Skip to content
2000
image of Influence of the Gut Microbiota, Metabolism and Environment on
Neuropsychiatric Disorders

Abstract

The two-way communication between intestinal microbiota and the central nervous system (the microbiota-gut-brain axis) is involved in the regulation of brain function, neurodevelopment, and aging. The microbiota-gut-brain axis dysfunction may be a predisposition factor for Parkinson’s disease (PD), Alzheimer’s disease (AD), Autism spectrum disorder (ASD), and other neurological diseases. However, it is not clear whether gut microbiota dysfunction contributes to neuropsychiatric disorders. Changes in the gut microbiota may modulate or modify the effects of environmental factors on neuropsychiatric disorders. Factors that impact neuropsychiatric disorders also influence the gut microbiota, including diet patterns, exercise, stress and functional gastrointestinal disorders. These factors change microbiome composition and function, along with the metabolism and immune responses that cause neuropsychiatric disorders. In this review, we summarized epidemiological and laboratory evidence for the influence of the gut microbiota, metabolism and environmental factors on neuropsychiatric disorders incidence and outcomes. Furthermore, the role of gut microbiota in the two-way interaction between the gut and the brain was also reviewed, including the vagus nerve, microbial metabolism, and immuno-inflammatory responses. We also considered the therapeutic strategies that target gut microbiota in the treatment of neuropsychiatric disorders, including prebiotics, probiotics, Fecal microbiota transplant (FMT), and antibiotics. Based on these data, possible strategies for microbiota-targeted intervention could improve people’s lives and prevent neuropsychiatric disorders in the future.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328335219241202142003
2024-12-13
2025-01-19
Loading full text...

Full text loading...

References

  1. Hashioka S. Inoue K. Miyaoka T. Hayashida M. Wake R. Oh-Nishi A. Inagaki M. The possible causal link of periodontitis to neuropsychiatric disorders: More than psychosocial mechanisms. Int. J. Mol. Sci. 2019 20 15 3723 10.3390/ijms20153723 31366073
    [Google Scholar]
  2. Kim Y.K. Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: Patho-physiological mechanisms and novel treatments. Curr. Neuropharmacol. 2018 16 5 559 573 10.2174/1570159X15666170915141036 28925886
    [Google Scholar]
  3. Kim N. Yun M. Oh Y.J. Choi H.J. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. J. Microbiol. 2018 56 3 172 182 10.1007/s12275‑018‑8032‑4 29492874
    [Google Scholar]
  4. Dinan T.G. Cryan J.F. The impact of gut microbiota on brain and behaviour. Curr. Opin. Clin. Nutr. Metab. Care 2015 18 6 552 558 10.1097/MCO.0000000000000221 26372511
    [Google Scholar]
  5. Long-Smith C. O’Riordan K.J. Clarke G. Stanton C. Dinan T.G. Cryan J.F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 477 502 10.1146/annurev‑pharmtox‑010919‑023628 31506009
    [Google Scholar]
  6. Iannone L.F. Preda A. Blottière H.M. Clarke G. Albani D. Belcastro V. Carotenuto M. Cattaneo A. Citraro R. Ferraris C. Ronchi F. Luongo G. Santocchi E. Guiducci L. Baldelli P. Iannetti P. Pedersen S. Petretto A. Provasi S. Selmer K. Spalice A. Tagliabue A. Verrotti A. Segata N. Zimmermann J. Minetti C. Mainardi P. Giordano C. Sisodiya S. Zara F. Russo E. Striano P. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019 19 10 1037 1050 10.1080/14737175.2019.1638763 31260640
    [Google Scholar]
  7. Lin L. Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017 18 1 2 10.1186/s12865‑016‑0187‑3 28061847
    [Google Scholar]
  8. Sherwin E. Dinan T.G. Cryan J.F. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 2018 1420 1 5 25 10.1111/nyas.13416 28768369
    [Google Scholar]
  9. Bonaz B. Bazin T. Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 2018 12 49 10.3389/fnins.2018.00049 29467611
    [Google Scholar]
  10. van de Guchte M. Blottière H.M. Doré J. Humans as holobionts: Implications for prevention and therapy. Microbiome 2018 6 1 81 10.1186/s40168‑018‑0466‑8 29716650
    [Google Scholar]
  11. Dickson D.W. Neuropathology of parkinson disease. Parkinsonism Relat. Disord. 2018 46 Suppl 1 Suppl. 1 S30 S33 10.1016/j.parkreldis.2017.07.033 28780180
    [Google Scholar]
