Skip to content
2000
image of Probiotic: A Gut Microbiota-Based Therapeutic Approaches for the Treatment of Parkinson’s Disease

Abstract

The estimated worldwide number of individuals diagnosed with Parkinson's disease (PD) might exceed 10 million by 2040. However, the underlying evidence for PD is unclear. Recent research in Parkinson's disease has focused on exploring the gut-brain axis. Researchers have proposed that gut microbiota and gut dysbiosis contribute to peripheral inflammatory conditions. The involvement of gut pathogens and dysbiosis in peripheral inflammatory diseases has been hypothesized. In Parkinson's disease, the metabolic effects associated with gut dysbiosis accelerate nerve cell loss and damage. The microbiota-gut-brain axis (MGBA) establishes the relationship between the brain and the gut through the bidirectional vagus nerve. The MGBA promotes digestive system regulation and is responsible for maintaining metabolic homeostasis under regular conditions. Helicobacter pylori, Enterococcus faecalis, and Desulfovibrio are gut bacteria whose relative abundance has been associated with Parkinson's disease etiology and treatment efficacy. Numerous clinical and preclinical studies have substantiated the therapeutic potential of probiotics in treating Parkinson's disease the gut-brain axis. The technique appears to have benefited from a combination of favorable conditions that led to its success. The present study investigated whether administering the probiotic can be a better therapeutic intervention for PD or not. Although widespread, no medicines exist to halt the neurodegenerative effects of PD. Some probiotics raised brain dopamine levels, slowed or stopped neuronal death, and improved motor function in models of toxin-induced and genetic PD in mice, rats, flies, and induced pluripotent stem cells. Probiotics control gut dysbiosis, thereby preventing neurodegeneration in PD the gut-brain axis. Probiotics are used to control the principal dangers of oxidative stress and alpha-synuclein (α-synuclein) aggregation. Probiotics, which contain beneficial microorganisms such as and Akkermansia, may help alleviate PD symptoms and slow the disease's progression. Numerous probiotic bacteria can treat the neurodegenerative condition. As a result, this review paper focuses on the current understanding of the link between PD and gut microbiota while also providing comprehensive information about the neuroprotective function of probiotics.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328332572241219102122
2024-12-23
2025-01-19
Loading full text...

Full text loading...

References

  1. Jankovic J. Tan E.K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  2. Goedert M. Spillantini M.G. Del Tredici K. Braak H. 100 years of Lewy pathology. Nat. Rev. Neurol. 2013 9 1 13 24 10.1038/nrneurol.2012.242 23183883
    [Google Scholar]
  3. Spillantini M.G. Tolnay M. Love S. Goedert M. Microtubule-associated protein tau, heparan sulphate and α-synuclein in several neurodegenerative diseases with dementia. Acta Neuropathol. 1999 97 6 585 594 10.1007/s004010051034 10378377
    [Google Scholar]
  4. Polymeropoulos M.H. Lavedan C. Leroy E. Ide S.E. Dehejia A. Dutra A. Pike B. Root H. Rubenstein J. Boyer R. Stenroos E.S. Chandrasekharappa S. Athanassiadou A. Papapetropoulos T. Johnson W.G. Lazzarini A.M. Duvoisin R.C. Di Iorio G. Golbe L.I. Nussbaum R.L. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997 276 5321 2045 2047 10.1126/science.276.5321.2045 9197268
