Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN:

Abstract

The most significant viral contributors to acute respiratory tract infections in children are Respiratory Syncytial Viruses (RSV) and influenza virus, causing substantial seasonal respiratory infections annually. Furthermore, severe neurological complications, notably seizures and encephalopathy, can be attributed to these viruses. Children with chronic or pre-existing neurological conditions are particularly susceptible to increased morbidity and sequelae. An active area of research to date is focused on the potential mechanisms of viral neurological invasion, which could be relevant for future therapeutic strategies. Influenza virus is frequently an important cause of epidemic or pandemic disease causing high costs of hospitalization and primary care. Furthermore, different subtypes of influenza viruses can induce various influenza-associated neurological complications, varying from mild (, headache) to severe (, meningoencephalitis and acute necrotizing encephalopathy), both in adults and children. While affecting the respiratory tract, RSV can also give rise to neurological manifestations, potentially resulting in long-term neurological impairment. Neurological changes associated with RSV encompass seizures, lethargy, ataxia, febrile or epileptic states, central apnea, difficulties in feeding or swallowing, tone abnormalities, strabismus, abnormalities in cerebrospinal fluid, and encephalopathy. Patients infected with RSV can also develop neuromotor difficulties or present learning impairment. In conclusion, viral respiratory infections can result in significant extrapulmonary symptoms, potentially leading to enduring health consequences in affected children. Substantial research efforts are necessary to prevent or treat these infections, particularly within the most vulnerable populations.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X284282240215114315
2024-02-22
2024-11-23
Loading full text...

Full text loading...

References

  1. Chiriboga-SalazarN.R. HongS.J. Respiratory syncytial virus and influenza infections: The brain is also susceptible.J. Pediatr.2021239141510.1016/j.jpeds.2021.08.03734450121
    [Google Scholar]
  2. Global influenza strategy 2019-2030.World Health Organization2019Available from: https://apps.who.int/iris/handle/10665/311184
    [Google Scholar]
  3. LiY. WangX. BlauD.M. CaballeroM.T. FeikinD.R. GillC.J. MadhiS.A. OmerS.B. SimõesE.A.F. CampbellH. ParienteA.B. BardachD. BassatQ. CasalegnoJ.S. ChakhunashviliG. CrawfordN. DanilenkoD. DoL.A.H. EchavarriaM. GentileA. GordonA. HeikkinenT. HuangQ.S. JullienS. KrishnanA. LopezE.L. MarkićJ. Mira-IglesiasA. MooreH.C. MoyesJ. MwananyandaL. NokesD.J. NoordeenF. ObodaiE. PalaniN. RomeroC. SalimiV. SatavA. SeoE. ShchomakZ. SingletonR. StolyarovK. StoszekS.K. von GottbergA. WurzelD. YoshidaL.M. YungC.F. ZarH.J. NairH. AbramM. AerssensJ. AlafaciA. BalmasedaA. BandeiraT. BarrI. BatinovićE. BeutelsP. BhimanJ. BlythC.C. BontL. BresslerS.S. CohenC. CohenR. CostaA-M. CrowR. DaleyA. DangD-A. DemontC. DesnoyersC. Díez-DomingoJ. DivarathnaM. du PlessisM. EdgooseM. FerollaF.M. FischerT.K. GebremedhinA. GiaquintoC. GilletY. HernandezR. HorvatC. JavouheyE. KarseladzeI. KubaleJ. KumarR. LinaB. LucionF. MacGintyR. Martinon-TorresF. McMinnA. MeijerA. MilićP. MorelA. MulhollandK. MungunT. MurungaN. NewbernC. NicolM.P. OdoomJ.K. OpenshawP. PloinD. PolackF.P. PollardA.J. PrasadN. Puig-BarberàJ. ReicheJ. ReyesN. RizkallaB. SataoS. ShiT. SistlaS. SnapeM. SongY. SotoG. TavakoliF. ToizumiM. TsedenbalN. van den BergeM. VernhesC. von MollendorfC. WalazaS. WalkerG. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis.Lancet2022399103402047206410.1016/S0140‑6736(22)00478‑035598608
    [Google Scholar]