  12. Perez-Pardo P. Dodiya H.B. Broersen L.M. Douna H. van Wijk N. Lopes da Silva S. Garssen J. Keshavarzian A. Kraneveld A.D. Gut–brain and brain–gut axis in parkinson’s disease models: Effects of a uridine and fish oil diet. Nutr. Neurosci. 2018 21 6 391 402 10.1080/1028415X.2017.1294555 28276272
    [Google Scholar]
  13. Sun M.F. Shen Y.Q. Dysbiosis of gut microbiota and microbial metabolites in parkinson’s disease. Ageing Res. Rev. 2018 45 53 61 10.1016/j.arr.2018.04.004 29705121
    [Google Scholar]
  14. Devos D. Lebouvier T. Lardeux B. Biraud M. Rouaud T. Pouclet H. Coron E. Bruley des Varannes S. Naveilhan P. Nguyen J.M. Neunlist M. Derkinderen P. Colonic inflammation in parkinson’s disease. Neurobiol. Dis. 2013 50 42 48 10.1016/j.nbd.2012.09.007 23017648
    [Google Scholar]
  15. Vidal-Martinez G. Chin B. Camarillo C. Herrera G.V. Yang B. Sarosiek I. Perez R.G. A pilot microbiota study in parkinson’s disease patients versus control subjects, and effects of fty720 and fty720-mitoxy therapies in parkinsonian and multiple system atrophy mouse models. J. Parkinsons Dis. 2020 10 1 185 192 10.3233/JPD‑191693 31561385
    [Google Scholar]
  16. Li C. Cui L. Yang Y. Miao J. Zhao X. Zhang J. Cui G. Zhang Y. Gut microbiota differs between parkinson’s disease patients and healthy controls in northeast china. Front. Mol. Neurosci. 2019 12 171 10.3389/fnmol.2019.00171 31354427
    [Google Scholar]
  17. Seregin S.S. Golovchenko N. Schaf B. Chen J. Pudlo N.A. Mitchell J. Baxter N.T. Zhao L. Schloss P.D. Martens E.C. Eaton K.A. Chen G.Y. NLRP6 protects Il10−/− mice from colitis by limiting colonization of akkermansia muciniphila. Cell Rep. 2017 19 4 733 745 10.1016/j.celrep.2017.03.080 28445725
    [Google Scholar]
  18. Lin C.H. Chen C.C. Chiang H.L. Liou J.M. Chang C.M. Lu T.P. Chuang E.Y. Tai Y.C. Cheng C. Lin H.Y. Wu M.S. Altered gut microbiota and inflammatory cytokine responses in patients with parkinson’s disease. J. Neuroinflammation 2019 16 1 129 10.1186/s12974‑019‑1528‑y 31248424
    [Google Scholar]
  19. Lai F. Jiang R. Xie W. Liu X. Tang Y. Xiao H. Gao J. Jia Y. Bai Q. Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of parkinson’s disease. Neurochem. Res. 2018 43 10 1986 1999 10.1007/s11064‑018‑2620‑x 30171422
    [Google Scholar]
  20. Sun M.F. Zhu Y.L. Zhou Z.L. Jia X.B. Xu Y.D. Yang Q. Cui C. Shen Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun. 2018 70 48 60 10.1016/j.bbi.2018.02.005 29471030
    [Google Scholar]
  21. Sun M Ma K Wen J Wang GX Zhang CL Li Q A review of the brain-gut-microbiome axis and the potential role of microbiota in alzheimer's disease. J Alzheimer dis. 2020 73 3 849 865
    [Google Scholar]
  22. Kim M.S. Kim Y. Choi H. Kim W. Park S. Lee D. Kim D.K. Kim H.J. Choi H. Hyun D.W. Lee J.Y. Choi E.Y. Lee D.S. Bae J.W. Mook-Jung I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an alzheimer’s disease animal model. Gut 2020 69 2 283 294 10.1136/gutjnl‑2018‑317431 31471351
    [Google Scholar]
  23. Fujii Y. Nguyen T.T.T. Fujimura Y. Kameya N. Nakamura S. Arakawa K. Morita H. Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with alzheimer’s disease. Biosci. Biotechnol. Biochem. 2019 83 11 2144 2152 10.1080/09168451.2019.1644149 31327302
    [Google Scholar]
  24. Liu P. Wu L. Peng G. Han Y. Tang R. Ge J. Zhang L. Jia L. Yue S. Zhou K. Li L. Luo B. Wang B. Altered microbiomes distinguish alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 2019 80 633 643 10.1016/j.bbi.2019.05.008 31063846
    [Google Scholar]
  25. Zhuang Z.Q. Shen L.L. Li W.W. Fu X. Zeng F. Gui L. Lü Y. Cai M. Zhu C. Tan Y.L. Zheng P. Li H.Y. Zhu J. Zhou H.D. Bu X.L. Wang Y.J. Gut microbiota is altered in patients with alzheimer’s disease. J. Alzheimers Dis. 2018 63 4 1337 1346 10.3233/JAD‑180176 29758946
    [Google Scholar]
  26. Li B. He Y. Ma J. Huang P. Du J. Cao L. Wang Y. Xiao Q. Tang H. Chen S. Mild cognitive impairment has similar alterations as alzheimer’s disease in gut microbiota. Alzheimers Dement. 2019 15 10 1357 1366 10.1016/j.jalz.2019.07.002 31434623
    [Google Scholar]
  27. Wang F. Xu T. Zhang Y. Zheng T. He Y. He F. Jiang Y. Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice. FEMS Microbiol. Lett. 2020 367 7 fnaa048 10.1093/femsle/fnaa048 32239209
    [Google Scholar]
  28. Kaur H. Nagamoto-Combs K. Golovko S. Golovko M.Y. Klug M.G. Combs C.K. Probiotics ameliorate intestinal pathophysiology in a mouse model of alzheimer’s disease. Neurobiol. Aging 2020 92 114 134 10.1016/j.neurobiolaging.2020.04.009 32417748
