifestations of inborn errors of the urea cycle and related metabolic disorders during childhood.J Nutr.20041346 Suppl1605S1609S10.1093/jn/134.6.1605S
    [Google Scholar]
  62. TakanashiJ. BarkovichA.J. ChengS.F. WeisigerK. ZlatunichC.O. MudgeC. RosenthalP. TuchmanM. PackmanS. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders.AJNR Am. J. Neuroradiol.20032461184118712812952
    [Google Scholar]
  63. HäberleJ. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders.Arch. Biochem. Biophys.2013536210110810.1016/j.abb.2013.04.00923628343
    [Google Scholar]
  64. SebastioG. SperandeoM.P. AndriaG. Lysinuric protein intolerance: Reviewing concepts on a multisystem disease.Am. J. Med. Genet. C. Semin. Med. Genet.20111571546210.1002/ajmg.c.3028721308987
    [Google Scholar]
  65. HemmatiF. BarzegarH. Persistent pulmonary hypertension of the newborn due to methylmalonic acidemia: A case report and review of the literature.J. Med. Case Reports202317128810.1186/s13256‑023‑04031‑837430309
    [Google Scholar]
  66. ScottD. Clinton FrazeeC.III GargU. Screening of organic acidurias by gas chromatography–mass spectrometry (GC–MS).Methods Mol. Biol.2022254632133310.1007/978‑1‑0716‑2565‑1_2936127601
    [Google Scholar]
  67. Ogier de BaulnyH. SaudubrayJ. M. Branched-chain organic acidurias.Semin. Neonatol.200271657410.1053/siny.2001.0087
    [Google Scholar]
  68. WajnerM. Neurological manifestations of organic acidurias.Nat. Rev. Neurol.201915525327110.1038/s41582‑019‑0161‑930914790
    [Google Scholar]
  69. StraussK.A. PuffenbergerE.G. MortonD.H. Maple syrup urine disease.GeneReviews®. AdamM.P. ArdingerH.H. PagonR.A. SeattleUniversity of Washington2021https://www.ncbi.nlm.nih.gov/books/NBK1319/
    [Google Scholar]
  70. ReddyP. Preventing vitamin B6-related neurotoxicity.Am J Ther2022296e637e64310.1097/MJT.0000000000001460
    [Google Scholar]
  71. WangH.S. KuoM.F. Vitamin B6 related epilepsy during childhood.Chang Gung Med. J.200730539640118062169
    [Google Scholar]
  72. KaurR. PariaP. SainiA.G. SutharR. BhatiaV. AttriS.V. Metabolic epilepsy in hyperprolinemia type II due to a novel nonsense ALDH4A1 gene variant.Metab. Brain Dis.20213661413141710.1007/s11011‑021‑00757‑w34037900
    [Google Scholar]
  73. Di RosaG. NicoteraA.G. LenzoP. SpanòM. TortorellaG. Long-term neuropsychiatric follow-up in hyperprolinemia type I.Psychiatr. Genet.201424417217510.1097/YPG.000000000000003724842239
    [Google Scholar]
  74. NamavarY. DuineveldD.J. BothG.I.A. FiksinskiA.M. VorstmanJ.A.S. Verhoeven-DuifN.M. ZinkstokJ.R. Psychiatric phenotypes associated with hyperprolinemia: A systematic review.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2021186528931710.1002/ajmg.b.3286934302426
    [Google Scholar]
  75. FlynnM.P. MartinM.C. MooreP.T. StaffordJ.A. FlemingG.A. PhangJ.M. Type II hyperprolinaemia in a pedigree of Irish travellers (nomads).Arch. Dis. Child.198964121699170710.1136/adc.64.12.16992624476
    [Google Scholar]
  76. GuilmatreA. LegallicS. SteelG. WillisA. Di RosaG. GoldenbergA. Drouin-GarraudV. GuetA. MignotC. Des PortesV. ValayannopoulosV. Van MaldergemL. HoffmanJ.D. IzziC. Espil-TarisC. OrcesiS. BonaféL. Le GalloudecE. MaureyH. IoosC. AfenjarA. BlanchetP. EchenneB. RoubertieA. FrebourgT. ValleD. CampionD. Type I hyperprolinemia: Genotype/phenotype correlations.Hum. Mutat.201031896196510.1002/humu.2129620524212
    [Google Scholar]
  77. Di RosaG. PustorinoG. SpanoM. CampionD. CalabròM. AguennouzM. CaccamoD. LegallicS. SgroD.L. BonsignoreM. TortorellaG. Type I hyperprolinemia and proline dehydrogenase (PRODH) mutations in four Italian children with epilepsy and mental retardation.Psychiatr. Genet.2008181404210.1097/YPG.0b013e3282f08a3d18197084
    [Google Scholar]
  78. StocklerS. PleckoB. GospeS.M.Jr Coulter-MackieM. ConnollyM. van KarnebeekC. Mercimek-MahmutogluS. HartmannH. ScharerG. StruijsE. TeinI. JakobsC. ClaytonP. Van HoveJ.L.K. Pyridoxine dependent epilepsy and antiquitin deficiency.Mol. Genet. Metab.20111041-2486010.1016/j.ymgme.2011.05.01421704546