  4. SaravanosG.L. KingC.L. DengL. DinsmoreN. RamosI. TakashimaM. CrawfordN. ClarkJ.E. DaleR.C. JonesC.A. WoodN.J. BrittonP.N. Respiratory syncytial virus–associated neurologic complications in children: A systematic review and aggregated case series.J. Pediatr.20212393949.e910.1016/j.jpeds.2021.06.04534181989
    [Google Scholar]
  5. FranklS. CoffinS.E. HarrisonJ.B. SwamiS.K. McGuireJ.L. Influenza-associated neurologic complications in hospitalized children.J. Pediatr.20212392431.e110.1016/j.jpeds.2021.07.03934293371
    [Google Scholar]
  6. AntoonJ.W. HallM. HerndonA. JohnsonD.P. BrownC.M. BrowningW.L. FlorinT.A. HowardL.M. GrijalvaC.G. WilliamsD.J. Prevalence, Risk Factors, and Outcomes of Influenza-Associated Neurologic Complications in Children.J. Pediatr.20212393238.e510.1016/j.jpeds.2021.06.07534216629
    [Google Scholar]
  7. TregoningJ.S. SchwarzeJ. Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology.Clin. Microbiol. Rev.2010231749810.1128/CMR.00032‑0920065326
    [Google Scholar]
  8. BohmwaldK. GálvezN.M.S. RíosM. KalergisA.M. Neurologic alterations due to respiratory virus infections.Front. Cell. Neurosci.20181238610.3389/fncel.2018.0038630416428
    [Google Scholar]
  9. McGavernD.B. KangS.S. Illuminating viral infections in the nervous system.Nat. Rev. Immunol.201111531832910.1038/nri297121508982
    [Google Scholar]
  10. CannavòL. PerroneS. ViolaV. MarsegliaL. Di RosaG. GittoE. Oxidative stress and respiratory diseases in preterm newborns.Int. J. Mol. Sci.202122221250410.3390/ijms22221250434830385
    [Google Scholar]
  11. Gonzalez-ScaranoF. TylerK.L. Molecular pathogenesis of neurotropic viral infections.Ann. Neurol.198722556557410.1002/ana.4102205023322182
    [Google Scholar]
  12. SuenW. ProwN. HallR. Bielefeldt-OhmannH. Mechanism of West Nile virus neuroinvasion: A critical appraisal.Viruses2014672796282510.3390/v607279625046180
    [Google Scholar]
  13. KoyuncuO.O. HogueI.B. EnquistL.W. Virus infections in the nervous system.Cell Host Microbe201313437939310.1016/j.chom.2013.03.01023601101
    [Google Scholar]
  14. SwansonP. McGavernD. Portals of viral entry into the central nervous system.The Blood-Brain Barrier in Health and Disease, Volume Two.CRC Press2015234710.1201/b19299‑3
    [Google Scholar]
  15. SwansonP.A.II McGavernD.B. Viral diseases of the central nervous system.Curr. Opin. Virol.201511445410.1016/j.coviro.2014.12.00925681709
    [Google Scholar]
  16. SalinasS. SchiavoG. KremerE.J. A hitchhiker’s guide to the nervous system: The complex journey of viruses and toxins.Nat. Rev. Microbiol.20108964565510.1038/nrmicro239520706281
    [Google Scholar]
  17. DiefenbachR.J. Miranda-SaksenaM. DouglasM.W. CunninghamA.L. Transport and egress of herpes simplex virus in neurons.Rev. Med. Virol.2008181355110.1002/rmv.56017992661
    [Google Scholar]
  18. DietzscholdB. LiJ. FaberM. SchnellM. Concepts in the pathogenesis of rabies.Future Virol.20083548149010.2217/17460794.3.5.48119578477
    [Google Scholar]
  19. YoungV.A. RallG.F. Making it to the synapse: Measles virus spread in and among neurons.Curr. Top. Microbiol. Immunol.200933033010.1007/978‑3‑540‑70617‑5_119203102
    [Google Scholar]
  20. EspinozaJ.A. BohmwaldK. CéspedesP.F. GómezR.S. RiquelmeS.A. CortésC.M. ValenzuelaJ.A. SandovalR.A. PancettiF.C. BuenoS.M. RiedelC.A. KalergisA.M. Impaired learning resulting from Respiratory Syncytial Virus infection.Proc. Natl. Acad. Sci2013110229112911710.1073/pnas.121750811023650398
    [Google Scholar]
  21. Amlie-LefondC. BernardT.J. SébireG. FriedmanN.R. HeyerG.L. LernerN.B. deVeberG. FullertonH.J. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: Results of the international pediatric stroke study.Circulation2009119101417142310.1161/CIRCULATIONAHA.108.80630719255344
    [Google Scholar]
  22. AskalanR. LaughlinS. MayankS. ChanA. MacGregorD. AndrewM. CurtisR. MeaneyB. deVeberG. Chickenpox and stroke in childhood: A study of frequency and causation.Stroke20013261257126210.1161/01.STR.32.6.125711387484
    [Google Scholar]