    [Google Scholar]
  29. Corcoran J. Berry A. Hill S. The lived experience of US parents of children with autism spectrum disorders. J. Intellect. Disabil. 2015 19 4 356 366 10.1177/1744629515577876 25819433
    [Google Scholar]
  30. Sharon G. Cruz N.J. Kang D.W. Gandal M.J. Wang B. Kim Y.M. Zink E.M. Casey C.P. Taylor B.C. Lane C.J. Bramer L.M. Isern N.G. Hoyt D.W. Noecker C. Sweredoski M.J. Moradian A. Borenstein E. Jansson J.K. Knight R. Metz T.O. Lois C. Geschwind D.H. Krajmalnik-Brown R. Mazmanian S.K. Human gut microbiota from Autism spectrum disorder promote behavioral symptoms in mice. Cell 2019 177 6 1600 1618.e17 10.1016/j.cell.2019.05.004 31150625
    [Google Scholar]
  31. Sun H. You Z. Jia L. Wang F. Autism spectrum disorder is associated with gut microbiota disorder in children. BMC Pediatr. 2019 19 1 516 10.1186/s12887‑019‑1896‑6 31881951
    [Google Scholar]
  32. Xu M. Xu X. Li J. Li F. Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Front. Psychiatry 2019 10 473 10.3389/fpsyt.2019.00473 31404299
    [Google Scholar]
  33. Chen K. Fu Y. Wang Y. Liao L. Xu H. Zhang A. Zhang J. Fan L. Ren J. Fang B. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder. Microb. Ecol. 2020 80 2 475 486 10.1007/s00248‑020‑01494‑w 32100127
    [Google Scholar]
  34. Organization W.H. Depression and other common mental disorders: Global health estimates. 2017 Available from: https://www.who.int/publications/i/item/depression-global-health-estimates
  35. Papalini S. Michels F. Kohn N. Wegman J. van Hemert S. Roelofs K. Arias-Vasquez A. Aarts E. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol. Stress 2019 10 100141 10.1016/j.ynstr.2018.100141 30937347
    [Google Scholar]
  36. Song J. Zhou N. Ma W. Gu X. Chen B. Zeng Y. Yang L. Zhou M. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior. Food Funct. 2019 10 5 2947 2957 10.1039/C8FO02599A 31073553
    [Google Scholar]
  37. Zheng P. Yang J. Li Y. Wu J. Liang W. Yin B. Tan X. Huang Y. Chai T. Zhang H. Duan J. Zhou J. Sun Z. Chen X. Marwari S. Lai J. Huang T. Du Y. Zhang P. Perry S.W. Wong M.L. Licinio J. Hu S. Xie P. Wang G. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci. (Weinh.) 2020 7 7 1902862 10.1002/advs.201902862 32274300
    [Google Scholar]
  38. Kelly J.R. Borre Y. O’ Brien C. Patterson E. El Aidy S. Deane J. Kennedy P.J. Beers S. Scott K. Moloney G. Hoban A.E. Scott L. Fitzgerald P. Ross P. Stanton C. Clarke G. Cryan J.F. Dinan T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016 82 109 118 10.1016/j.jpsychires.2016.07.019 27491067
    [Google Scholar]
  39. van Os J. Kapur S. Schizophrenia. Lancet 2009 374 9690 635 645 10.1016/S0140‑6736(09)60995‑8 19700006
    [Google Scholar]
  40. Zheng P. Zeng B. Liu M. Chen J. Pan J. Han Y. Liu Y. Cheng K. Zhou C. Wang H. Zhou X. Gui S. Perry S.W. Wong M.L. Licinio J. Wei H. Xie P. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019 5 2 eaau8317 10.1126/sciadv.aau8317 30775438
    [Google Scholar]
  41. Zhu F. Guo R. Wang W. Ju Y. Wang Q. Ma Q. Sun Q. Fan Y. Xie Y. Yang Z. Jie Z. Zhao B. Xiao L. Yang L. Zhang T. Liu B. Guo L. He X. Chen Y. Chen C. Gao C. Xu X. Yang H. Wang J. Dang Y. Madsen L. Brix S. Kristiansen K. Jia H. Ma X. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry 2020 25 11 2905 2918 10.1038/s41380‑019‑0475‑4 31391545
    [Google Scholar]
  42. Zhang X. Pan L. Zhang Z. Zhou Y. Jiang H. Ruan B. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study. Behav. Brain Res. 2020 379 112374 10.1016/j.bbr.2019.112374 31759045
    [Google Scholar]
  43. Xu R. Wu B. Liang J. He F. Gu W. Li K. Luo Y. Chen J. Gao Y. Wu Z. Wang Y. Zhou W. Wang M. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav. Immun. 2020 85 120 127 10.1016/j.bbi.2019.06.039 31255682
    [Google Scholar]
  44. LeBlanc J.G. Chain F. Martín R. Bermúdez-Humarán L.G. Courau S. Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 2017 16 1 79 10.1186/s12934‑017‑0691‑z 28482838
    [Google Scholar]
  45. Unger M.M. Spiegel J. Dillmann K.U. Grundmann D. Philippeit H. Bürmann J. Faßbender K. Schwiertz A. Schäfer K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 2016 32 66 72 10.1016/j.parkreldis.2016.08.019 27591074
    [Google Scholar]
  46. Shin C. Lim Y. Lim H. Ahn T.B. Plasma short-chain fatty acids in patients with parkinson’s disease. Mov. Disord. 2020 35 6 1021 1027 10.1002/mds.28016 32154946