    [Google Scholar]
  5. Barone P. Antonini A. Colosimo C. Marconi R. Morgante L. Avarello T.P. Bottacchi E. Cannas A. Ceravolo G. Ceravolo R. Cicarelli G. Gaglio R.M. Giglia R.M. Iemolo F. Manfredi M. Meco G. Nicoletti A. Pederzoli M. Petrone A. Pisani A. Pontieri F.E. Quatrale R. Ramat S. Scala R. Volpe G. Zappulla S. Bentivoglio A.R. Stocchi F. Trianni G. Dotto P.D. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 2009 24 11 1641 1649 10.1002/mds.22643 19514014
    [Google Scholar]
  6. Bhattacharyya D. Mohite G.M. Krishnamoorthy J. Gayen N. Mehra S. Navalkar A. Kotler S.A. Ratha B.N. Ghosh A. Kumar R. Garai K. Mandal A.K. Maji S.K. Bhunia A. Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem. Neurosci. 2019 10 5 2229 2236 10.1021/acschemneuro.8b00733 30855940
    [Google Scholar]
  7. Boertien J.M. Pereira P.A.B. Aho V.T.E. Scheperjans F. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J. Parkinsons Dis. 2019 9 s2 S297 S312 10.3233/JPD‑191711 31498131
    [Google Scholar]
  8. Day J.O. Mullin S. The genetics of Parkinson’s disease and implications for clinical practice. Genes 2021 12 7 1006 10.3390/genes12071006 34208795
    [Google Scholar]
  9. Abbott R.D. Petrovitch H. White L.R. Masaki K.H. Tanner C.M. Curb J.D. Grandinetti A. Blanchette P.L. Popper J.S. Ross G.W. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 2001 57 3 456 462 10.1212/WNL.57.3.456 11502913
    [Google Scholar]
  10. Breen D.P. Halliday G.M. Lang A.E. Gut–brain axis and the spread of α‐synuclein pathology: Vagal highway or dead end? Mov. Disord. 2019 34 3 307 316 10.1002/mds.27556 30653258
    [Google Scholar]
  11. Cryan J.F. Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012 13 10 701 712 10.1038/nrn3346 22968153
    [Google Scholar]
  12. Bär F. Von Koschitzky H. Roblick U. Bruch H.P. Schulze L. Sonnenborn U. Böttner M. Wedel T. Cell‐free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study. Neurogastroenterol. Motil. 2009 21 5 559 566, e16-e17 10.1111/j.1365‑2982.2008.01258.x 19220758
    [Google Scholar]
  13. Braak H. Del Tredici K. Bratzke H. Hamm-Clement J. Sandmann-Keil D. Rüb U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol. 2002 249 Suppl 3 1 5 10.1007/s00415‑002‑1301‑4
    [Google Scholar]
  14. Wiley N.C. Dinan T.G. Ross R.P. Stanton C. Clarke G. Cryan J.F. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J. Anim. Sci. 2017 95 7 3225 3246 10.2527/jas.2016.1256 28727115
    [Google Scholar]
  15. Braak H. Tredici K.D. Rüb U. de Vos R.A.I. Jansen Steur E.N.H. Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003 24 2 197 211 10.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  16. Ulusoy A. Rusconi R. Pérez-Revuelta B.I. Musgrove R.E. Helwig M. Winzen-Reichert B. Monte D.A.D. Caudo‐rostral brain spreading of α‐synuclein through vagal connections. EMBO Mol. Med. 2013 5 7 1119 1127 10.1002/emmm.201302475 23703938
    [Google Scholar]
  17. Rao M. Gershon M.D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016 13 9 517 528 10.1038/nrgastro.2016.107 27435372
    [Google Scholar]
  18. Lubomski M. Tan A.H. Lim S.Y. Holmes A.J. Davis R.L. Sue C.M. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. 2020 267 9 2507 2523 10.1007/s00415‑019‑09320‑1 31041582
    [Google Scholar]
  19. Pellegrini C. D’Antongiovanni V. Miraglia F. Rota L. Benvenuti L. Di Salvo C. Testa G. Capsoni S. Carta G. Antonioli L. Cattaneo A. Blandizzi C. Colla E. Fornai M. Enteric α-synuclein impairs intestinal epithelial barrier through caspase-1-inflammasome signaling in Parkinson’s disease before brain pathology. NPJ Parkinsons Dis. 2022 8 1 9 10.1038/s41531‑021‑00263‑x 35022395