  23. SträterR. BeckerS. von EckardsteinA. HeineckeA. GutscheS. JunkerR. KurnikK. SchobessR. Nowak-GöttlU. Prospective assessment of risk factors for recurrent stroke during childhood-a 5-year follow-up study.Lancet200236093451540154510.1016/S0140‑6736(02)11520‑012443591
    [Google Scholar]
  24. MessacarK. AsturiasE.J. HixonA.M. Van Leer-ButerC. NiestersH.G.M. TylerK.L. AbzugM.J. DominguezS.R. Enterovirus D68 and acute flaccid myelitis—evaluating the evidence for causality.Lancet Infect. Dis.2018188e239e24710.1016/S1473‑3099(18)30094‑X29482893
    [Google Scholar]
  25. MessacarK. Spence-DavizonE. OsborneC. PressC. SchreinerT.L. MartinJ. MesserR. MaloneyJ. BurakoffA. BarnesM. RogersS. LopezA.S. RouthJ. GerberS.I. ObersteM.S. NixW.A. AbzugM.J. TylerK.L. HerlihyR. DominguezS.R. Clinical characteristics of enterovirus A71 neurological disease during an outbreak in children in Colorado, USA, in 2018: An observational cohort study.Lancet Infect. Dis.202020223023910.1016/S1473‑3099(19)30632‑231859216
    [Google Scholar]
  26. LaRovereK.L. RiggsB.J. PoussaintT.Y. YoungC.C. NewhamsM.M. MaamariM. WalkerT.C. SinghA.R. DapulH. HobbsC.V. McLaughlinG.E. SonM.B.F. MadduxA.B. ClouserK.N. RowanC.M. McGuireJ.K. FitzgeraldJ.C. GertzS.J. SheinS.L. MunozA.C. ThomasN.J. IrbyK. LevyE.R. StaatM.A. TenfordeM.W. FeldsteinL.R. HalasaN.B. GiulianoJ.S.Jr HallM.W. KongM. CarrollC.L. SchusterJ.E. DoymazS. LoftisL.L. TarquinioK.M. BabbittC.J. NofzigerR.A. KleinmanL.C. KeenaghanM.A. CvijanovichN.Z. SpinellaP.C. HumeJ.R. WellnitzK. MackE.H. MichelsonK.N. FloriH.R. PatelM.M. RandolphA.G. Last NameF.N.M.I. GaspersM.G. TyppoK.V. SandersR.C. SchwarzA.J. HarveyH. ZinterM.S. MouraniP.M. CoatesB.M. BhoojhawonG. HavlinK.M. MontgomeryV.L. SullivanJ.E. BradfordT.T. BembeaM.M. LiptonS.V. GracianoA.L. ChenS.R. KucukakS. NewburgerJ.W. CarrollR.W. FernandesN.D. YagerP.H. MarohnK.L. HeidemannS.M. CullimoreM.L. McCullohR.J. HorwitzS.M. LiS. WalshR.F. RatnerA.J. SomaV.L. GillenJ.K. ZackaiS.P. AckermanK.G. CholetteJ.M. Harwayne-GidanskyI. HymesS.R. OverbyP.J. SchwartzS.P. LansellA.N. KoncickiM.L. CarcilloJ. FinkE. KimuraD. BowensC. CrandallH. SmithL.S. CengizP. Neurologic involvement in children and adolescents hospitalized in the united states for COVID-19 or multisystem inflammatory syndrome.JAMA Neurol.202178553654710.1001/jamaneurol.2021.050433666649
    [Google Scholar]
  27. JavanianM. BararyM. GhebrehewetS. KoppoluV. VasigalaV. EbrahimpourS. A brief review of influenza virus infection.J. Med. Virol.20219384638464610.1002/jmv.2699033792930
    [Google Scholar]
  28. YooS.J. KwonT. LyooY.S. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure.Clin. Exp. Vaccine Res.20187111510.7774/cevr.2018.7.1.129399575
    [Google Scholar]
  29. PaulesC. SubbaraoK. Influenza.Lancet20173901009569770810.1016/S0140‑6736(17)30129‑028302313
    [Google Scholar]
  30. TameriusJ. NelsonM.I. ZhouS.Z. ViboudC. MillerM.A. AlonsoW.J. Global influenza seasonality: Reconciling patterns across temperate and tropical regions.Environ. Health Perspect.2011119443944510.1289/ehp.100238321097384
    [Google Scholar]
  31. SagripantiJ.L. LytleC.D. Inactivation of influenza virus by solar radiation.Photochem. Photobiol.20078351278128210.1111/j.1751‑1097.2007.00177.x17880524
    [Google Scholar]
  32. CowlingB.J. IpD.K.M. FangV.J. SuntarattiwongP. OlsenS.J. LevyJ. UyekiT.M. LeungG.M. Malik PeirisJ.S. ChotpitayasunondhT. NishiuraH. SimmermanM.J. Aerosol transmission is an important mode of influenza A virus spread.Nat. Commun.201341193510.1038/ncomms292223736803
    [Google Scholar]
  33. KillingleyB. GreatorexJ. DigardP. WiseH. GarciaF. VarsaniH. CauchemezS. EnstoneJ.E. HaywardA. CurranM.D. ReadR.C. LimW.S. NicholsonK.G. Nguyen-Van-TamJ.S. The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control.J. Infect. Public Health20169327828810.1016/j.jiph.2015.10.00926653976
    [Google Scholar]