    [Google Scholar]
  47. Ktsoyan Z.A. Mkrtchyan M.S. Zakharyan M.K. Mnatsakanyan A.A. Arakelova K.A. Gevorgyan Z.U. Sedrakyan A.M. Hovhannisyan A.I. Arakelyan A.A. Aminov R.I. Systemic concentrations of short chain fatty acids are elevated in salmonellosis and exacerbation of familial mediterranean fever. Front. Microbiol. 2016 7 776 10.3389/fmicb.2016.00776 27252692
    [Google Scholar]
  48. Sampson T.R. Debelius J.W. Thron T. Janssen S. Shastri G.G. Ilhan Z.E. Challis C. Schretter C.E. Rocha S. Gradinaru V. Chesselet M.F. Keshavarzian A. Shannon K.M. Krajmalnik-Brown R. Wittung-Stafshede P. Knight R. Mazmanian S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 2016 167 6 1469 1480.e12 10.1016/j.cell.2016.11.018 27912057
    [Google Scholar]
  49. Zilberter Y. Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J. Neurosci. Res. 2017 95 11 2217 2235 10.1002/jnr.24064 28463438
    [Google Scholar]
  50. Ho L. Ono K. Tsuji M. Mazzola P. Singh R. Pasinetti G.M. Protective roles of intestinal microbiota derived short chain fatty acids in alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 2018 18 1 83 90 10.1080/14737175.2018.1400909 29095058
    [Google Scholar]
  51. Wang Y. Li N. Yang J.J. Zhao D.M. Chen B. Zhang G.Q. Chen S. Cao R.F. Yu H. Zhao C.Y. Zhao L. Ge Y.S. Liu Y. Zhang L.H. Hu W. Zhang L. Gai Z.T. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 2020 157 104784 10.1016/j.phrs.2020.104784 32305492
    [Google Scholar]
  52. Abdelli L.S. Samsam A. Naser S.A. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Sci. Rep. 2019 9 1 8824 10.1038/s41598‑019‑45348‑z 31217543
    [Google Scholar]
  53. Zhu H.Z. Liang Y.D. Ma Q.Y. Hao W.Z. Li X.J. Wu M.S. Deng L.J. Li Y.M. Chen J.X. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota. Biomed. Pharmacother. 2019 112 108621 10.1016/j.biopha.2019.108621 30798141
    [Google Scholar]
  54. Chriett S. Dąbek A. Wojtala M. Vidal H. Balcerczyk A. Pirola L. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep. 2019 9 1 742 10.1038/s41598‑018‑36941‑9 30679586
    [Google Scholar]
  55. Li S. Hua D. Wang Q. Yang L. Wang X. Luo A. Yang C. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress. Int. J. Neuropsychopharmacol. 2020 23 1 26 41 10.1093/ijnp/pyz061 31760425
    [Google Scholar]
  56. Jackson A. Forsyth C.B. Shaikh M. Voigt R.M. Engen P.A. Ramirez V. Keshavarzian A. Diet in parkinson’s disease: Critical role for the microbiome. Front. Neurol. 2019 10 1245 10.3389/fneur.2019.01245 31920905
    [Google Scholar]
  57. Ticinesi A. Tana C. Nouvenne A. Prati B. Lauretani F. Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: A systematic review. Clin. Interv. Aging 2018 13 1497 1511 10.2147/CIA.S139163 30214170
    [Google Scholar]
  58. Rieder R. Wisniewski P.J. Alderman B.L. Campbell S.C. Microbes and mental health: A review. Brain Behav. Immun. 2017 66 9 17 10.1016/j.bbi.2017.01.016 28131791
    [Google Scholar]
  59. Jianguo L. Xueyang J. Cui W. Changxin W. Xuemei Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 2019 9 1 40 10.1038/s41398‑019‑0391‑z 30696813
    [Google Scholar]
  60. Fattorusso A. Di Genova L. Dell’Isola G. Mencaroni E. Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients 2019 11 3 521 10.3390/nu11030521 30823414
    [Google Scholar]
  61. McMillin M. DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J. 2016 30 11 3658 3668 10.1096/fj.201600275R 27468758
    [Google Scholar]
  62. Rosa A.I. Duarte-Silva S. Silva-Fernandes A. Nunes M.J. Carvalho A.N. Rodrigues E. Gama M.J. Rodrigues C.M.P. Maciel P. Castro-Caldas M. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of parkinson’s disease. Mol. Neurobiol. 2018 55 12 9139 9155 10.1007/s12035‑018‑1062‑4 29651747
    [Google Scholar]
  63. Lo A.C. Callaerts-Vegh Z. Nunes A.F. Rodrigues C.M.P. D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol. Dis. 2013 50 21 29 10.1016/j.nbd.2012.09.003 22974733
    [Google Scholar]
  64. MahmoudianDehkordi S. Arnold M. Nho K. Ahmad S. Jia W. Xie G. Louie G. Kueider-Paisley A. Moseley M.A. Thompson J.W. St John Williams L. Tenenbaum J.D. Blach C. Baillie R. Han X. Bhattacharyya S. Toledo J.B. Schafferer S. Klein S. Koal T. Risacher S.L. Allan Kling M. Motsinger-Reif A. Rotroff D.M. Jack J. Hankemeier T. Bennett D.A. De Jager P.L. Trojanowski J.Q. Shaw L.M. Weiner M.W. Doraiswamy P.M. van Duijn C.M. Saykin A.J. Kastenmüller G. Kaddurah-Daouk R. Altered bile acid profile associates with cognitive impairment in alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement. 2019 15 1 76 92 10.1016/j.jalz.2018.07.217 30337151