    [Google Scholar]
  20. Holmqvist S. Chutna O. Bousset L. Aldrin-Kirk P. Li W. Björklund T. Wang Z.Y. Roybon L. Melki R. Li J.Y. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014 128 6 805 820 10.1007/s00401‑014‑1343‑6 25296989
    [Google Scholar]
  21. Bravo J.A. Forsythe P. Chew M.V. Escaravage E. Savignac H.M. Dinan T.G. Bienenstock J. Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011 108 38 16050 16055 10.1073/pnas.1102999108 21876150
    [Google Scholar]
  22. Mulak A. Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol. 2015 21 37 10609 10620 10.3748/wjg.v21.i37.10609 26457021
    [Google Scholar]
  23. Forsyth C.B. Shannon K.M. Kordower J.H. Voigt R.M. Shaikh M. Jaglin J.A. Estes J.D. Dodiya H.B. Keshavarzian A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 2011 6 12 e28032 10.1371/journal.pone.0028032 22145021
    [Google Scholar]
  24. Kaelberer M.M. Buchanan K.L. Klein M.E. Barth B.B. Montoya M.M. Shen X. Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science 2018 361 6408 eaat5236 10.1126/science.aat5236 30237325
    [Google Scholar]
  25. Keshavarzian A. Green S.J. Engen P.A. Voigt R.M. Naqib A. Forsyth C.B. Mutlu E. Shannon K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015 30 10 1351 1360 10.1002/mds.26307 26179554
    [Google Scholar]
  26. Caputi V. Giron M.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci. 2018 19 6 1689 10.3390/ijms19061689 29882798
    [Google Scholar]
  27. Galland L. The gut microbiome and the brain. J. Med. Food 2014 17 12 1261 1272 10.1089/jmf.2014.7000 25402818
    [Google Scholar]
  28. Yang N.J. Chiu I.M. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol. 2017 429 5 587 605 10.1016/j.jmb.2016.12.023 28065740
    [Google Scholar]
  29. Michel P.P. Hirsch E.C. Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 2016 90 4 675 691 10.1016/j.neuron.2016.03.038 27196972
    [Google Scholar]
  30. Fasano A. Visanji N.P. Liu L.W.C. Lang A.E. Pfeiffer R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015 14 6 625 639 10.1016/S1474‑4422(15)00007‑1 25987282
    [Google Scholar]
  31. Lin J.C. Lin C.S. Hsu C.W. Lin C.L. Kao C.H. Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm. Bowel Dis. 2016 22 5 1049 1055 10.1097/MIB.0000000000000735 26919462
    [Google Scholar]
  32. Xiang Z-B. Xu R-S. Zhu Y. Yuan M. Liu Y. Yang F. Chen W-Z. Xu Z.Z. Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen. Res. 2022 17 2 344 353 10.4103/1673‑5374.317981 34269209
    [Google Scholar]
  33. Scheperjans F. Aho V. Pereira P.A.B. Koskinen K. Paulin L. Pekkonen E. Haapaniemi E. Kaakkola S. Eerola-Rautio J. Pohja M. Kinnunen E. Murros K. Auvinen P. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015 30 3 350 358 10.1002/mds.26069 25476529
    [Google Scholar]
  34. Stockdale S.R. Draper L.A. O’Donovan S.M. Barton W. O’Sullivan O. Volpicelli-Daley L.A. Sullivan A.M. O’Neill C. Hill C. Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson’s disease. Commun. Biol. 2021 4 1 1140 10.1038/s42003‑021‑02666‑1 34588600
    [Google Scholar]
  35. Terada M. Suzuki G. Nonaka T. Kametani F. Tamaoka A. Hasegawa M. The effect of truncation on prion-like properties of α-synuclein. J. Biol. Chem. 2018 293 36 13910 13920 10.1074/jbc.RA118.001862 30030380
    [Google Scholar]
