Skip to content
2000
image of Neurobiological Mechanisms of Ketamine Use, its Addiction, and Withdrawal: A Mini Review

Abstract

Ketamine, a substance used for anesthesia and known for inducing dissociation, can lead to addiction and the development of severe withdrawal symptoms. Ketamine alters brain networks before affecting somesthetic sensation. Ketamine abuse was especially prevalent in East and Southeast Asia, and its popularity has continued to expand globally in recent decades. Ketamine is gaining popularity in the public and private sectors as a cheaper off-label depression treatment. Unfortunately, ketamine may cause side effects, such as heart and blood vessel instability, respiratory depression, liver injury, hallucinations, . The pain-relieving and mental effects of ketamine might induce reliance; thus, it should be used cautiously. This review highlights the neurobiological processes underpinnings of ketamine's addictive potential, withdrawal, and its effects on brain networks like the prefrontal cortex, hippocampus, and mesolimbic pathway, which play vital roles in decision-making, memory, and reward processing. In addition, the involvement of neurotransmitter systems, specifically glutamate and dopamine, in mediating the addictive properties of ketamine and the neuroadaptive changes that occurred during withdrawal are also discussed. It also explains that low-dose ketamine can alter the secretion of stress hormone cortisol and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, possibly attributed to the current repurposing study of ketamine as a fast-acting antidepressant. Understanding these pathways is essential for developing effective ketamine addiction treatments, managing withdrawal symptoms, and possibly reversing brain changes for the betterment of human health and psychological well-being.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328362434250224105609
2025-03-03
2025-03-28
Loading full text...

Full text loading...

References

  1. DeWilde K.E. Levitch C.F. Murrough J.W. Mathew S.J. Iosifescu D.V. The promise of ketamine for treatment‐resistant depression: Current evidence and future directions. Ann. N. Y. Acad. Sci. 2015 1345 1 47 58 10.1111/nyas.12646 25649308
    [Google Scholar]
  2. Powers A.R. III Gancsos M.G. Finn E.S. Morgan P.T. Corlett P.R. Ketamine-induced hallucinations. Psychopathology 2015 48 6 376 385 10.1159/000438675 26361209
    [Google Scholar]
  3. Alshammari T.K. The ketamine antidepressant story: New insights. Molecules 2020 25 23 5777 10.3390/molecules25235777 33297563
    [Google Scholar]
  4. Understanding current use of ketamine for emerging areas of therapeutic interest 2024 Available from: https://www.fda.gov/drugs/news-events-human-drugs/understanding-current-use-ketamine-emerging-areas-therapeutic-interest-06272024
  5. FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic. 2020 Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified
  6. Li J.H. Kasinather V. Cheung Y-W. Zhou W. Nurhidayat A.W. Jarlais D. Schottenfeld R. To use or not to use: An update on licit and illicit ketamine use. Subst. Abuse Rehabil. 2011 2 11 20 10.2147/SAR.S15458 24474851
    [Google Scholar]
  7. Beerten S.G. Matheï C. Aertgeerts B. Ketamine misuse: An update for primary care. Br. J. Gen. Pract. 2023 73 727 87 89 10.3399/bjgp23X731997 36702586