    [Google Scholar]
  65. Pan X. Elliott C.T. McGuinness B. Passmore P. Kehoe P.G. Hölscher C. McClean P.L. Graham S.F. Green B.D. Metabolomic profiling of bile acids in clinical and experimental samples of alzheimer’s disease. Metabolites 2017 7 2 28 10.3390/metabo7020028 28629125
    [Google Scholar]
  66. Quinn M. McMillin M. Galindo C. Frampton G. Pae H.Y. DeMorrow S. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig. Liver Dis. 2014 46 6 527 534 10.1016/j.dld.2014.01.159 24629820
    [Google Scholar]
  67. Yang Y. Tian J. Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018 194 111 119 10.1016/j.lfs.2017.12.027 29277311
    [Google Scholar]
  68. Caspani G. Kennedy S. Foster J.A. Swann J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell 2019 6 10 454 481 10.15698/mic2019.10.693 31646148
    [Google Scholar]
  69. Barrett E. Ross R.P. O’Toole P.W. Fitzgerald G.F. Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 2012 113 2 411 417 10.1111/j.1365‑2672.2012.05344.x 22612585
    [Google Scholar]
  70. Takanaga H. Ohtsuki S. Hosoya K-I. Terasaki T. GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metab. 2001 21 10 1232 1239 10.1097/00004647‑200110000‑00012 11598501
    [Google Scholar]
  71. Brouillette J. Young D. During M.J. Quirion R. Hippocampal gene expression profiling reveals the possible involvement of Homer1 and GABA B receptors in scopolamine‐induced amnesia. J. Neurochem. 2007 102 6 1978 1989 10.1111/j.1471‑4159.2007.04666.x 17540011
    [Google Scholar]
  72. Gabriele S. Sacco R. Persico A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2014 24 6 919 929 10.1016/j.euroneuro.2014.02.004 24613076
    [Google Scholar]
  73. Mercado N.M. Collier T.J. Sortwell C.E. Steece-Collier K. BDNF in the aged brain: Translational implications for parkinson’s disease. Austin Neurol. Neurosci. 2017 2 2 1021 29726549
    [Google Scholar]
  74. Fernández-Novoa L. Cacabelos R. Histamine function in brain disorders. Behav. Brain Res. 2001 124 2 213 233 10.1016/S0166‑4328(01)00215‑7 11640975
    [Google Scholar]
  75. Newell C. Bomhof M.R. Reimer R.A. Hittel D.S. Rho J.M. Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism 2016 7 1 37 10.1186/s13229‑016‑0099‑3 27594980
    [Google Scholar]
  76. Evangeliou A. Vlachonikolis I. Mihailidou H. Spilioti M. Skarpalezou A. Makaronas N. Prokopiou A. Christodoulou P. Liapi-Adamidou G. Helidonis E. Sbyrakis S. Smeitink J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol. 2003 18 2 113 118 10.1177/08830738030180020501 12693778
    [Google Scholar]
  77. Gubert C. Kong G. Renoir T. Hannan A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis. 2020 134 104621 10.1016/j.nbd.2019.104621 31628992
    [Google Scholar]
  78. Hacioglu G. Seval-Celik Y. Tanriover G. Ozsoy O. Saka-Topcuoglu E. Balkan S. Agar A. Docosahexaenoic acid provides protective mechanism in bilaterally MPTP-lesioned rat model of parkinson’s disease. Folia Histochem. Cytobiol. 2012 50 2 228 238 10.5603/FHC.2012.0032 22763967
    [Google Scholar]
  79. Mocking R.J.T. Harmsen I. Assies J. Koeter M.W.J. Ruhé H.G. Schene A.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl. Psychiatry 2016 6 3 e756 10.1038/tp.2016.29 26978738
    [Google Scholar]
  80. Turnbaugh P.J. Ridaura V.K. Faith J.J. Rey F.E. Knight R. Gordon J.I. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009 1 6 6ra14 10.1126/scitranslmed.3000322 20368178
    [Google Scholar]
  81. De Filippis F. Pellegrini N. Vannini L. Jeffery I.B. La Storia A. Laghi L. Serrazanetti D.I. Di Cagno R. Ferrocino I. Lazzi C. Turroni S. Cocolin L. Brigidi P. Neviani E. Gobbetti M. O’Toole P.W. Ercolini D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016 65 11 1812 1821 10.1136/gutjnl‑2015‑309957 26416813
    [Google Scholar]
  82. Cass S.P. Alzheimer’s disease and exercise: A literature review. Curr. Sports Med. Rep. 2017 16 1 19 22 10.1249/JSR.0000000000000332 28067736
    [Google Scholar]
  83. Du Z. Li Y. Li J. Zhou C. Li F. Yang X. Physical activity can improve cognition in patients with alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging 2018 13 1593 1603 10.2147/CIA.S169565 30233156
