Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

The estimated worldwide number of individuals diagnosed with Parkinson's disease (PD) might exceed 10 million by 2040. However, the underlying evidence for PD is unclear. Recent research in Parkinson's disease has focused on exploring the gut-brain axis. Researchers have proposed that gut microbiota and gut dysbiosis contribute to peripheral inflammatory conditions. The involvement of gut pathogens and dysbiosis in peripheral inflammatory diseases has been hypothesized. In Parkinson's disease, the metabolic effects associated with gut dysbiosis accelerate nerve cell loss and damage. The microbiota-gut-brain axis (MGBA) establishes the relationship between the brain and the gut through the bidirectional vagus nerve. The MGBA promotes digestive system regulation and is responsible for maintaining metabolic homeostasis under regular conditions. , , and are gut bacteria whose relative abundance has been associated with Parkinson's disease etiology and treatment efficacy. Numerous clinical and preclinical studies have substantiated the therapeutic potential of probiotics in treating Parkinson's disease the gut-brain axis. The technique appears to have benefited from a combination of favorable conditions that led to its success. The present study investigated whether administering the probiotic can be a better therapeutic intervention for PD or not. Although widespread, no medicines exist to halt the neurodegenerative effects of PD. Some probiotics raised brain dopamine levels, slowed or stopped neuronal death, and improved motor function in models of toxin-induced and genetic PD in mice, rats, flies, and induced pluripotent stem cells. Probiotics control gut dysbiosis, thereby preventing neurodegeneration in PD the gut-brain axis. Probiotics are used to control the principal dangers of oxidative stress and alpha-synuclein (α-synuclein) aggregation. Probiotics, which contain beneficial microorganisms such as and , may help alleviate PD symptoms and slow the disease's progression. Numerous probiotic bacteria can treat the neurodegenerative condition. As a result, this review paper focuses on the current understanding of the link between PD and gut microbiota while also providing comprehensive information about the neuroprotective function of probiotics.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328332572241219102122
2024-12-23
2025-09-01
Loading full text...

Full text loading...

References

  1. JankovicJ. TanE.K. Parkinson’s disease: etiopathogenesis and treatment.J. Neurol. Neurosurg. Psychiatry202091879580810.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  2. GoedertM. SpillantiniM.G. Del TrediciK. BraakH. 100 years of Lewy pathology.Nat. Rev. Neurol.201391132410.1038/nrneurol.2012.242 23183883
    [Google Scholar]
  3. SpillantiniM.G. TolnayM. LoveS. GoedertM. Microtubule-associated protein tau, heparan sulphate and α-synuclein in several neurodegenerative diseases with dementia.Acta Neuropathol.199997658559410.1007/s004010051034 10378377
    [Google Scholar]
  4. PolymeropoulosM.H. LavedanC. LeroyE. Mutation in the α-synuclein gene identified in families with Parkinson’s disease.Science199727653212045204710.1126/science.276.5321.2045 9197268
    [Google Scholar]
  5. BaroneP. AntoniniA. ColosimoC. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease.Mov. Disord.200924111641164910.1002/mds.22643 19514014
    [Google Scholar]