    [Google Scholar]
  8. Gandolfo P. Soeiro T. Jouve É. Revol B. Daveluy A. Bertin C. Eiden C. Gibaja V. Chaouachi L. Pérault-Pochat M.C. Chevallier C. Aquizérate A. Le Boisselier R. Carton L. Lapeyre-Mestre M. Frauger É. Lacroix C. Micallef J. Patterns of ketamine use among people with substance use disorder in France: Multisource analysis of the data from the French Addictovigilance Network. Fundam. Clin. Pharmacol. 2024 38 5 978 987 10.1111/fcp.12995 38372190
    [Google Scholar]
  9. Palamar J.J. Rutherford C. Keyes K.M. Trends in ketamine use, exposures, and seizures in the United States up to 2019. Am. J. Public Health 2021 111 11 2046 2049 10.2105/AJPH.2021.306486 34618543
    [Google Scholar]
  10. Lalonde R. Joyal C.C. Effects of ketamine and L-glutamic acid diethyl ester on spatial and nonspatial learning tasks in rats. Pharmacol. Biochem. Behav. 1993 44 3 539 545 10.1016/0091‑3057(93)90164‑O 8451257
    [Google Scholar]
  11. Liao Y. Tang Y. Hao W. Ketamine and international regulations. Am. J. Drug Alcohol Abuse 2017 43 5 495 504 10.1080/00952990.2016.1278449 28635347
    [Google Scholar]
  12. E/CN.7/2014/1 Annotated provisional agenda 2013. 2013 Available from: https://www.unodc.org/documents/commissions/CND/CND_Sessions/CND_57/_E-CN7-2014-01/E-CN7-2014-1_V1389004_E.pdf
  13. Further information provided by the People’s Republic of China on the proposed scheduling of ketamine 2015 2015 Available from: https://www.unodc.org/documents/commissions/CND/CND_Sessions/CND_58/ECN72015_CRP5e_V1501482.pdf
  14. Harding L. Regulating ketamine use in psychiatry. J. Am. Acad. Psychiatry Law 2023 51 3 320 325 37657825
    [Google Scholar]
  15. Rosenbaum S.B. Gupta V. Patel P. Palacios J.L. Adverse effects. Ketamine. StatPearls Publishing 2024
    [Google Scholar]
  16. Zhang M.W. Harris K.M. Ho R.C. Is Off-label repeat prescription of ketamine as a rapid antidepressant safe? Controversies, ethical concerns, and legal implications. BMC Med. Ethics 2016 17 1 4 10.1186/s12910‑016‑0087‑3 26768892
    [Google Scholar]
  17. Li L. Vlisides P.E. Ketamine: 50 Years of modulating the mind. Front. Hum. Neurosci. 2016 10 612 10.3389/fnhum.2016.00612 27965560
    [Google Scholar]
  18. Wang C. Zheng D. Xu J. Lam W. Yew D.T. Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front. Neuroanat. 2013 7 23 10.3389/fnana.2013.00023 23882190
    [Google Scholar]
  19. Zanos P. Moaddel R. Morris P.J. Riggs L.M. Highland J.N. Georgiou P. Pereira E.F.R. Albuquerque E.X. Thomas C.J. Zarate C.A. Jr Gould T.D. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 2018 70 3 621 660 10.1124/pr.117.015198 29945898
    [Google Scholar]
  20. Zorumski C.F. Izumi Y. Mennerick S. Ketamine: NMDA receptors and beyond. J. Neurosci. 2016 36 44 11158 11164 10.1523/JNEUROSCI.1547‑16.2016 27807158
    [Google Scholar]
  21. Lazarevic V. Yang Y. Flais I. Svenningsson P. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors. Mol. Psychiatry 2021 26 12 7425 7435 10.1038/s41380‑021‑01246‑3 34376822
    [Google Scholar]
  22. Hansen K.B. Yi F. Perszyk R.E. Menniti F.S. Traynelis S.F. NMDA receptors in the central nervous system. Methods Mol. Biol. 2017 1677 1 80 10.1007/978‑1‑4939‑7321‑7_1 28986865
    [Google Scholar]