  34. LiL. ChenQ.Y. LiY.Y. WangY.F. YangZ.F. ZhongN.S. Comparison among nasopharyngeal swab, nasal wash, and oropharyngeal swab for respiratory virus detection in adults with acute pharyngitis.BMC Infect. Dis.201313128110.1186/1471‑2334‑13‑28123786598
    [Google Scholar]
  35. TaubenbergerJ.K. MorensD.M. The pathology of influenza virus infections.Annu. Rev. Pathol.20083149952210.1146/annurev.pathmechdis.3.121806.15431618039138
    [Google Scholar]
  36. GoenkaA. MichaelB.D. LedgerE. HartI.J. AbsoudM. ChowG. LillekerJ. LunnM. McKeeD. PeakeD. PysdenK. RobertsM. CarrolE.D. LimM. AvulaS. SolomonT. KneenR. Neurological manifestations of influenza infection in children and adults: Results of a National British Surveillance Study.Clin. Infect. Dis.201458677578410.1093/cid/cit92224352349
    [Google Scholar]
  37. BrittonP.N. BlythC.C. MacartneyK. DaleR.C. Li-Kim-MoyJ. KhandakerG. CrawfordN.W. MarshallH. ClarkJ.E. ElliottE.J. BooyR. ChengA.C. JonesC.A. The spectrum and burden of influenza-associated neurological disease in children: Combined encephalitis and influenza sentinel site surveillance from Australia, 2013–2015.Clin. Infect. Dis.201765465366010.1093/cid/cix41229017268
    [Google Scholar]
  38. NewlandJ.G. LaurichV.M. RosenquistA.W. HeydonK. LichtD.J. KerenR. ZaoutisT.E. WatsonB. HodinkaR.L. CoffinS.E. Neurologic complications in children hospitalized with influenza: Characteristics, incidence, and risk factors.J. Pediatr.2007150330631010.1016/j.jpeds.2006.11.05417307552
    [Google Scholar]
  39. SuranaP. TangS. McDougallM. TongC.Y.W. MensonE. LimM. Neurological complications of pandemic influenza A H1N1 2009 infection: European case series and review.Eur. J. Pediatr.201117081007101510.1007/s00431‑010‑1392‑321234600
    [Google Scholar]
  40. ZengH. QuinetS. HuangW. GanY. HanC. HeY. WangY. Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children.Pediatr. Radiol.20134391182118910.1007/s00247‑013‑2682‑523567910
    [Google Scholar]
  41. LandauY.E. Grisaru-SoenG. ReifS. Fattal-ValevskiA. Pediatric neurologic complications associated with influenza A H1N1.Pediatr. Neurol.2011441475110.1016/j.pediatrneurol.2010.08.01121147387
    [Google Scholar]
  42. IsmailM.H.I. TehC.M. LeeY.L. Neurologic manifestations and complications of pandemic influenza A H1N1 in Malaysian children: What have we learnt from the ordeal?Brain Dev.201537112012910.1016/j.braindev.2014.03.00824746706
    [Google Scholar]
  43. MatsudaK. ParkC.H. SundenY. KimuraT. OchiaiK. KidaH. UmemuraT. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice.Vet. Pathol.200441210110710.1354/vp.41‑2‑10115017022
    [Google Scholar]
  44. KawadaJ. KimuraH. ItoY. HaraS. IriyamaM. YoshikawaT. MorishimaT. Systemic cytokine responses in patients with influenza-associated encephalopathy.J. Infect. Dis.2003188569069810.1086/37710112934185
    [Google Scholar]
  45. AibaH. MochizukiM. KimuraM. HojoH. Predictive value of serum interleukin-6 level in influenza virus–associated encephalopathy.Neurology200157229529910.1212/WNL.57.2.29511468315
    [Google Scholar]
  46. ShinoharaM. SaitohM. TakanashiJ. YamanouchiH. KubotaM. GotoT. KikuchiM. ShiiharaT. YamanakaG. MizuguchiM. Carnitine palmitoyl transferase II polymorphism is associated with multiple syndromes of acute encephalopathy with various infectious diseases.Brain Dev.201133651251710.1016/j.braindev.2010.09.00220934285
    [Google Scholar]
  47. ShinoharaM. SaitohM. NishizawaD. IkedaK. HiroseS. TakanashiJ. TakitaJ. KikuchiK. KubotaM. YamanakaG. ShiiharaT. KumakuraA. KikuchiM. ToyoshimaM. GotoT. YamanouchiH. MizuguchiM. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus.Neurology201380171571157610.1212/WNL.0b013e31828f18d823535492
    [Google Scholar]
  48. FungS.G. FakhraeiR. CondranG. ReganA.K. Dimanlig-CruzS. RicciC. FooD. SarnaM. TörökE. FellD.B. Neuropsychiatric outcomes in offspring after fetal exposure to maternal influenza infection during pregnancy: A systematic review.Reprod. Toxicol.202211315516910.1016/j.reprotox.2022.09.00236100136