  6. BhattacharyyaD. MohiteG.M. KrishnamoorthyJ. Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function.ACS Chem. Neurosci.20191052229223610.1021/acschemneuro.8b00733 30855940
    [Google Scholar]
  7. BoertienJ.M. PereiraP.A.B. AhoV.T.E. ScheperjansF. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review.J. Parkinsons Dis.20199s2S297S31210.3233/JPD‑191711 31498131
    [Google Scholar]
  8. DayJ.O. MullinS. The genetics of Parkinson’s disease and implications for clinical practice.Genes2021127100610.3390/genes12071006 34208795
    [Google Scholar]
  9. AbbottR.D. PetrovitchH. WhiteL.R. Frequency of bowel movements and the future risk of Parkinson’s disease.Neurology200157345646210.1212/WNL.57.3.456 11502913
    [Google Scholar]
  10. BreenD.P. HallidayG.M. LangA.E. Gut–brain axis and the spread of α‐synuclein pathology: Vagal highway or dead end?Mov. Disord.201934330731610.1002/mds.27556 30653258
    [Google Scholar]
  11. CryanJ.F. DinanT.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour.Nat. Rev. Neurosci.2012131070171210.1038/nrn3346 22968153
    [Google Scholar]
  12. BärF Von KoschitzkyH RoblickU Cell‐free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study.Neurogastroenterol Motil2009215559-566, e16-e17.10.1111/j.1365‑2982.2008.01258.x 19220758
    [Google Scholar]
  13. BraakH. Del TrediciK. BratzkeH. Hamm-ClementJ. Sandmann-KeilD. RübU. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages).J. Neurol.2002249Suppl. 31510.1007/s00415‑002‑1301‑4
    [Google Scholar]
  14. WileyN.C. DinanT.G. RossR.P. StantonC. ClarkeG. CryanJ.F. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.J. Anim. Sci.20179573225324610.2527/jas.2016.1256 28727115
    [Google Scholar]
  15. BraakH. TrediciK.D. RübU. de VosR.A.I. Jansen SteurE.N.H. BraakE. Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiol. Aging200324219721110.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  16. UlusoyA. RusconiR. Pérez-RevueltaB.I. Caudo‐rostral brain spreading of α‐synuclein through vagal connections.EMBO Mol. Med.2013571119112710.1002/emmm.201302475 23703938
    [Google Scholar]
  17. RaoM. GershonM.D. The bowel and beyond: the enteric nervous system in neurological disorders.Nat. Rev. Gastroenterol. Hepatol.201613951752810.1038/nrgastro.2016.107 27435372
    [Google Scholar]
  18. LubomskiM. TanA.H. LimS.Y. HolmesA.J. DavisR.L. SueC.M. Parkinson’s disease and the gastrointestinal microbiome.J. Neurol.202026792507252310.1007/s00415‑019‑09320‑1 31041582
    [Google Scholar]
  19. PellegriniC. D’AntongiovanniV. MiragliaF. Enteric α-synuclein impairs intestinal epithelial barrier through caspase-1-inflammasome signaling in Parkinson’s disease before brain pathology.NPJ Parkinsons Dis.202281910.1038/s41531‑021‑00263‑x 35022395
    [Google Scholar]
  20. HolmqvistS. ChutnaO. BoussetL. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats.Acta Neuropathol.2014128680582010.1007/s00401‑014‑1343‑6 25296989
    [Google Scholar]
  21. BravoJ.A. ForsytheP. ChewM.V. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.Proc. Natl. Acad. Sci. USA201110838160501605510.1073/pnas.1102999108 21876150
    [Google Scholar]
  22. MulakA. BonazB. Brain-gut-microbiota axis in Parkinson’s disease.World J. Gastroenterol.20152137106091062010.3748/wjg.v21.i37.10609 26457021
    [Google Scholar]
  23. ForsythC.B. ShannonK.M. KordowerJ.H. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease.PLoS One2011612e2803210.1371/journal.pone.0028032 22145021
    [Google Scholar]
  24. KaelbererM.M. BuchananK.L. KleinM.E. A gut-brain neural circuit for nutrient sensory transduction.Science20183616408eaat523610.1126/science.aat5236 30237325