  23. Zhang C. Li Z. Wu Z. Chen J. Wang Z. Peng D. Hong W. Yuan C. Wang Z. Yu S. Xu Y. Xu L. Xiao Z. Fang Y. A study of N-methyl-D-aspartate receptor gene (GRIN2B) variants as predictors of treatment-resistant major depression. Psychopharmacology 2014 231 4 685 693 10.1007/s00213‑013‑3297‑0 24114429
    [Google Scholar]
  24. Lv S. Yao K. Zhang Y. Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023 225 109378 10.1016/j.neuropharm.2022.109378 36539011
    [Google Scholar]
  25. Pribish A. Wood N. Kalava A. A review of nonanesthetic uses of ketamine. Anesthesiol. Res. Pract. 2020 2020 1 15 10.1155/2020/5798285 32308676
    [Google Scholar]
  26. Niquet J. Baldwin R. Norman K. Suchomelova L. Lumley L. Wasterlain C.G. Midazolam–ketamine dual therapy stops cholinergic status epilepticus and reduces Morris water maze deficits. Epilepsia 2016 57 9 1406 1415 10.1111/epi.13480 27500978
    [Google Scholar]
  27. Mion G. Villevieille T. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci. Ther. 2013 19 6 370 380 10.1111/cns.12099 23575437
    [Google Scholar]
  28. Sanacora G. Frye M.A. McDonald W. Mathew S.J. Turner M.S. Schatzberg A.F. Summergrad P. Nemeroff C.B. A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry 2017 74 4 399 405 10.1001/jamapsychiatry.2017.0080 28249076
    [Google Scholar]
  29. Caffino L. Di Chio M. Giannotti G. Venniro M. Mutti A. Padovani L. Cheung D. Fumagalli G.F. Yew D.T. Fumagalli F. Chiamulera C. The modulation of BDNF expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: Effects of single infusion vs. chronic self-administration in rats. Pharmacol. Res. 2016 104 22 30 10.1016/j.phrs.2015.12.014 26706783
    [Google Scholar]
  30. Caffino L. Mottarlini F. Piva A. Rizzi B. Fumagalli F. Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024 242 109767 10.1016/j.neuropharm.2023.109767 37858883
    [Google Scholar]
  31. Wilkinson S.T. Toprak M. Turner M.S. Levine S.P. Katz R.B. Sanacora G. A survey of the clinical, off-label use of ketamine as a treatment for psychiatric disorders. Am. J. Psychiatry 2017 174 7 695 696 10.1176/appi.ajp.2017.17020239 28669202
    [Google Scholar]
  32. Samsudin N. Bailey R.P. Ries F. Hashim S.N.A.B. Fernandez J.A. Assessing the impact of physical activity on reducing depressive symptoms: A rapid review. BMC Sports Sci. Med. Rehabil. 2024 16 1 107 10.1186/s13102‑024‑00895‑5 38720395
    [Google Scholar]
  33. Thelen C. Sens J. Mauch J. Pandit R. Pitychoutis P.M. Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav. Brain Res. 2016 312 305 312 10.1016/j.bbr.2016.06.041 27343934
    [Google Scholar]
  34. Franceschelli A. Sens J. Herchick S. Thelen C. Pitychoutis P.M. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and “depressed” mice exposed to chronic mild stress. Neuroscience 2015 290 49 60 10.1016/j.neuroscience.2015.01.008 25595985
    [Google Scholar]
  35. Lewis R.G. Florio E. Punzo D. Borrelli E. The brain’s reward system in health and disease. Adv. Exp. Med. Biol. 2021 1344 57 69 10.1007/978‑3‑030‑81147‑1_4 34773226
    [Google Scholar]
  36. Shi M. Ding J. Li L. Bai H. Li X. Lan L. Fan H. Gao L. Effects of ketamine on learning and memory in the hippocampus of rats through ERK, CREB, and Arc. Brain Sci. 2020 11 1 27 10.3390/brainsci11010027 33383707