    [Google Scholar]
  49. XiaY. QiF. ZouJ. YaoZ. InfluenzaA. Influenza A(H1N1) vaccination during early pregnancy transiently promotes hippocampal neurogenesis and working memory. Involvement of Th1/Th2 balance.Brain Res.20141592344310.1016/j.brainres.2014.09.07625307140
    [Google Scholar]
  50. SellersS.A. HaganR.S. HaydenF.G. FischerW.A.II The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection.Influenza Other Respir. Viruses201711537239310.1111/irv.1247028745014
    [Google Scholar]
  51. MizuguchiM. Influenza encephalopathy and related neuropsychiatric syndromes.Influenza Other Respir. Viruses20137S3677110.1111/irv.1217724215384
    [Google Scholar]
  52. MarsegliaL.M. NicoteraA. SalpietroV. GiaimoE. CardileG. BonsignoreM. AlibrandiA. CaccamoD. MantiS. D’AngeloG. MamìC. Di RosaG. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns.Oxid. Med. Cell. Longev.201520151810.1155/2015/54313425829992
    [Google Scholar]
  53. SteiningerC. Popow-KrauppT. LaferlH. SeiserA. GödlI. DjamshidianS. StöcklE.P. Acute encephalopathy associated with influenza A virus infection.Clin. Infect. Dis.200336556757410.1086/36762312594636
    [Google Scholar]
  54. DadakM. PulR. LanfermannH. HartmannH. HehrU. DonnerstagF. MichelsD. TrycA.B. Varying patterns of CNS imaging in influenza a encephalopathy in childhood.Clin. Neuroradiol.202030224324910.1007/s00062‑018‑0756‑330610262
    [Google Scholar]
  55. KaA. BrittonP. TroedsonC. WebsterR. ProcopisP. GingJ. ChuaY.W. BuckmasterA. WoodN. JonesC. DaleR.C. Mild encephalopathy with reversible splenial lesion: An important differential of encephalitis.Eur. J. Paediatr. Neurol.201519337738210.1016/j.ejpn.2015.01.01125707871
    [Google Scholar]
  56. WeitkampJ.H. SpringM.D. BroganT. MosesH. BlochK.C. WrightP.F. Influenza A virus-associated acute necrotizing encephalopathy in the United States.Pediatr. Infect. Dis. J.200423325926310.1097/01.inf.0000115631.99896.4115014305
    [Google Scholar]
  57. MaY. XuK. ChenG. WangL. WangY. JinZ. Acute encephalopathy with biphasic seizures and late reduced diffusion.Medicine20209943e2294010.1097/MD.000000000002294033120854
    [Google Scholar]
  58. RonaG. ArifoğluM. GünbeyH.P. YükselmişU. InfluenzaA. Influenza A (H1N1)-associated acute necrotizing encephalopathy with unusual posterior reversible encephalopathy syndrome in a child.SN Compr. Clin. Med.2021371528153310.1007/s42399‑021‑00928‑x33937633
    [Google Scholar]
  59. BoeckK.D. Respiratory syncytial virus bronchiolitis: Clinical aspects and epidemiology.Monaldi Arch. Chest Dis.19965132102138766196
    [Google Scholar]
  60. MantiS. LeonardiS. RezaeeF. HarfordT.J. PerezM.K. PiedimonteG. Effects of vertical transmission of respiratory viruses to the offspring.Front. Immunol.20221385300910.3389/fimmu.2022.85300935359954
    [Google Scholar]
  61. MantiS. EsperF. Alejandro-RodriguezM. LeonardiS. BettaP. CuppariC. LanzafameA. WorleyS. SalpietroC. PerezM.K. RezaeeF. PiedimonteG. Respiratory syncytial virus seropositivity at birth is associated with adverse neonatal respiratory outcomes.Pediatr. Pulmonol.202055113074307910.1002/ppul.2500132741145
    [Google Scholar]
  62. AndewegS.P. ScheppR.M. van de KassteeleJ. MollemaL. BerbersG.A.M. van BovenM. Population-based serology reveals risk factors for RSV infection in children younger than 5 years.Sci. Rep.2021111895310.1038/s41598‑021‑88524‑w33903695
    [Google Scholar]