  36. Kim C. Lv G. Lee J.S. Jung B.C. Masuda-Suzukake M. Hong C.S. Valera E. Lee H.J. Paik S.R. Hasegawa M. Masliah E. Eliezer D. Lee S.J. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci. Rep. 2016 6 1 30891 10.1038/srep30891 27488222
    [Google Scholar]
  37. Lee Y. Lee S. Chang S.C. Lee J. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch. Pharm. Res. 2019 42 5 416 425 10.1007/s12272‑019‑01133‑0 30830660
    [Google Scholar]
  38. Perez-Pardo P. Dodiya H.B. Engen P.A. Forsyth C.B. Huschens A.M. Shaikh M. Voigt R.M. Naqib A. Green S.J. Kordower J.H. Shannon K.M. Garssen J. Kraneveld A.D. Keshavarzian A. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019 68 5 829 843 10.1136/gutjnl‑2018‑316844 30554160
    [Google Scholar]
  39. Thaiss C.A. Zmora N. Levy M. Elinav E. The microbiome and innate immunity. Nature 2016 535 7610 65 74 10.1038/nature18847 27383981
    [Google Scholar]
  40. Yitbarek A. Taha-Abdelaziz K. Hodgins D.C. Read L. Nagy É. Weese J.S. Caswell J.L. Parkinson J. Sharif S. Gut microbiota-mediated protection against influenza virus subtype H9N2 in chickens is associated with modulation of the innate responses. Sci. Rep. 2018 8 1 13189 10.1038/s41598‑018‑31613‑0 30181578
    [Google Scholar]
  41. Suleiman Khoury Z. Sohail F. Wang J. Mendoza M. Raake M. Tahoor Silat M. Reddy Bathinapatta M. Sadeghzadegan A. Meghana P. Paul J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024 16 6 e62310 10.7759/cureus.62310 39006715
    [Google Scholar]
  42. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol. 2013 22 1 11 17 10.5607/en.2013.22.1.11 23585717
    [Google Scholar]
  43. Shandilya S. Kumar S. Kumar Jha N. Kumar Kesari K. Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J. Adv. Res. 2022 38 223 244 10.1016/j.jare.2021.09.005 35572407
    [Google Scholar]
  44. Noble E.E. Hsu T.M. Kanoski S.E. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front. Behav. Neurosci. 2017 11 9 10.3389/fnbeh.2017.00009 28194099
    [Google Scholar]
  45. Bullich C. Keshavarzian A. Garssen J. Kraneveld A. Perez-Pardo P. Gut vibes in Parkinson’s disease: the microbiota‐gut‐brain axis. Mov. Disord. Clin. Pract. (Hoboken) 2019 6 8 639 651 10.1002/mdc3.12840 31745471
    [Google Scholar]
  46. Rietdijk C.D. Perez-Pardo P. Garssen J. van Wezel R.J.A. Kraneveld A.D. Exploring Braak’s hypothesis of Parkinson’s disease. Front. Neurol. 2017 8 37 10.3389/fneur.2017.00037 28243222
    [Google Scholar]
  47. Frost G. Sleeth M.L. Sahuri-Arisoylu M. Lizarbe B. Cerdan S. Brody L. Anastasovska J. Ghourab S. Hankir M. Zhang S. Carling D. Swann J.R. Gibson G. Viardot A. Morrison D. Louise Thomas E. Bell J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014 5 1 3611 10.1038/ncomms4611 24781306
    [Google Scholar]
  48. Kaelberer M.M. Rupprecht L.E. Liu W.W. Weng P. Bohórquez D.V. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu. Rev. Neurosci. 2020 43 1 337 353 10.1146/annurev‑neuro‑091619‑022657 32101483
    [Google Scholar]
  49. Masato A. Plotegher N. Boassa D. Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol. Neurodegener. 2019 14 1 35 10.1186/s13024‑019‑0332‑6 31488222
    [Google Scholar]
  50. Luqman A. Nega M. Nguyen M.T. Ebner P. Götz F. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep. 2018 22 2 535 545 10.1016/j.celrep.2017.12.058 29320746
    [Google Scholar]
  51. Al-Jahmany A.A. Schultheiss G. Diener M. Effects of dopamine on ion transport across the rat distal colon. Pflugers Arch. 2004 448 6 605 612 10.1007/s00424‑004‑1299‑9 15235915
    [Google Scholar]