    [Google Scholar]
  37. Datta M.S. Chen Y. Chauhan S. Zhang J. De La Cruz E.D. Gong C. Tomer R. Whole-brain mapping reveals the divergent impact of ketamine on the dopamine system. Cell Rep. 2023 42 12 113491 10.1016/j.celrep.2023.113491 38052211
    [Google Scholar]
  38. Kotoula V. Stringaris A. Mackes N. Mazibuko N. Hawkins P.C.T. Furey M. Curran H.V. Mehta M.A. Ketamine modulates the neural correlates of reward processing in unmedicated patients in remission from depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022 7 3 285 292 10.1016/j.bpsc.2021.05.009 34126264
    [Google Scholar]
  39. Caffino L. Piva A. Mottarlini F. Di Chio M. Giannotti G. Chiamulera C. Fumagalli F. Ketamine self-administration elevates αCaMKII autophosphorylation in mood and reward-related brain regions in rats. Mol. Neurobiol. 2018 55 7 5453 5461 10.1007/s12035‑017‑0772‑3 28948570
    [Google Scholar]
  40. Liu F. Patterson T.A. Sadovova N. Zhang X. Liu S. Zou X. Hanig J.P. Paule M.G. Slikker W. Jr Wang C. Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicol. Sci. 2013 131 2 548 557 10.1093/toxsci/kfs296 23065140
    [Google Scholar]
  41. Volkow N.D. Wang G.J. Fowler J.S. Tomasi D. Telang F. Baler R. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. BioEssays 2010 32 9 748 755 10.1002/bies.201000042 20730946
    [Google Scholar]
  42. Volkow N.D. Michaelides M. Baler R. The neuroscience of drug reward and addiction. Physiol. Rev. 2019 99 4 2115 2140 10.1152/physrev.00014.2018 31507244
    [Google Scholar]
  43. Huang M.C. Chen C.H. Chen L.Y. Chang H.M. Chen C.K. Lin S.K. Xu K. Chronic ketamine abuse is associated with orexin-A reduction and ACTH elevation. Psychopharmacology 2020 237 1 45 53 10.1007/s00213‑019‑05342‑9 31377886
    [Google Scholar]
  44. Vinson G.P. Brennan C.H. Addiction and the adrenal cortex. Endocr. Connect. 2013 2 3 R1 R14 10.1530/EC‑13‑0028 23825159
    [Google Scholar]
  45. Sinha R. Stress and substance use disorders: Risk, relapse, and treatment outcomes. J. Clin. Invest. 2024 134 16 e172883 10.1172/JCI172883 39145454
    [Google Scholar]
  46. Soravia L.M. Moggi F. de Quervain D.J.F. Effects of cortisol administration on craving during in vivo exposure in patients with alcohol use disorder. Transl. Psychiatry 2021 11 1 6 10.1038/s41398‑020‑01180‑y 33414435
    [Google Scholar]
  47. Lüscher C. Malenka R.C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 2012 4 6 a005710 10.1101/cshperspect.a005710 22510460
    [Google Scholar]
  48. Jun H. Mohammed Qasim Hussaini S. Rigby M.J. Jang M.H. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast. 2012 2012 1 20 10.1155/2012/854285 23346419
    [Google Scholar]
  49. Malberg J.E. Eisch A.J. Nestler E.J. Duman R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000 20 24 9104 9110 10.1523/JNEUROSCI.20‑24‑09104.2000 11124987
    [Google Scholar]
  50. Rawat R. Tunc-Ozcan E. McGuire T.L. Peng C.Y. Kessler J.A. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat. Commun. 2022 13 1 2650 10.1038/s41467‑022‑30386‑5 35551462
    [Google Scholar]
  51. Li N. Lee B. Liu R.J. Banasr M. Dwyer J.M. Iwata M. Li X.Y. Aghajanian G. Duman R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010 329 5994 959 964 10.1126/science.1190287 20724638
    [Google Scholar]