    [Google Scholar]
  25. KeshavarzianA. GreenS.J. EngenP.A. Colonic bacterial composition in Parkinson’s disease.Mov. Disord.201530101351136010.1002/mds.26307 26179554
    [Google Scholar]
  26. CaputiV. GironM.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease.Int. J. Mol. Sci.2018196168910.3390/ijms19061689 29882798
    [Google Scholar]
  27. GallandL. The gut microbiome and the brain.J. Med. Food201417121261127210.1089/jmf.2014.7000 25402818
    [Google Scholar]
  28. YangN.J. ChiuI.M. Bacterial signaling to the nervous system through toxins and metabolites.J. Mol. Biol.2017429558760510.1016/j.jmb.2016.12.023 28065740
    [Google Scholar]
  29. MichelP.P. HirschE.C. HunotS. Understanding dopaminergic cell death pathways in Parkinson disease.Neuron201690467569110.1016/j.neuron.2016.03.038 27196972
    [Google Scholar]
  30. FasanoA. VisanjiN.P. LiuL.W.C. LangA.E. PfeifferR.F. Gastrointestinal dysfunction in Parkinson’s disease.Lancet Neurol.201514662563910.1016/S1474‑4422(15)00007‑1 25987282
    [Google Scholar]
  31. LinJ.C. LinC.S. HsuC.W. LinC.L. KaoC.H. Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study.Inflamm. Bowel Dis.20162251049105510.1097/MIB.0000000000000735 26919462
    [Google Scholar]
  32. XiangZ-B. XuR-S. ZhuY. Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis.Neural Regen. Res.202217234435310.4103/1673‑5374.317981 34269209
    [Google Scholar]
  33. ScheperjansF. AhoV. PereiraP.A.B. Gut microbiota are related to Parkinson’s disease and clinical phenotype.Mov. Disord.201530335035810.1002/mds.26069 25476529
    [Google Scholar]
  34. StockdaleS.R. DraperL.A. O’DonovanS.M. Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson’s disease.Commun. Biol.202141114010.1038/s42003‑021‑02666‑1 34588600
    [Google Scholar]
  35. TeradaM. SuzukiG. NonakaT. KametaniF. TamaokaA. HasegawaM. The effect of truncation on prion-like properties of α-synuclein.J. Biol. Chem.201829336139101392010.1074/jbc.RA118.001862 30030380
    [Google Scholar]
  36. KimC. LvG. LeeJ.S. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril.Sci. Rep.2016613089110.1038/srep30891 27488222
    [Google Scholar]
  37. LeeY. LeeS. ChangS.C. LeeJ. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention.Arch. Pharm. Res.201942541642510.1007/s12272‑019‑01133‑0 30830660
    [Google Scholar]
  38. Perez-PardoP. DodiyaH.B. EngenP.A. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice.Gut201968582984310.1136/gutjnl‑2018‑316844 30554160
    [Google Scholar]
  39. ThaissC.A. ZmoraN. LevyM. ElinavE. The microbiome and innate immunity.Nature20165357610657410.1038/nature18847 27383981
    [Google Scholar]
  40. YitbarekA. Taha-AbdelazizK. HodginsD.C. Gut microbiota-mediated protection against influenza virus subtype H9N2 in chickens is associated with modulation of the innate responses.Sci. Rep.2018811318910.1038/s41598‑018‑31613‑0 30181578
    [Google Scholar]
  41. Suleiman KhouryZ. SohailF. WangJ. Neuroinflammation: A critical factor in neurodegenerative disorders.Cureus2024166e6231010.7759/cureus.62310 39006715
    [Google Scholar]
  42. HwangO. Role of oxidative stress in Parkinson’s disease.Exp. Neurobiol.2013221111710.5607/en.2013.22.1.11 23585717
    [Google Scholar]
  43. ShandilyaS. KumarS. Kumar JhaN. Kumar KesariK. RuokolainenJ. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection.J. Adv. Res.20223822324410.1016/j.jare.2021.09.005 35572407
    [Google Scholar]