  63. SalasA. Pardo-SecoJ. Cebey-LópezM. Gómez-CarballaA. Obando-PachecoP. Rivero-CalleI. Currás-TualaM.J. AmigoJ. Gómez-RialJ. Martinón-TorresF. Justicia-GrandeA. MorilloB. Redondo-CollazoL. Rodríguez-TenreiroC. Barral-ArcaR. PischeddaS. Peña-GuitiánJ. Curros NovoC. Puente-PuigM. Leis-TrabazoR. Martinón-TorresN. Martinón-SánchezJ.M. Fraga-RodríguezM.F. AntúnezJ.R. Bernaola-IturbeE. Moreno-GalarragaL. ÁlvarezJ. González-LópezT. Suarez-VázquezD. Vázquez VázquezÁ. Rey-GarcíaS. Giménez-SánchezF. ForteM.S. Calvo-ReyC. García-GarcíaM.L. Oulego-ErrozI. Naranjo VivasD. LapeñaS. Alonso-QuintelaP. Martínez-Sáenz de JuberaJ. Garrido-GarcíaE. Calvo MongeC. Oñate-VergaraE. de la Cruz MorenoJ. Martínez-PadillaM.C. Baca-CotsM. Moreno-PérezD. Beatriz-ReyesS. León-LeónM.C. Whole exome sequencing reveals new candidate genes in host genomic susceptibility to respiratory syncytial virus disease.Sci. Rep.2017711588810.1038/s41598‑017‑15752‑429162850
    [Google Scholar]
  64. SweetmanL.L. NgY. ButlerI.J. BodensteinerJ.B. Neurologic complications associated with respiratory syncytial virus.Pediatr. Neurol.200532530731010.1016/j.pediatrneurol.2005.01.01015866430
    [Google Scholar]
  65. MorichiS. KawashimaH. IoiH. YamanakaG. KashiwagiY. HoshikaA. NakayamaT. WatanabeY. Classification of acute encephalopathy in respiratory syncytial virus infection.J. Infect. Chemother.201117677678110.1007/s10156‑011‑0259‑521647570
    [Google Scholar]
  66. MantiS. XerraF. SpotoG. ButeraA. GittoE. Di RosaG. NicoteraA.G. Neurotrophins: Expression of brain–lung axis development.Int. J. Mol. Sci.2023248708910.3390/ijms2408708937108250
    [Google Scholar]
  67. EisenhutM. Extrapulmonary manifestations of severe respiratory syncytial virus infection--a systematic review.Crit. Care2006104R10710.1186/cc498416859512
    [Google Scholar]
  68. MantiS. PiedimonteG. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma.Front Pediatr.20221099829610.3389/fped.2022.99829636204661
    [Google Scholar]
  69. AmoreG. SpotoG. ValentiniG. te al. Overview of guillain-barrè syndrome.J. Biol. Regul. Homeost. Agents2022361(S1)3810.23812/j.biol.regul.homeost.agents.202236.1S1.2
    [Google Scholar]
  70. KawashimaH. IoiH. UshioM. YamanakaG. MatsumotoS. NakayamaT. Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection.Scand. J. Infect. Dis.200941322823110.1080/0036554080266954319117245
    [Google Scholar]
  71. OtakeY. YamagataT. MorimotoY. ImiM. MoriM. AiharaT. IchiyamaT. MomoiM.Y. Elevated CSF IL-6 in a patient with respiratory syncytial virus encephalopathy.Brain Dev.200729211712010.1016/j.braindev.2006.06.00816920309
    [Google Scholar]
  72. EisenhutM. Cerebral involvement in respiratory syncytial virus disease.Brain Dev.200729745410.1016/j.braindev.2006.11.00717174501
    [Google Scholar]
  73. MillichapJ.J. WainwrightM.S. Neurological complications of respiratory syncytial virus infection: Case series and review of literature.J. Child Neurol.200924121499150310.1177/088307380833136219264736
    [Google Scholar]
  74. WallaceS.J. ZealleyH. Neurological, electroencephalographic, and virological findings in febrile cheldren.Arch. Dis. Child.19704524361162310.1136/adc.45.243.6114320122
    [Google Scholar]
  75. MantiS. HarfordT.J. SalpietroC. RezaeeF. PiedimonteG. Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus.Pediatr. Res.20188351049105610.1038/pr.2018.629329282
    [Google Scholar]
  76. RayyanM. NaulaersG. DanielsH. AllegaertK. DebeerA. DevliegerH. Characteristics of respiratory syncytial virus-related apnoea in three infants.Acta Paediatr.200493684784910.1111/j.1651‑2227.2004.tb03030.x15244239
    [Google Scholar]
  77. LindgrenC. GrögaardJ. Reflex apnoea response and inflammatory mediators in infants with respiratory tract infection.Acta Paediatr.199685779880310.1111/j.1651‑2227.1996.tb14154.x8819544
    [Google Scholar]
  78. PiedimonteG. Pathophysiological mechanisms for the respiratory syncytial virus-reactive airway disease link.Respir. Res.20023S1410.1186/rr18512119054
    [Google Scholar]
  79. MiyamotoK. FujisawaM. TsuboiT. HiraoJ. SugitaK. ArisakaO. HozumiH. KuwashimaS. Systemic inflammatory response syndrome and prolonged hypoperfusion lesions in an infant with respiratory syncytial virus encephalopathy.J. Infect. Chemother.201319597898210.1007/s10156‑013‑0558‑023354937