  52. Moda-Sava R.N. Murdock M.H. Parekh P.K. Fetcho R.N. Huang B.S. Huynh T.N. Witztum J. Shaver D.C. Rosenthal D.L. Alway E.J. Lopez K. Meng Y. Nellissen L. Grosenick L. Milner T.A. Deisseroth K. Bito H. Kasai H. Liston C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 2019 364 6436 eaat8078 10.1126/science.aat8078 30975859
    [Google Scholar]
  53. Phoumthipphavong V Barthas F Hassett S Kwan AC Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 2016 3 2
    [Google Scholar]
  54. Wu H. Savalia N.K. Kwan A.C. Ketamine for a boost of neural plasticity: How, but also when? Biol. Psychiatry 2021 89 11 1030 1032 10.1016/j.biopsych.2021.03.014 34016377
    [Google Scholar]
  55. Wu M. Minkowicz S. Dumrongprechachan V. Hamilton P. Kozorovitskiy Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol. Psychiatry 2021 89 11 1096 1105 10.1016/j.biopsych.2020.12.022 33637303
    [Google Scholar]
  56. Duman R.S. Aghajanian G.K. Sanacora G. Krystal J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016 22 3 238 249 10.1038/nm.4050 26937618
    [Google Scholar]
  57. Hedrick N.G. Harward S.C. Hall C.E. Murakoshi H. McNamara J.O. Yasuda R. Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 2016 538 7623 104 108 10.1038/nature19784 27680697
    [Google Scholar]
  58. Li X. Li Y. Zhao J. Li L. Wang Y. Zhang Y. Li Y. Chen Y. Liu W. Gao L. Administration of ketamine causes autophagy and apoptosis in the rat fetal hippocampus and in PC12 cells. Front. Cell. Neurosci. 2018 12 21 10.3389/fncel.2018.00021 29456493
    [Google Scholar]
  59. Dong C. Anand K.J.S. Developmental neurotoxicity of ketamine in pediatric clinical use. Toxicol. Lett. 2013 220 1 53 60 10.1016/j.toxlet.2013.03.030 23566897
    [Google Scholar]
  60. Yan J. Jiang H. Dual effects of ketamine: Neurotoxicity versus neuroprotection in anesthesia for the developing brain. J. Neurosurg. Anesthesiol. 2014 26 2 155 160 10.1097/ANA.0000000000000027 24275940
    [Google Scholar]
  61. Szczurowska E. Mareš P. NMDA and AMPA receptors: Development and status epilepticus. Physiol. Res. 2013 62 Suppl. 1 S21 S38 10.33549/physiolres.932662 24329701
    [Google Scholar]
  62. Kavalali E.T. Monteggia L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 2020 106 5 715 726 10.1016/j.neuron.2020.05.015 32497508
    [Google Scholar]
  63. Weckmann K. Deery M.J. Howard J.A. Feret R. Asara J.M. Dethloff F. Filiou M.D. Labermaier C. Maccarrone G. Lilley K.S. Mueller M. Turck C.W. Ketamine’s effects on the glutamatergic and GABAergic systems: A proteomics and metabolomics study in mice. Mol. Neuropsychiatry 2019 5 1 42 51 31019917
    [Google Scholar]
  64. Leistner C. Menke A. Lanzenberger R. Kranz G.S. Savic I. Hypothalamic–pituitary–adrenal axis and stress. Handbook of Clinical Neurology. Elsevier 2020 55 64
    [Google Scholar]
  65. Choudhury D. Autry A.E. Tolias K.F. Krishnan V. Ketamine: Neuroprotective or neurotoxic? Front. Neurosci. 2021 15 672526 10.3389/fnins.2021.672526 34566558
    [Google Scholar]
  66. Liao Y. Tang J. Corlett P.R. Wang X. Yang M. Chen H. Liu T. Chen X. Hao W. Fletcher P.C. Reduced dorsal prefrontal gray matter after chronic ketamine use. Biol. Psychiatry 2011 69 1 42 48 10.1016/j.biopsych.2010.08.030 21035788
    [Google Scholar]