  44. NobleE.E. HsuT.M. KanoskiS.E. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment.Front. Behav. Neurosci.201711910.3389/fnbeh.2017.00009 28194099
    [Google Scholar]
  45. BullichC. KeshavarzianA. GarssenJ. KraneveldA. Perez-PardoP. Gut vibes in Parkinson’s disease: the microbiota‐gut‐brain axis.Mov. Disord. Clin. Pract. (Hoboken)20196863965110.1002/mdc3.12840 31745471
    [Google Scholar]
  46. RietdijkC.D. Perez-PardoP. GarssenJ. van WezelR.J.A. KraneveldA.D. Exploring Braak’s hypothesis of Parkinson’s disease.Front. Neurol.201783710.3389/fneur.2017.00037 28243222
    [Google Scholar]
  47. FrostG. SleethM.L. Sahuri-ArisoyluM. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.Nat. Commun.201451361110.1038/ncomms4611 24781306
    [Google Scholar]
  48. KaelbererM.M. RupprechtL.E. LiuW.W. WengP. BohórquezD.V. Neuropod cells: the emerging biology of gut-brain sensory transduction.Annu. Rev. Neurosci.202043133735310.1146/annurev‑neuro‑091619‑022657 32101483
    [Google Scholar]
  49. MasatoA. PlotegherN. BoassaD. BubaccoL. Impaired dopamine metabolism in Parkinson’s disease pathogenesis.Mol. Neurodegener.20191413510.1186/s13024‑019‑0332‑6 31488222
    [Google Scholar]
  50. LuqmanA. NegaM. NguyenM.T. EbnerP. GötzF. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization.Cell Rep.201822253554510.1016/j.celrep.2017.12.058 29320746
    [Google Scholar]
  51. Al-JahmanyA.A. SchultheissG. DienerM. Effects of dopamine on ion transport across the rat distal colon.Pflugers Arch.2004448660561210.1007/s00424‑004‑1299‑9 15235915
    [Google Scholar]
  52. VaughanC.J. AherneA.M. LaneE. PowerO. CareyR.M. O’ConnellD.P. Identification and regional distribution of the dopamine D 1A receptor in the gastrointestinal tract.Am. J. Physiol. Regul. Integr. Comp. Physiol.20002792R599R60910.1152/ajpregu.2000.279.2.R599 10938251
    [Google Scholar]
  53. ShenT. YueY. HeT. The association between the gut microbiota and Parkinson’s disease, a meta-analysis.Front. Aging Neurosci.20211363654510.3389/fnagi.2021.636545 33643026
    [Google Scholar]
  54. Maini RekdalV. BessE.N. BisanzJ.E. TurnbaughP.J. BalskusE.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.Science20193646445eaau632310.1126/science.aau6323
    [Google Scholar]
  55. WangY. TongQ. MaS.R. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota.Signal Transduct. Target. Ther.2021617710.1038/s41392‑020‑00456‑5 33623004
    [Google Scholar]
  56. KuaiX. YaoX. XuL. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation.Microb. Cell Fact.20212019810.1186/s12934‑021‑01589‑0 33985520
    [Google Scholar]
  57. SunM.F. ZhuY.L. ZhouZ.L. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway.Brain Behav. Immun.201870486010.1016/j.bbi.2018.02.005 29471030
    [Google Scholar]
  58. HouY. ShanC. ZhuangS. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease.Microbiome2021913410.1186/s40168‑020‑00988‑6 33517890
    [Google Scholar]
  59. MehannaM. AbuRayaS. AhmedS.M. AshmawyG. IbrahimA. AbdelKhaliqE. Study of the gut microbiome in Egyptian patients with Parkinson’s disease.BMC Microbiol.202323119610.1186/s12866‑023‑02933‑7 37481569
    [Google Scholar]
  60. TanA.H. HorJ.W. ChongC.W. LimS.Y. Probiotics for Parkinson’s disease: Current evidence and future directions.JGH Open20215441441910.1002/jgh3.12450 33860090
    [Google Scholar]
  61. KohbataS. BeamanB.L. L-dopa-responsive movement disorder caused by Nocardia asteroides localized in the brains of mice.Infect. Immun.199159118119110.1128/iai.59.1.181‑191.1991 1670928
    [Google Scholar]