    [Google Scholar]
  80. NgY. CoxC. AtkinsJ. ButlerI.J. Encephalopathy associated with respiratory syncytial virus bronchiolitis.J. Child Neurol.200116210510810.1177/08830738010160020711292214
    [Google Scholar]
  81. PiconeS. MondìV. Di PalmaF. MartiniL. PaolilloP. Neonatal encephalopathy and SIADH during RSV infection.Am. J. Perinatol.201936S02S106S10910.1055/s‑0039‑1692132
    [Google Scholar]
  82. KawashimaH. KashiwagiY. IoiH. MorichiS. OanaS. YamanakaG. TakekumaK. HoshikaA. SawaiJ. KatoY. Production of chemokines in respiratory syncytial virus infection with central nervous system manifestations.J. Infect. Chemother.201218682783110.1007/s10156‑012‑0418‑322572852
    [Google Scholar]
  83. KhoN. KerriganJ.F. TongT. BrowneR. KnilansJ. Respiratory syncytial virus infection and neurologic abnormalities: retrospective cohort study.J. Child Neurol.2004191185986410.1177/0883073804019011030115658790
    [Google Scholar]
  84. SpotoG. SaiaM.C. AmoreG. GittoE. LoddoG. MainieriG. NicoteraA.G. Di RosaG. Neonatal seizures: An overview of genetic causes and treatment options.Brain Sci.20211110129510.3390/brainsci1110129534679360
    [Google Scholar]
  85. PeñaM. JaraC. FloresJ.C. Hoyos-BachilogluR. IturriagaC. MedinaM. CarceyJ. EspinozaJ. BohmwaldK. KalergisA.M. BorzutzkyA. Severe respiratory disease caused by human respiratory syncytial virus impairs language learning during early infancy.Sci. Rep.20201012235610.1038/s41598‑020‑79140‑133349647
    [Google Scholar]
  86. MantiS. CuppariC. LanzafameA. SalpietroC. BettaP. LeonardiS. PerezM.K. PiedimonteG. Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress.Pediatr. Pulmonol.20175210E81E8410.1002/ppul.2377528834426
    [Google Scholar]
  87. BirdC.M. BurgessN. The hippocampus and memory: Insights from spatial processing.Nat. Rev. Neurosci.20089318219410.1038/nrn233518270514
    [Google Scholar]
  88. SpotoG. AmoreG. VetriL. QuatrosiG. CafeoA. GittoE. NicoteraA.G. Di RosaG. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events.Front. Syst. Neurosci.20211565516410.3389/fnsys.2021.65516434177475
    [Google Scholar]
  89. KumarA. Long-term potentiation at CA3–CA1 hippocampal synapses with special emphasis on aging, disease, and stress.Front. Aging Neurosci.20113710.3389/fnagi.2011.0000721647396
    [Google Scholar]
  90. BohmwaldK. SotoJ.A. Andrade-ParraC. Fernández-FierroA. EspinozaJ.A. RíosM. EugeninE.A. GonzálezP.A. OpazoM.C. RiedelC.A. KalergisA.M. Lung pathology due to hRSV infection impairs blood–brain barrier permeability enabling astrocyte infection and a long-lasting inflammation in the CNS.Brain Behav. Immun.20219115917110.1016/j.bbi.2020.09.02132979471
    [Google Scholar]
  91. LiX. FuZ.F. AlvarezR. HendersonC. TrippR.A. Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein.J. Virol.200680153754010.1128/JVI.80.1.537‑540.200616352577
    [Google Scholar]
  92. MoriK. SasamotoT. NakayamaT. MorichiS. KashiwagiY. SawadaA. KawashimaH. Chemokine/interleukin imbalance aggravates the pathology of respiratory syncytial virus infection.J. Clin. Med.20221120604210.3390/jcm1120604236294363
    [Google Scholar]
  93. BokunV. MooreJ.J. MooreR. SmallcombeC.C. HarfordT.J. RezaeeF. EsperF. PiedimonteG. Respiratory syncytial virus exhibits differential tropism for distinct human placental cell types with Hofbauer cells acting as a permissive reservoir for infection.PLoS One20191412e022576710.1371/journal.pone.022576731790466
    [Google Scholar]
  94. MantiS. SpotoG. NicoteraA.G. Di RosaG. PiedimonteG. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge.Front. Neurosci.202417132031910.3389/fnins.2023.132031938260010
    [Google Scholar]
  95. ParkA. SuhS. SonG.R. LeeY.H. SeoH.S. EunB.L. LeeN.J. SeolH.Y. Respiratory syncytial virus-related encephalitis: Magnetic resonance imaging findings with diffusion-weighted study.Neuroradiology201456216316810.1007/s00234‑013‑1305‑z24337535
    [Google Scholar]