  67. Liao Y. Tang J. Ma M. Wu Z. Yang M. Wang X. Liu T. Chen X. Fletcher P.C. Hao W. Frontal white matter abnormalities following chronic ketamine use: A diffusion tensor imaging study. Brain 2010 133 7 2115 2122 10.1093/brain/awq131 20519326
    [Google Scholar]
  68. Li Q. Shi L. Lu G. Yu H.L. Yeung F.K. Wong N.K. Sun L. Liu K. Yew D. Pan F. Wang D.F. Sham P.C. Chronic ketamine exposure causes white matter microstructural abnormalities in adolescent Cynomolgus monkeys. Front. Neurosci. 2017 11 285 10.3389/fnins.2017.00285 28579941
    [Google Scholar]
  69. Lopes-Aguiar C. Ruggiero R.N. Rossignoli M.T. Esteves I.M. Peixoto-Santos J.E. Romcy-Pereira R.N. Leite J.P. Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo. Sci. Rep. 2020 10 1 7167 10.1038/s41598‑020‑63979‑5 32346044
    [Google Scholar]
  70. Khalili-Mahani N. Martini C.H. Olofsen E. Dahan A. Niesters M. Effect of subanaesthetic ketamine on plasma and saliva cortisol secretion. Br. J. Anaesth. 2015 115 1 68 75 10.1093/bja/aev135 25982133
    [Google Scholar]
  71. McNaughton N. The role of the subiculum within the behavioural inhibition system. Behav. Brain Res. 2006 174 2 232 250 10.1016/j.bbr.2006.05.037 16887202
    [Google Scholar]
  72. Toffanin T. Nifosì F. Follador H. Passamani A. Zonta F. Ferri G. Scanarini M. Amistà P. Pigato G. Scaroni C. Mantero F. Carollo C. Perini G.I. Volumetric MRI analysis of hippocampal subregions in Cushing’s disease: A model for glucocorticoid neural modulation. Eur. Psychiatry 2011 26 1 64 67 10.1016/j.eurpsy.2010.09.003 21067899
    [Google Scholar]
  73. Vythilingam M. Luckenbaugh D.A. Lam T. Morgan C.A. III Lipschitz D. Charney D.S. Bremner J.D. Southwick S.M. Smaller head of the hippocampus in Gulf War-related posttraumatic stress disorder. Psychiatry Res. Neuroimaging 2005 139 2 89 99 10.1016/j.pscychresns.2005.04.003 15967648
    [Google Scholar]
  74. Nandam L.S. Brazel M. Zhou M. Jhaveri D.J. Cortisol and major depressive disorder—Translating findings from humans to animal models and back. Front. Psychiatry 2020 10 974 10.3389/fpsyt.2019.00974 32038323
    [Google Scholar]
  75. Anderzhanova E. Hafner K. Genewsky A.J. Soliman A. Pöhlmann M.L. Schmidt M.V. Blum R. Wotjak C.T. Gassen N.C. The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice. Neurobiol. Stress 2020 13 100239 10.1016/j.ynstr.2020.100239 33344695
    [Google Scholar]
  76. Deyama S. Bang E. Wohleb E.S. Li X.Y. Kato T. Gerhard D.M. Dutheil S. Dwyer J.M. Taylor S.R. Picciotto M.R. Duman R.S. Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am. J. Psychiatry 2019 176 5 388 400 10.1176/appi.ajp.2018.17121368 30606046
    [Google Scholar]
  77. Dutton M. Can A.T. Beaudequin D. Jensen E. Jones M. Gallay C.C. Schwenn P.E. Scherman J.K. Yang C. Forsyth G. Lagopoulos J. Hermens D.F. Oral ketamine reduces the experience of stress in people with chronic suicidality. J. Affect. Disord. 2022 300 410 417 10.1016/j.jad.2022.01.018 35016117
    [Google Scholar]
  78. Dutton M. Can A.T. Lagopoulos J. Hermens D.F. Stress, mental disorder and ketamine as a novel, rapid acting treatment. Eur. Neuropsychopharmacol. 2022 65 15 29 10.1016/j.euroneuro.2022.09.006 36206584
    [Google Scholar]
  79. Duman R.S. Sanacora G. Krystal J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019 102 1 75 90 10.1016/j.neuron.2019.03.013 30946828