  52. Vaughan C.J. Aherne A.M. Lane E. Power O. Carey R.M. O’Connell D.P. Identification and regional distribution of the dopamine D 1A receptor in the gastrointestinal tract. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000 279 2 R599 R609 10.1152/ajpregu.2000.279.2.R599 10938251
    [Google Scholar]
  53. Shen T. Yue Y. He T. Huang C. Qu B. Lv W. Lai H.Y. The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front. Aging Neurosci. 2021 13 636545 10.3389/fnagi.2021.636545 33643026
    [Google Scholar]
  54. Maini Rekdal V. Bess E.N. Bisanz J.E. Turnbaugh P.J. Balskus E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019 364 6445 eaau6323 10.1126/science.aau6323
    [Google Scholar]
  55. Wang Y. Tong Q. Ma S.R. Zhao Z.X. Pan L.B. Cong L. Han P. Peng R. Yu H. Lin Y. Gao T.L. Shou J.W. Li X.Y. Zhang X.F. Zhang Z.W. Fu J. Wen B.Y. Yu J.B. Cao X. Jiang J.D. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther. 2021 6 1 77 10.1038/s41392‑020‑00456‑5 33623004
    [Google Scholar]
  56. Kuai X. Yao X. Xu L. Zhou Y. Zhang L. Liu Y. Pei S. Zhou C. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb. Cell Fact. 2021 20 1 98 10.1186/s12934‑021‑01589‑0 33985520
    [Google Scholar]
  57. Sun M.F. Zhu Y.L. Zhou Z.L. Jia X.B. Xu Y.D. Yang Q. Cui C. Shen Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun. 2018 70 48 60 10.1016/j.bbi.2018.02.005 29471030
    [Google Scholar]
  58. Hou Y. Shan C. Zhuang S. Zhuang Q. Ghosh A. Zhu K. Kong X. Wang S. Gong Y. Yang Y. Tao B. Sun L. Zhao H.Y. Guo X. Wang W. Ning G. Gu Y. Li S. Liu J. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome 2021 9 1 34 10.1186/s40168‑020‑00988‑6 33517890
    [Google Scholar]
  59. Mehanna M. AbuRaya S. Ahmed S.M. Ashmawy G. Ibrahim A. AbdelKhaliq E. Study of the gut microbiome in Egyptian patients with Parkinson’s Disease. BMC Microbiol. 2023 23 1 196 10.1186/s12866‑023‑02933‑7 37481569
    [Google Scholar]
  60. Tan A.H. Hor J.W. Chong C.W. Lim S.Y. Probiotics for Parkinson’s disease: Current evidence and future directions. JGH Open 2021 5 4 414 419 10.1002/jgh3.12450 33860090
    [Google Scholar]
  61. Kohbata S. Beaman B.L. L-dopa-responsive movement disorder caused by Nocardia asteroides localized in the brains of mice. Infect. Immun. 1991 59 1 181 191 10.1128/iai.59.1.181‑191.1991 1670928
    [Google Scholar]
  62. vanKessel S.P. Frye A.K. El-Gendy A.O. Castejon M. Keshavarzian A. van Dijk G. El Aidy S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat Commun. 2019 10 1 310
    [Google Scholar]
  63. Nunes-Costa D. Magalhães J.D. G-Fernandes M. Cardoso S.M. Empadinhas N. Microbial BMAA and the pathway for Parkinson’s disease neurodegeneration. Front. Aging Neurosci. 2020 12 26 10.3389/fnagi.2020.00026 32317956
    [Google Scholar]
  64. Zhong R. Chen Q. Zhang X. Li M. Lin W. Helicobacter pylori infection is associated with a poor response to levodopa in patients with Parkinson's disease: a systematic review and meta-analysis. J Neurol. 2022 269 2 703 711 10.1007/s00415‑021‑10473‑1
    [Google Scholar]
  65. Murros K.E. Huynh V.A. Takala T.M. Saris P.E.J. Desulfovibrio bacteria are associated with Parkinson’s disease. Frontiers in Cel. Front. Cell. Infect. Microbiol. 2021 11 652617 10.3389/fcimb.2021.652617 34012926
    [Google Scholar]
  66. Choi J.G. Kim N. Ju I.G. Eo H. Lim S.M. Jang S.E. Kim D.H. Oh M.S. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci. Rep. 2018 8 1 1275 10.1038/s41598‑018‑19646‑x 29352191
    [Google Scholar]