  96. MarinoA. Autoimmune rhomboencephalitis: A pediatric case report.Turk Arch Pediatr202055449452
    [Google Scholar]
  97. ElhassanienA. AzizH. Acute demyelinating encephalomyelitis: Clinical characteristics and outcome.J. Pediatr. Neurosci.201381263010.4103/1817‑1745.11141823772240
    [Google Scholar]
  98. RadhakrishnanA. JagtapS.A. DasG.K. KambaleH.J. NairM.D. Limbic encephalitis: Clinical spectrum and long-term outcome from a developing country perspective.Ann. Indian Acad. Neurol.201417216116510.4103/0972‑2327.13261525024565
    [Google Scholar]
  99. MinejimaE. Wong-BeringerA. Implementation of rapid diagnostics with antimicrobial stewardship.Expert Rev. Anti Infect. Ther.201614111065107510.1080/14787210.2016.123381427599796
    [Google Scholar]
  100. ShileyK.T. LautenbachE. LeeI. The use of antimicrobial agents after diagnosis of viral respiratory tract infections in hospitalized adults: Antibiotics or anxiolytics?Infect. Control Hosp. Epidemiol.201031111177118310.1086/65659620923284
    [Google Scholar]
  101. LinC.Y. HwangD. ChiuN.C. WengL.C. LiuH.F. MuJ.J. LiuC.P. ChiH. Increased detection of viruses in children with respiratory tract infection using PCR.Int. J. Environ. Res. Public Health202017256410.3390/ijerph1702056431952364
    [Google Scholar]
  102. HaradaY. KinoshitaF. YoshidaL.M. MinhL.N. SuzukiM. MorimotoK. TokuY. TomimasuK. MoriuchiH. AriyoshiK. Does respiratory virus coinfection increases the clinical severity of acute respiratory infection among children infected with respiratory syncytial virus?Pediatr. Infect. Dis. J.201332544144510.1097/INF.0b013e31828ba08c23838658
    [Google Scholar]
  103. FranzA. AdamsO. WillemsR. BonzelL. NeuhausenN. Schweizer-KrantzS. RuggebergJ.U. WillersR. HenrichB. SchrotenH. TenenbaumT. Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection.J. Clin. Virol.201048423924510.1016/j.jcv.2010.05.00720646956
    [Google Scholar]
  104. MartinE.T. KuypersJ. WaldA. EnglundJ.A. Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children.Influenza Other Respir. Viruses201261717710.1111/j.1750‑2659.2011.00265.x21668660
    [Google Scholar]
  105. WangY. ZhangY. KongW.H. ZhuH.H. LinX.M. YuB. HuQ. MiaoX.P. GuoD.Y. PengJ.S. [Epidemiological characteristics of influenza virus and respiratory syncytial virus among children in Wuhan area from 2008 to 2012].Chin. J. Prev. Med201347541541923958123
    [Google Scholar]
  106. PriceO.H. SullivanS.G. SutterbyC. DruceJ. CarvilleK.S. Using routine testing data to understand circulation patterns of influenza A, respiratory syncytial virus and other respiratory viruses in Victoria, Australia.Epidemiol. Infect.2019147e22110.1017/S095026881900105531364539
    [Google Scholar]
  107. KumarN. SharmaS. BaruaS. TripathiB.N. RouseB.T. Virological and immunological outcomes of coinfections.Clin. Microbiol. Rev.2018314e00111-1710.1128/CMR.00111‑1729976554
    [Google Scholar]
  108. MeskillS.D. RevellP.A. ChandramohanL. CruzA.T. Prevalence of co-infection between respiratory syncytial virus and influenza in children.Am. J. Emerg. Med.201735349549810.1016/j.ajem.2016.12.00128012809
    [Google Scholar]
  109. GeorgeJ.A. AlShamsiS.H. AlhammadiM.H. AlsuwaidiA.R. Exacerbation of influenza a virus disease severity by respiratory syncytial virus co-infection in a mouse model.Viruses2021138163010.3390/v1308163034452495
    [Google Scholar]
  110. CarmanK.B. CalikM. KaralY. IsikayS. KocakO. OzcelikA. YazarA.S. NuhogluC. SagC. KilicO. DinleyiciM. Lacinel GurlevikS. YimeniciogluS. EkiciA. PerkP. TosunA. IsikI. YararC. ArslantasD. DinleyiciE.C. Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study).Hum. Vaccin. Immunother.201915249650210.1080/21645515.2018.152658830235060
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X284282240215114315
Loading
/content/journals/crmr/10.2174/011573398X284282240215114315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test