    [Google Scholar]
  80. Jansen K.L.R. Darracot-Cankovic R. The nonmedical use of ketamine, part two: A review of problem use and dependence. J. Psychoactive Drugs 2001 33 2 151 158 10.1080/02791072.2001.10400480 11476262
    [Google Scholar]
  81. Cosci F. Chouinard G. Acute and persistent withdrawal syndromes following discontinuation of psychotropic medications. Psychother. Psychosom. 2020 89 5 283 306 10.1159/000506868 32259826
    [Google Scholar]
  82. Pal H.R. Berry N. Kumar R. Ray R. Ketamine dependence. Anaesth. Intensive Care 2002 30 3 382 384 10.1177/0310057X0203000323 12075653
    [Google Scholar]
  83. Morgan C.J.A. Monaghan L. Curran H.V. Beyond the K‐hole: A 3‐year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction 2004 99 11 1450 1461 10.1111/j.1360‑0443.2004.00879.x 15500598
    [Google Scholar]
  84. Morgan C.J.A. Curran H.V. Ketamine use: A review. Addiction 2012 107 1 27 38 10.1111/j.1360‑0443.2011.03576.x 21777321
    [Google Scholar]
  85. Khoodoruth M.A.S. Estudillo-Guerra M.A. Pacheco-Barrios K. Nyundo A. Chapa-Koloffon G. Ouanes S. Glutamatergic aystem in sepression and its role in neuromodulatory techniques optimization. Front. Psychiatry 2022 13 886918 10.3389/fpsyt.2022.886918 35492692
    [Google Scholar]
  86. Vines L. Sotelo D. Johnson A. Dennis E. Manza P. Volkow N.D. Wang G.J. Ketamine use disorder: Preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. Intell. Med. 2022 2 2 61 68 10.1016/j.imed.2022.03.001 35783539
    [Google Scholar]
  87. Harda Z. Misiołek K. Klimczak M. Chrószcz M. Rodriguez Parkitna J. Withdrawal from sub-chronic ketamine does not produce psychotic-like behavior in C57BL/6N mice. SSRN 2021Available from: https://ssrn.com/abstract=3926148 10.2139/ssrn.3926148
    [Google Scholar]
  88. Beck K. Hindley G. Borgan F. Ginestet C. McCutcheon R. Brugger S. Driesen N. Ranganathan M. D’Souza D.C. Taylor M. Krystal J.H. Howes O.D. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: A systematic review and meta-analysis. JAMA Netw. Open 2020 3 5 e204693 10.1001/jamanetworkopen.2020.4693 32437573
    [Google Scholar]
  89. Neill J.C. Harte M.K. Haddad P.M. Lydall E.S. Dwyer D.M. Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: A translational link to humans. Eur. Neuropsychopharmacol. 2014 24 5 822 835 10.1016/j.euroneuro.2013.09.011 24287012
    [Google Scholar]
  90. de Carvalho Cartágenes S. Fernandes L.M.P. Carvalheiro T.C.V.S. de Sousa T.M. Gomes A.R.Q. Monteiro M.C. de Oliveira Paraense R.S. Crespo-López M.E. Lima R.R. Fontes-Júnior E.A. Prediger R.D. Maia C.S.F. “Special K” drug on adolescent rats: Oxidative damage and neurobehavioral impairments. Oxid. Med. Cell. Longev. 2019 2019 1 1 10 10.1155/2019/5452727 31001375
    [Google Scholar]
  91. Cartágenes S.C. da Silveira C.C.S.M. Pinheiro B.G. Fernandes L.M.P. Farias S.V. Kobayashi N.H.C. de Souza P.H.F.S. Prado A.F. Ferreira M.K.M. Lima R.R. de Oliveira E.H.C. de Luna F.C.F. Burbano R.M.R. Fontes-Júnior E.A. Maia C.S.F. “K-Powder” exposure during adolescence elicits psychiatric disturbances associated with oxidative stress in female rats. Pharmaceuticals 2022 15 11 1373 10.3390/ph15111373 36355545
    [Google Scholar]