    [Google Scholar]
  84. Ferreira J.P. Ghiarone T. Cabral Júnior C.R. Furtado G.E. Moreira Carvalho H. Machado-Rodrigues A.M. Andrade Toscano C.V. Effects of physical exercise on the stereotyped behavior of children with autism spectrum disorders. Medicina (Kaunas) 2019 55 10 685 10.3390/medicina55100685 31615098
    [Google Scholar]
  85. Dauwan M. Begemann M.J.H. Heringa S.M. Sommer I.E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: A systematic review and Meta-analysis. Schizophr. Bull. 2016 42 3 588 599 10.1093/schbul/sbv164 26547223
    [Google Scholar]
  86. Dalton A. Mermier C. Zuhl M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes 2019 10 5 555 568 10.1080/19490976.2018.1562268 30704343
    [Google Scholar]
  87. Abraham D. Feher J. Scuderi G.L. Szabo D. Dobolyi A. Cservenak M. Juhasz J. Ligeti B. Pongor S. Gomez-Cabrera M.C. Vina J. Higuchi M. Suzuki K. Boldogh I. Radak Z. Exercise and probiotics attenuate the development of alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol. 2019 115 122 131 10.1016/j.exger.2018.12.005 30529024
    [Google Scholar]
  88. Karl JP Hatch AM Arcidiacono SM Pearce SC Pantoja-Feliciano IG Doherty LA Effects of psychological, environmental and physical sressors on the gut microbiota. Front Microbiol 2013 9 2013
    [Google Scholar]
  89. Caruso A. Nicoletti F. Mango D. Saidi A. Orlando R. Scaccianoce S. Stress as risk factor for alzheimer’s disease. Pharmacol. Res. 2018 132 130 134 10.1016/j.phrs.2018.04.017 29689315
    [Google Scholar]
  90. Mravec B. Horvathova L. Padova A. Brain under stress and alzheimer’s disease. Cell. Mol. Neurobiol. 2018 38 1 73 84 10.1007/s10571‑017‑0521‑1 28699112
    [Google Scholar]
  91. Dallé E. Mabandla M.V. Early life stress, depression and parkinson’s disease: A new approach. Mol. Brain 2018 11 1 18 10.1186/s13041‑018‑0356‑9 29551090
    [Google Scholar]
  92. Liang S. Wang T. Hu X. Luo J. Li W. Wu X. Duan Y. Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015 310 561 577 10.1016/j.neuroscience.2015.09.033 26408987
    [Google Scholar]
  93. Mukhtar K. Nawaz H. Abid S. Functional gastrointestinal disorders and gut-brain axis: What does the future hold? World J. Gastroenterol. 2019 25 5 552 566 10.3748/wjg.v25.i5.552 30774271
    [Google Scholar]
  94. Mukherjee A. Biswas A. Das S.K. Gut dysfunction in parkinson’s disease. World J. Gastroenterol. 2016 22 25 5742 5752 10.3748/wjg.v22.i25.5742 27433087
    [Google Scholar]
  95. Gorrindo P. Williams K.C. Lee E.B. Walker L.S. McGrew S.G. Levitt P. Gastrointestinal dysfunction in autism: Parental report, clinical evaluation, and associated factors. Autism Res. 2012 5 2 101 108 10.1002/aur.237 22511450
    [Google Scholar]
  96. Xue Ming Brimacombe M. Chaaban J. Zimmerman-Bier B. Wagner G.C. Autism spectrum disorders: Concurrent clinical disorders. J. Child Neurol. 2008 23 1 6 13 10.1177/0883073807307102 18056691
    [Google Scholar]
  97. Zhao D. Wu Z. Zhang H. Mellor D. Ding L. Wu H. Wu C. Huang J. Hong W. Peng D. Fang Y. Somatic symptoms vary in major depressive disorder in China. Compr. Psychiatry 2018 87 32 37 10.1016/j.comppsych.2018.08.013 30195098
    [Google Scholar]
  98. Gerrits M.M.J.G. Vogelzangs N. van Oppen P. van Marwijk H.W.J. van der Horst H. Penninx B.W.J.H. Impact of pain on the course of depressive and anxiety disorders. Pain 2012 153 2 429 436 10.1016/j.pain.2011.11.001 22154919
    [Google Scholar]
  99. Virtanen T. Eskelinen S. Sailas E. Suvisaari J. Dyspepsia and constipation in patients with schizophrenia spectrum disorders. Nord. J. Psychiatry 2017 71 1 48 54 10.1080/08039488.2016.1217044 27564411
    [Google Scholar]
  100. Clarke G. Cryan J.F. Dinan T.G. Quigley E.M. Review article: probiotics for the treatment of irritable bowel syndrome – focus on lactic acid bacteria. Aliment. Pharmacol. Ther. 2012 35 4 403 413 10.1111/j.1365‑2036.2011.04965.x 22225517
    [Google Scholar]
  101. Sudo N. Chida Y. Aiba Y. Sonoda J. Oyama N. Yu X.N. Kubo C. Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 2004 558 1 263 275 10.1113/jphysiol.2004.063388 15133062
    [Google Scholar]
  102. Pulikkan J. Mazumder A. Grace T. Role of the Gut Microbiome in autism spectrum disorders. Adv. Exp. Med. Biol. 2019 1118 253 269 10.1007/978‑3‑030‑05542‑4_13 30747427
    [Google Scholar]