    [Google Scholar]
  79. CrowtherL.M. MathisD. PomsM. PleckoB. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency.J. Inherit. Metab. Dis.201942462062810.1002/jimd.1207630767241
    [Google Scholar]
  80. KaminiówK. PająkM. PająkR. PaprockaJ. Pyridoxine-dependent epilepsy and antiquitin deficiency resulting in neonatal-onset refractory seizures.Brain Sci.20211216510.3390/brainsci1201006535053812
    [Google Scholar]
  81. AmoreG. ButeraA. SpotoG. ValentiniG. SaiaM.C. SalpietroV. CalìF. Di RosaG. NicoteraA.G. KCNQ2-related neonatal epilepsy treated with vitamin B6: A report of two cases and literature review.Front. Neurol.20221382622510.3389/fneur.2022.82622535401395
    [Google Scholar]
  82. MillsP.B. FootittE.J. MillsK.A. TuschlK. AylettS. VaradkarS. HemingwayC. MarlowN. RennieJ. BaxterP. DulacO. NabboutR. CraigenW.J. SchmittB. FeilletF. ChristensenE. De LonlayP. PikeM.G. HughesM.I. StruysE.A. JakobsC. ZuberiS.M. ClaytonP.T. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency).Brain201013372148215910.1093/brain/awq14320554659
    [Google Scholar]
  83. Van KarnebeekC.D.M. Stockler-IpsirogluS. JaggumantriS. AssmannB. BaxterP. BuhasD. BokL.A. ChengB. CoughlinC.R.II DasA.M. GiezenA. Al-HertaniW. HoG. MeyerU. MillsP. PleckoB. StruysE. UedaK. AlbersenM. VerhoevenN. GospeS.M.Jr GallagherR.C. Van HoveJ.K.L. HartmannH. Lysine-restricted diet as adjunct therapy for pyridoxine-dependent epilepsy: The PDE consortium consensus recommendations.JIMD Rep.20141511110.1007/8904_2014_29624748525
    [Google Scholar]
  84. WhyteM.P. Hypophosphatasia: An overview for 2017.Bone2017102152510.1016/j.bone.2017.02.01128238808
    [Google Scholar]
  85. Baumgartner-SiglS. HaberlandtE. MummS. Scholl-BürgiS. SergiC. RyanL. EricsonK.L. WhyteM.P. HöglerW. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene.Bone20074061655166110.1016/j.bone.2007.01.02017395561
    [Google Scholar]
  86. WhyteM.P. ZhangF. WenkertD. MackK.E. BijankiV.N. EricsonK.L. CoburnS.P. Hypophosphatasia: Vitamin B6 status of affected children and adults.Bone202215411620410.1016/j.bone.2021.11620434547524
    [Google Scholar]
  87. WilsonM.P. PleckoB. MillsP.B. ClaytonP.T. Disorders affecting vitamin B 6 metabolism.J. Inherit. Metab. Dis.201942462964610.1002/jimd.1206030671974
    [Google Scholar]
  88. BianchiM.L. VaiS. Alkaline phosphatase replacement therapy.Adv. Exp. Med. Biol.2019114820123210.1007/978‑981‑13‑7709‑9_1031482501
    [Google Scholar]
  89. KoohmanaeeS. ZarkeshM. TabriziM. Hassanzadeh RadA. DivshaliS. DaliliS. Biotinidase deficiency in newborns as respiratory distress and tachypnea: A case report.Iran. J. Child. Neurol.201592586026221165
    [Google Scholar]
  90. MockD.M. BiotinPresent Knowledge in Nutrition John Wiley & Sons2017541549
    [Google Scholar]
  91. Ala-LeppilampiK. OjalaT. MakitieO. Lipsanen-NymanM. Biotinidase deficiency and biotin-responsive disorders.J. Pediatr. Biochem.20199395101
    [Google Scholar]
  92. ZempleniJ. HassanY.I. WijeratneS.S. Biotin: from nutrition to therapeutics.J. Nutr.201914991546S1555S
    [Google Scholar]
  93. SedelF BernardD MockDM TourbahA Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis.Neuropharmacology2016110Pt B64465310.1016/j.neuropharm.2015.08.028
    [Google Scholar]
  94. SaidH.M. SeetheramS. Biotin: biochemical, physiological and clinical aspects.Subcell. Biochem.20189037739910.1007/978‑3‑319‑98179‑4_1322116691
    [Google Scholar]
  95. WolfB. Biotinidase deficiency.GeneReviews® University of Washington, Seattle.Seattle (WA)200019932023
    [Google Scholar]
  96. GrangeD.K. KalerS.G. AlbersG.M. PetterchakJ.A. ThorpeC.M. DeMelloD.E. Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: Unusual manifestations of Menkes disease.Am. J. Med. Genet. A.2005139A215115510.1002/ajmg.a.3100116278898
    [Google Scholar]
  97. PeltonenL. KuivaniemiH. PalotieA. HornN. KaitilaI. KivirikkoK.I. Alterations in copper and collagen metabolism in Menkes’ syndrome and a new subtype of Ehlers-Danlos syndrome.Biochemistry198322266156616310.1021/bi00295a0186140952