  62. vanKesselS.P. FryeA.K. El-GendyA.O. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease.Nat. Commun.2019101310
    [Google Scholar]
  63. Nunes-CostaD. MagalhãesJ.D. G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the pathway for Parkinson’s disease neurodegeneration.Front. Aging Neurosci.2020122610.3389/fnagi.2020.00026 32317956
    [Google Scholar]
  64. ZhongR. ChenQ. ZhangX. LiM. LinW. Helicobacter pylori infection is associated with a poor response to levodopa in patients with Parkinson’s disease: a systematic review and meta-analysis.J. Neurol.2022269270371110.1007/s00415‑021‑10473‑1
    [Google Scholar]
  65. MurrosK.E. HuynhV.A. TakalaT.M. SarisP.E.J. Desulfovibrio bacteria are associated with Parkinson’s disease. Frontiers in Cel.Front. Cell. Infect. Microbiol.20211165261710.3389/fcimb.2021.652617 34012926
    [Google Scholar]
  66. ChoiJ.G. KimN. JuI.G. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice.Sci. Rep.201881127510.1038/s41598‑018‑19646‑x 29352191
    [Google Scholar]
  67. HillC. GuarnerF. ReidG. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  68. LeBlancJ.G. MilaniC. de GioriG.S. SesmaF. van SinderenD. VenturaM. Bacteria as vitamin suppliers to their host: a gut microbiota perspective.Curr. Opin. Biotechnol.201324216016810.1016/j.copbio.2012.08.005 22940212
    [Google Scholar]
  69. ReidG. YounesJ.A. Van der MeiH.C. GloorG.B. KnightR. BusscherH.J. Microbiota restoration: natural and supplemented recovery of human microbial communities.Nat. Rev. Microbiol.201191273810.1038/nrmicro2473 21113182
    [Google Scholar]
  70. SandersM.E. MerensteinD.J. ReidG. GibsonG.R. RastallR.A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic.Nat. Rev. Gastroenterol. Hepatol.2019161060561610.1038/s41575‑019‑0173‑3 31296969
    [Google Scholar]
  71. SuezJ. ZmoraN. SegalE. ElinavE. The pros, cons, and many unknowns of probiotics.Nat. Med.201925571672910.1038/s41591‑019‑0439‑x 31061539
    [Google Scholar]
  72. Salas-JaraM. IlabacaA. VegaM. GarcíaA. Biofilm forming Lactobacillus: new challenges for the development of probiotics.Microorganisms2016433510.3390/microorganisms4030035 27681929
    [Google Scholar]
  73. BronP.A. van BaarlenP. KleerebezemM. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa.Nat. Rev. Microbiol.2012101667810.1038/nrmicro2690 22101918
    [Google Scholar]
  74. YuM. ZhangR. NiP. ChenS. DuanG. Efficacy of Lactobacillus-supplemented triple therapy for H. pylori eradication: A meta-analysis of randomized controlled trials.PLoS One20191410e022330910.1371/journal.pone.0223309 31577828
    [Google Scholar]
  75. KlaenhammerT.R. KleerebezemM. KoppM.V. RescignoM. The impact of probiotics and prebiotics on the immune system.Nat. Rev. Immunol.2012121072873410.1038/nri3312 23007572
    [Google Scholar]
  76. ToscanoM. De GrandiR. PastorelliL. VecchiM. DragoL. A consumer’s guide for probiotics: 10 golden rules for a correct use.Dig. Liver Dis.201749111177118410.1016/j.dld.2017.07.011 28830747
    [Google Scholar]
  77. KimN. YunM. OhY.J. ChoiH.J. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.J. Microbiol.201856317218210.1007/s12275‑018‑8032‑4 29492874
    [Google Scholar]
  78. NurrahmaB.A. TsaoS.P. WuC.H. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism.Front. Aging Neurosci.20211366877510.3389/fnagi.2021.668775 34025392
    [Google Scholar]
  79. CassaniE. PriviteraG. PezzoliG. Use of probiotics for the treatment of constipation in Parkinson’s disease patients.Minerva Gastroenterol. Dietol.2011572117121 21587143