  67. Hill C. Guarner F. Reid G. Gibson G.R. Merenstein D.J. Pot B. Morelli L. Canani R.B. Flint H.J. Salminen S. Calder P.C. Sanders M.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014 11 8 506 514 10.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  68. LeBlanc J.G. Milani C. de Giori G.S. Sesma F. van Sinderen D. Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 2013 24 2 160 168 10.1016/j.copbio.2012.08.005 22940212
    [Google Scholar]
  69. Reid G. Younes J.A. Van der Mei H.C. Gloor G.B. Knight R. Busscher H.J. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 2011 9 1 27 38 10.1038/nrmicro2473 21113182
    [Google Scholar]
  70. Sanders M.E. Merenstein D.J. Reid G. Gibson G.R. Rastall R.A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 605 616 10.1038/s41575‑019‑0173‑3 31296969
    [Google Scholar]
  71. Suez J. Zmora N. Segal E. Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019 25 5 716 729 10.1038/s41591‑019‑0439‑x 31061539
    [Google Scholar]
  72. Salas-Jara M. Ilabaca A. Vega M. García A. Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms 2016 4 3 35 10.3390/microorganisms4030035 27681929
    [Google Scholar]
  73. Bron P.A. van Baarlen P. Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 2012 10 1 66 78 10.1038/nrmicro2690 22101918
    [Google Scholar]
  74. Yu M. Zhang R. Ni P. Chen S. Duan G. Efficacy of Lactobacillus-supplemented triple therapy for H. pylori eradication: A meta-analysis of randomized controlled trials. PLoS One 2019 14 10 e0223309 10.1371/journal.pone.0223309 31577828
    [Google Scholar]
  75. Klaenhammer T.R. Kleerebezem M. Kopp M.V. Rescigno M. The impact of probiotics and prebiotics on the immune system. Nat. Rev. Immunol. 2012 12 10 728 734 10.1038/nri3312 23007572
    [Google Scholar]
  76. Toscano M. De Grandi R. Pastorelli L. Vecchi M. Drago L. A consumer’s guide for probiotics: 10 golden rules for a correct use. Dig. Liver Dis. 2017 49 11 1177 1184 10.1016/j.dld.2017.07.011 28830747
    [Google Scholar]
  77. Kim N. Yun M. Oh Y.J. Choi H.J. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. J. Microbiol. 2018 56 3 172 182 10.1007/s12275‑018‑8032‑4 29492874
    [Google Scholar]
  78. Nurrahma B.A. Tsao S.P. Wu C.H. Yeh T.H. Hsieh P.S. Panunggal B. Huang H.Y. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism. Front. Aging Neurosci. 2021 13 668775 10.3389/fnagi.2021.668775 34025392
    [Google Scholar]
  79. Cassani E. Privitera G. Pezzoli G. Pusani C. Madio C. Iorio L. Barichella M. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol. Dietol. 2011 57 2 117 121 21587143
    [Google Scholar]
  80. Tamtaji O.R. Taghizadeh M. Daneshvar Kakhaki R. Kouchaki E. Bahmani F. Borzabadi S. Oryan S. Mafi A. Asemi Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019 38 3 1031 1035 10.1016/j.clnu.2018.05.018 29891223
    [Google Scholar]
  81. Goya M.E. Xue F. Sampedro-Torres-Quevedo C. Arnaouteli S. Riquelme-Dominguez L. Romanowski A. Brydon J. Ball K.L. Stanley-Wall N.R. Doitsidou M. Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Rep. 2020 30 2 367 380.e7 10.1016/j.celrep.2019.12.078 31940482
    [Google Scholar]
  82. Gazerani P. Probiotics for Parkinson's disease. Int J Mol Sci. 2019 20 17 4121 10.3390/ijms20174121
    [Google Scholar]
  83. Nowak A. Paliwoda A. Błasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci. Nutr. 2019 59 21 3456 3467 10.1080/10408398.2018.1494539 30010390
    [Google Scholar]
  84. Magistrelli L. Amoruso A. Mogna L. Graziano T. Cantello R. Pane M. Comi C. Probiotics may have beneficial effects in Parkinson's disease: In vitro evidence. Front Immunol. 2019 10 969 10.3389/fimmu.2019.00969