    [Google Scholar]
  98. MøllerL. LenartowiczM. ZabotM.T. JosianeA. BurglenL. BennettC. RicondaD. FisherR. JanssensS. MohammedS. AusemsM. TümerZ. HornN. JensenT.G. Clinical expression of Menkes disease in females with normal karyotype.Orphanet J. Rare Dis.201271610.1186/1750‑1172‑7‑622264391
    [Google Scholar]
  99. VairoF.P. ChwalB.C. PeriniS. FerreiraM.A.P. De Freitas LopesA.C. SauteJ.A.M. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease.Mol. Genet. Metab.2019126161310.1016/j.ymgme.2018.12.00530594472
    [Google Scholar]
  100. PrasadA.N. LevinS. RuparC.A. PrasadC. Menkes disease and infantile epilepsy.Brain Dev.2011331086687610.1016/j.braindev.2011.08.00221924848
    [Google Scholar]
  101. SarkarB. Lingertat-WalshK. ClarkeJ.T.R. Copper-histidine therapy for Menkes disease.J. Pediatr.1993123582883010.1016/S0022‑3476(05)80870‑48229500
    [Google Scholar]
  102. MellisA.T. RoeperJ. MiskoA.L. KohlJ. SchwarzG. Sulfite alters the mitochondrial network in molybdenum cofactor deficiency.Front. Genet.20211159482810.3389/fgene.2020.59482833488670
    [Google Scholar]
  103. HobsonE.E. ThomasS. CroftonP.M. MurrayA.D. DeanJ.C.S. LloydD. Isolated sulphite oxidase deficiency mimics the features of hypoxic ischemic encephalopathy.Eur. J. Pediatr.20051641165565910.1007/s00431‑005‑1729‑516025295
    [Google Scholar]
  104. SpiegelR. SchwahnB.C. SquiresL. ConferN. Molybdenum cofactor deficiency: A natural history.J. Inherit. Metab. Dis.202245345646910.1002/jimd.1248835192225
    [Google Scholar]
  105. JohannesL. FuC.Y. SchwarzG. Molybdenum cofactor deficiency in humans.Molecules20222720689610.3390/molecules2720689636296488
    [Google Scholar]
  106. LaiL.M. GropmanA.L. WhiteheadM.T. MR neuroimaging in pediatric inborn errors of metabolism.Diagnostics202212486110.3390/diagnostics1204086135453911
    [Google Scholar]
  107. MiskoA. MahtaniK. AbbottJ. SchwarzG. AtwalP. Molybdenum cofactor deficiency.GeneReviews® Seattle (WA)University of Washington, Seattle202119932023
    [Google Scholar]
  108. NgY.S. TurnbullD.M. Mitochondrial disease: Genetics and management.J. Neurol.2016263117919110.1007/s00415‑015‑7884‑326315846
    [Google Scholar]
  109. Ju WangJ.D. ChenM. ZhangC. ParkerJ. SanetoR. RamirezJ.M. Sleep and breathing disturbances in children with leigh syndrome: A comparative study.Pediatr. Neurol.2022136566310.1016/j.pediatrneurol.2022.08.00636137349
    [Google Scholar]
  110. MainieriG. MontiniA. NicoteraA. Di RosaG. ProviniF. LoddoG. The genetics of sleep disorders in children: A narrative review.Brain Sci.20211110125910.3390/brainsci1110125934679324
    [Google Scholar]
  111. ThorburnD.R. RahmanJ. RahmanS. Mitochondrial DNA-associated leigh syndrome and NARP.GeneReviews®.University of Washington, Seattle.2003
    [Google Scholar]
  112. LakeN.J. BirdM.J. IsohanniP. PaetauA. Leigh syndrome.J. Neuropathol. Exp. Neurol.201574648249210.1097/NEN.000000000000019525978847
    [Google Scholar]
  113. ChenL. CuiY. JiangD. MaC.Y. TseH.F. HwuW.L. LianQ. Management of leigh syndrome: Current status and new insights.Clin. Genet.20189361131114010.1111/cge.1313928905387
    [Google Scholar]
  114. SprouleD.M. KaufmannP. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome.Ann. N. Y. Acad. Sci.20081142113315810.1196/annals.1444.01118990125
    [Google Scholar]
  115. El-HattabA.W. AdesinaA.M. JonesJ. ScagliaF. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options.Mol. Genet. Metab.20151161-241210.1016/j.ymgme.2015.06.00426095523
    [Google Scholar]
  116. MalhotraK. LiebeskindD.S. Imaging of MELAS.Curr. Pain Headache Rep.20162095410.1007/s11916‑016‑0583‑727477183
    [Google Scholar]
  117. KerrD.S. Treatment of mitochondrial electron transport chain disorders: A review of clinical trials over the past decade.Mol. Genet. Metab.201099324625510.1016/j.ymgme.2009.11.00520060349
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X289178240528052344
Loading
/content/journals/crmr/10.2174/011573398X289178240528052344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test