  103. Bravo J.A. Forsythe P. Chew M.V. Escaravage E. Savignac H.M. Dinan T.G. Bienenstock J. Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011 108 38 16050 16055 10.1073/pnas.1102999108 21876150
    [Google Scholar]
  104. Bercik P. Park A.J. Sinclair D. Khoshdel A. Lu J. Huang X. Deng Y. Blennerhassett P.A. Fahnestock M. Moine D. Berger B. Huizinga J.D. Kunze W. McLean P.G. Bergonzelli G.E. Collins S.M. Verdu E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 2011 23 12 1132 1139 10.1111/j.1365‑2982.2011.01796.x 21988661
    [Google Scholar]
  105. Bercik P. Denou E. Collins J. Jackson W. Lu J. Jury J. Deng Y. Blennerhassett P. Macri J. McCoy K.D. Verdu E.F. Collins S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011 141 2 599 609.e3, 609.e1-609.e3 10.1053/j.gastro.2011.04.052 21683077
    [Google Scholar]
  106. De Vadder F. Kovatcheva-Datchary P. Goncalves D. Vinera J. Zitoun C. Duchampt A. Bäckhed F. Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014 156 1-2 84 96 10.1016/j.cell.2013.12.016 24412651
    [Google Scholar]
  107. Erny D. Hrabě de Angelis A.L. Jaitin D. Wieghofer P. Staszewski O. David E. Keren-Shaul H. Mahlakoiv T. Jakobshagen K. Buch T. Schwierzeck V. Utermöhlen O. Chun E. Garrett W.S. McCoy K.D. Diefenbach A. Staeheli P. Stecher B. Amit I. Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015 18 7 965 977 10.1038/nn.4030 26030851
    [Google Scholar]
  108. Blier P. El Mansari M. Serotonin and beyond: therapeutics for major depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013 368 1615 20120536 10.1098/rstb.2012.0536 23440470
    [Google Scholar]
  109. Clarke G. Grenham S. Scully P. Fitzgerald P. Moloney R.D. Shanahan F. Dinan T.G. Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013 18 6 666 673 10.1038/mp.2012.77 22688187
    [Google Scholar]
  110. Schwarcz R. Bruno J.P. Muchowski P.J. Wu H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012 13 7 465 477 10.1038/nrn3257 22678511
    [Google Scholar]
  111. Tomkovich S. Jobin C. Microbiota and host immune responses: A love–hate relationship. Immunology 2016 147 1 1 10 10.1111/imm.12538 26439191
    [Google Scholar]
  112. Sherwin E. Sandhu K.V. Dinan T.G. Cryan J.F. May the force be with you: The light and dark sides of the microbiota–gut–brain axis in neuropsychiatry. CNS Drugs 2016 30 11 1019 1041 10.1007/s40263‑016‑0370‑3 27417321
    [Google Scholar]
  113. Goehler L.E. Gaykema R.P.A. Opitz N. Reddaway R. Badr N. Lyte M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 2005 19 4 334 344 10.1016/j.bbi.2004.09.002 15944073
    [Google Scholar]
  114. Gazerani P. Probiotics for parkinson’s disease. Int. J. Mol. Sci. 2019 20 17 4121 10.3390/ijms20174121 31450864
    [Google Scholar]
  115. Cassani E. Privitera G. Pezzoli G. Pusani C. Madio C. Iorio L. Barichella M. Use of probiotics for the treatment of constipation in parkinson’s disease patients. Minerva Gastroenterol. Dietol. 2011 57 2 117 121 21587143
    [Google Scholar]
  116. Tamtaji O.R. Taghizadeh M. Daneshvar Kakhaki R. Kouchaki E. Bahmani F. Borzabadi S. Oryan S. Mafi A. Asemi Z. Clinical and metabolic response to probiotic administration in people with parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019 38 3 1031 1035 10.1016/j.clnu.2018.05.018 29891223
    [Google Scholar]
  117. Sun J. Xu J. Yang B. Chen K. Kong Y. Fang N. Gong T. Wang F. Ling Z. Liu J. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol. Nutr. Food Res. 2020 64 2 1900636 10.1002/mnfr.201900636 31835282
    [Google Scholar]
  118. Rezaei Asl Z. Sepehri G. Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of alzheimer’s disease. Behav. Brain Res. 2019 376 112183 10.1016/j.bbr.2019.112183 31472194
    [Google Scholar]
  119. Sivamaruthi B.S. Suganthy N. Kesika P. Chaiyasut C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int. J. Environ. Res. Public Health 2020 17 8 2647 10.3390/ijerph17082647 32290635
    [Google Scholar]
  120. Hao Z. Wang W. Guo R. Liu H. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 2019 104 132 142 10.1016/j.psyneuen.2019.02.025 30844607
    [Google Scholar]
  121. Tian P. O’Riordan K.J. Lee Y. Wang G. Zhao J. Zhang H. Cryan J.F. Chen W. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol. Stress 2020 12 100216 10.1016/j.ynstr.2020.100216 32258258
    [Google Scholar]
  122. Dickerson FB Stallings C Origoni A Katsafanas E Savage CLG Schweinfurth LAB Effect of probiotic supplementation on schizophrenia symptoms and association with gastroin-testinal functioning: A randomized, placebo-controlled trial. Prim Care Companion CNS Disord. 2014 16 1 PCC.13m01579