    [Google Scholar]
  85. Valvaikar S. Vaidya B. Sharma S. Bishnoi M. Kondepudi K.K. Sharma S.S. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson’s disease model. Neurochem. Int. 2024 174 105691 10.1016/j.neuint.2024.105691 38311217
    [Google Scholar]
  86. Tsao S.P. Nurrahma B.A. Kumar R. Wu C.H. Yeh T.H. Chiu C.C. Lee Y.P. Liao Y.C. Huang C.H. Yeh Y.T. Huang H.Y. Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced parkinson’s disease rats. Antioxidants 2021 10 11 1823 10.3390/antiox10111823 34829694
    [Google Scholar]
  87. Sun J. Li H. Jin Y. Yu J. Mao S. Su K.P. Ling Z. Liu J. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav. Immun. 2021 91 703 715 10.1016/j.bbi.2020.10.014 33148438
    [Google Scholar]
  88. Alipour Nosrani E. Tamtaji O.R. Alibolandi Z. Sarkar P. Ghazanfari M. Azami Tameh A. Taghizadeh M. Banikazemi Z. Hadavi R. Naderi Taheri M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J. Immunoassay Immunochem. 2021 42 2 106 120 10.1080/15321819.2020.1833917 33078659
    [Google Scholar]
  89. Tsao S.P. Yeh T.H. Lin Y.T. Pan C.H. Lee Y.K. Wu C.H. Huang H.Y. Supplementation with Bifidobacterium animalis subsp. lactis MH-022 for remission of motor impairments in a 6-OHDA-induced Parkinson’s disease rat model by reducing inflammation, reshaping the gut microbiome, and fostering specific microbial taxa. Food Funct. 2024 15 18 9368 9389 10.1039/D4FO02039A 39189385
    [Google Scholar]
  90. Chu C. Yu L. Li Y. Guo H. Zhai Q. Chen W. Tian F. Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 2023 15 7 1737 10.3390/nu15071737 37049578
    [Google Scholar]
  91. Aktas B. Aslim B. Ozdemir D.A. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson’s disease. Sci. Rep. 2024 14 1 15460 10.1038/s41598‑024‑65061‑w 38965287
    [Google Scholar]
  92. Liu X. Du Z.R. Wang X. Sun X.R. Zhao Q. Zhao F. Wong W.T. Wong K.H. Dong X.L. Polymannuronic acid prebiotic plus Lacticaseibacillus rhamnosus GG probiotic as a novel synbiotic promoted their separate neuroprotection against Parkinson’s disease. Food Res. Int. 2022 155 111067 10.1016/j.foodres.2022.111067 35400445
    [Google Scholar]
  93. Yang X. He X. Xu S. Zhang Y. Mo C. Lai Y. Song Y. Yan Z. Ai P. Qian Y. Xiao Q. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease. Food Funct. 2023 14 15 6828 6839 10.1039/D3FO00728F 37470081
    [Google Scholar]
  94. Tan A.H. Lim S.Y. Chong K.K. A Manap M.A.A. Hor J.W. Lim J.L. Low S.C. Chong C.W. Mahadeva S. Lang A.E. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. Neurology 2021 96 5 e772 e782 10.1212/WNL.0000000000010998 33046607
    [Google Scholar]
  95. Du Y. Li Y. Xu X. Li R. Zhang M. Cui Y. Zhang L. Wei Z. Wang S. Tuo H. Probiotics for constipation and gut microbiota in Parkinson’s disease. Parkinsonism Relat. Disord. 2022 103 92 97 10.1016/j.parkreldis.2022.08.022 36087572
    [Google Scholar]
  96. Ibrahim A. Ali R.A.R. Manaf M.R.A. Ahmad N. Tajurruddin F.W. Qin W.Z. Desa S.H.M. Ibrahim N.M. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS One 2020 15 12 e0244680 10.1371/journal.pone.0244680 33382780
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328332572241219102122
Loading
/content/journals/crcep/10.2174/0127724328332572241219102122
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gut microbiota ; Parkinson’s disease ; gut ; Probiotic ; intestine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test