    [Google Scholar]
  80. TamtajiO.R. TaghizadehM. Daneshvar KakhakiR. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20193831031103510.1016/j.clnu.2018.05.018 29891223
    [Google Scholar]
  81. GoyaM.E. XueF. Sampedro-Torres-QuevedoC. Probiotic bacillus subtilis protects against α-synuclein aggregation in C. elegans.Cell Rep.2020302367380.e710.1016/j.celrep.2019.12.078 31940482
    [Google Scholar]
  82. GazeraniP. Probiotics for Parkinson’s disease.Int. J. Mol. Sci.20192017412110.3390/ijms20174121
    [Google Scholar]
  83. NowakA. PaliwodaA. BłasiakJ. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives.Crit. Rev. Food Sci. Nutr.201959213456346710.1080/10408398.2018.1494539 30010390
    [Google Scholar]
  84. MagistrelliL. AmorusoA. MognaL. Probiotics may have beneficial effects in Parkinson’s disease: In vitro evidence.Front. Immunol.20191096910.3389/fimmu.2019.00969
    [Google Scholar]
  85. ValvaikarS. VaidyaB. SharmaS. BishnoiM. KondepudiK.K. SharmaS.S. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson’s disease model.Neurochem. Int.202417410569110.1016/j.neuint.2024.105691 38311217
    [Google Scholar]
  86. TsaoS.P. NurrahmaB.A. KumarR. Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced Parkinson’s disease rats.Antioxidants20211011182310.3390/antiox10111823 34829694
    [Google Scholar]
  87. SunJ. LiH. JinY. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway.Brain Behav. Immun.20219170371510.1016/j.bbi.2020.10.014 33148438
    [Google Scholar]
  88. Alipour NosraniE. TamtajiO.R. AlibolandiZ. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study.J. Immunoassay Immunochem.202142210612010.1080/15321819.2020.1833917 33078659
    [Google Scholar]
  89. TsaoS.P. YehT.H. LinY.T. Supplementation with Bifidobacterium animalis subsp. lactis MH-022 for remission of motor impairments in a 6-OHDA-induced Parkinson’s disease rat model by reducing inflammation, reshaping the gut microbiome, and fostering specific microbial taxa.Food Funct.202415189368938910.1039/D4FO02039A 39189385
    [Google Scholar]
  90. ChuC. YuL. LiY. Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis.Nutrients2023157173710.3390/nu15071737 37049578
    [Google Scholar]
  91. AktasB. AslimB. OzdemirD.A. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson’s disease.Sci. Rep.20241411546010.1038/s41598‑024‑65061‑w 38965287
    [Google Scholar]
  92. LiuX. DuZ.R. WangX. Polymannuronic acid prebiotic plus Lacticaseibacillus rhamnosus GG probiotic as a novel synbiotic promoted their separate neuroprotection against Parkinson’s disease.Food Res. Int.202215511106710.1016/j.foodres.2022.111067 35400445
    [Google Scholar]
  93. YangX. HeX. XuS. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease.Food Funct.202314156828683910.1039/D3FO00728F 37470081
    [Google Scholar]
  94. TanA.H. LimS.Y. ChongK.K. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study.Neurology2021965e772e78210.1212/WNL.0000000000010998 33046607
    [Google Scholar]
  95. DuY. LiY. XuX. Probiotics for constipation and gut microbiota in Parkinson’s disease.Parkinsonism Relat. Disord.2022103929710.1016/j.parkreldis.2022.08.022 36087572
    [Google Scholar]
  96. IbrahimA. AliR.A.R. ManafM.R.A. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial.PLoS One20201512e024468010.1371/journal.pone.0244680 33382780
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328332572241219102122
Loading
/content/journals/crcep/10.2174/0127724328332572241219102122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test