  92. Strous J.F.M. Weeland C.J. van der Draai F.A. Daams J.G. Denys D. Lok A. Schoevers R.A. Figee M. Brain changes associated with long-term ketamine abuse, A systematic review. Front. Neuroanat. 2022 16 795231 10.3389/fnana.2022.795231 35370568
    [Google Scholar]
  93. Mukherjee D. Stankoski D.M. Tilden S.E. Huhn A.S. Bixler E.O. Kong L. Meyer R.E. Deneke E. Freet C.S. Bunce S.C. Reregulation of cortisol levels and sleep in patients with prescription opioid use disorder during long-term residential treatment. Drug Alcohol Depend. 2021 227 108931 10.1016/j.drugalcdep.2021.108931 34392049
    [Google Scholar]
  94. Maddox-Rooper T.R. Sklioutouskaya-Lopez K. Sturgill T. Fresch C. Clements C.W. II Lamichhane R. Egleton R. Davies T.H. Intake assessments of salivary cortisol, survey responses, and adverse childhood experiences are associated with recovery success in an abstinence‐based treatment program for substance use disorders. Alcohol. Clin. Exp. Res. 2022 46 10 1865 1874 10.1111/acer.14913 36016476
    [Google Scholar]
  95. Abdulrahim D. Bowden-Jones O. Textbook of Clinical Management of Club Drugs and Novel Psychoactive Substances: NEPTUNE Clinical Guidance. Cambridge University Press Cambridge 2022 10.1017/9781009182126
    [Google Scholar]
  96. Chen L.Y. Chen C.K. Chen C.H. Chang H.M. Huang M.C. Xu K. Association of craving and depressive symptoms in ketamine-dependent patients undergoing withdrawal treatment. Am. J. Addict. 2020 29 1 43 50 10.1111/ajad.12978 31691402
    [Google Scholar]
  97. Lim D.K. Ketamine associated psychedelic effects and dependence. Singapore Med. J. 2003 44 1 31 34 12762561
    [Google Scholar]
  98. Roxas N. Ahuja C. Isom J. Wilkinson S.T. Capurso N. A potential case of acute ketamine withdrawal: Clinical implications for the treatment of refractory depression. Am. J. Psychiatry 2021 178 7 588 591 10.1176/appi.ajp.2020.20101480 34270337
    [Google Scholar]
  99. Roberts E. Sanderson E. Guerrini I. The pharmacological management of ketamine use disorder: A systematic review. J. Addict. Med. 2024 18 5 574 579 10.1097/ADM.0000000000001340 38922637
    [Google Scholar]
  100. Schwenk E.S. Viscusi E.R. Buvanendran A. Hurley R.W. Wasan A.D. Narouze S. Bhatia A. Davis F.N. Hooten W.M. Cohen S.P. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American society of regional anesthesia and pain medicine, the American Academy of pain medicine, and the American society of anesthesiologists. Reg. Anesth. Pain Med. 2018 43 5 1 10.1097/AAP.0000000000000806 29870457
    [Google Scholar]
  101. Winstock A.R. Mitcheson L. Gillatt D.A. Cottrell A.M. The prevalence and natural history of urinary symptoms among recreational ketamine users. BJU Int. 2012 110 11 1762 1766 10.1111/j.1464‑410X.2012.11028.x 22416998
    [Google Scholar]
  102. Van Amsterdam J. Van Den Brink W. Harm related to recreational ketamine use and its relevance for the clinical use of ketamine. A systematic review and comparison study. Expert Opin. Drug Saf. 2022 21 1 83 94 10.1080/14740338.2021.1949454 34176409
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328362434250224105609
Loading
/content/journals/crcep/10.2174/0127724328362434250224105609
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: glutamate ; glutamate receptor ; addiction ; neurobiology ; Ketamine ; withdrawal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test