    [Google Scholar]
  123. Keshavarzian A. Green S.J. Engen P.A. Voigt R.M. Naqib A. Forsyth C.B. Mutlu E. Shannon K.M. Colonic bacterial composition in parkinson’s disease. Mov. Disord. 2015 30 10 1351 1360 10.1002/mds.26307 26179554
    [Google Scholar]
  124. van de Wouw M. Boehme M. Dinan T.G. Cryan J.F. Monocyte mobilisation, microbiota & mental illness. Brain Behav. Immun. 2019 81 74 91 10.1016/j.bbi.2019.07.019 31330299
    [Google Scholar]
  125. Ng Q. Loke W. Venkatanarayanan N. Lim D. Soh A. Yeo W. A systematic review of the role of prebiotics and probiotics in autism spectrum disorders. Medicina (Kaunas) 2019 55 5 129 10.3390/medicina55050129 31083360
    [Google Scholar]
  126. Grimaldi R. Gibson G.R. Vulevic J. Giallourou N. Castro-Mejía J.L. Hansen L.H. Leigh Gibson E. Nielsen D.S. Costabile A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018 6 1 133 10.1186/s40168‑018‑0523‑3 30071894
    [Google Scholar]
  127. Liu R.T. Walsh R.F.L. Sheehan A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 2019 102 13 23 10.1016/j.neubiorev.2019.03.023 31004628
    [Google Scholar]
  128. Kazemi A. Noorbala A.A. Azam K. Eskandari M.H. Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. 2019 38 2 522 528 10.1016/j.clnu.2018.04.010 29731182
    [Google Scholar]
  129. Angelucci F. Cechova K. Amlerova J. Hort J. Antibiotics, gut microbiota, and alzheimer’s disease. J. Neuroinflammation 2019 16 1 108 10.1186/s12974‑019‑1494‑4 31118068
    [Google Scholar]
  130. Du Y. Ma Z. Lin S. Dodel R.C. Gao F. Bales K.R. Triarhou L.C. Chernet E. Perry K.W. Nelson D.L.G. Luecke S. Phebus L.A. Bymaster F.P. Paul S.M. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of parkinson’s disease. Proc. Natl. Acad. Sci. USA 2001 98 25 14669 14674 10.1073/pnas.251341998 11724929
    [Google Scholar]
  131. NINDS NET-PD Investigators A randomized, double-blind, futility clinical trial of creatine and minocycline in early parkinson disease. Neurology 2006 66 5 664 671 10.1212/01.wnl.0000201252.57661.e1 16481597
    [Google Scholar]
  132. Lotan D. Cunningham M. Joel D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS One 2014 9 6 e101257 10.1371/journal.pone.0101257 24979049
    [Google Scholar]
  133. Yulug B. Hanoglu L. Ozansoy M. Isık D. Kilic U. Kilic E. Schabitz W.R. Therapeutic role of rifampicin in alzheimer’s disease. Psychiatry Clin. Neurosci. 2018 72 3 152 159 10.1111/pcn.12637 29315976
    [Google Scholar]
  134. Bezawada N. Phang T.H. Hold G.L. Hansen R. Autism spectrum disorder and the gut microbiota in children: A Systematic Review. Ann. Nutr. Metab. 2020 76 1 16 29 10.1159/000505363 31982866
    [Google Scholar]
  135. Dean O.M. Kanchanatawan B. Ashton M. Mohebbi M. Ng C.H. Maes M. Berk L. Sughondhabirom A. Tangwongchai S. Singh A.B. McKenzie H. Smith D.J. Malhi G.S. Dowling N. Berk M. Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial. Aust. N. Z. J. Psychiatry 2017 51 8 829 840 10.1177/0004867417709357 28578592
    [Google Scholar]
  136. Koola M.M. Antipsychotic-minocycline-acetylcysteine combination for positive, cognitive, and negative symptoms of schizophrenia. Asian J. Psychiatr. 2019 40 100 102 10.1016/j.ajp.2019.02.007 30776665
    [Google Scholar]
  137. Zhang F. Luo W. Shi Y. Fan Z. Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol. 2012 107 11 1755 10.1038/ajg.2012.251 23160295
    [Google Scholar]
  138. Sun J. Xu J. Ling Y. Wang F. Gong T. Yang C. Ye S. Ye K. Wei D. Song Z. Chen D. Liu J. Fecal microbiota transplantation alleviated alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 2019 9 1 189 10.1038/s41398‑019‑0525‑3 31383855
    [Google Scholar]
  139. Adams J.B. Borody T.J. Kang D.W. Khoruts A. Krajmalnik-Brown R. Sadowsky M.J. Microbiota transplant therapy and autism: Lessons for the clinic. Expert Rev. Gastroenterol. Hepatol. 2019 13 11 1033 1037 10.1080/17474124.2019.1687293 31665947
    [Google Scholar]
  140. Chinna Meyyappan A. Forth E. Wallace C.J.K. Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry 2020 20 1 299 10.1186/s12888‑020‑02654‑5 32539741
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328335219241202142003
Loading
/content/journals/crcep/10.2174/0127724328335219241202142003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test