Skip to content
2000
image of Understanding Diabetic Wounds: A Review of Mechanisms, Pathophysiology, and Multimodal Management Strategies

Abstract

Introduction

Diabetic wounds are a prevalent and impairing consequence of diabetes mellitus that significantly impacts people's lives and global healthcare systems. Because of disturbances in the wound-healing cascade, these intricate, persistent wounds frequently refuse to heal. Focusing on diabetic wound formation, this study seeks to clarify the complex mechanisms and pathophysiology involved while offering a thorough overview of modern multimodal therapy techniques. The etiology of diabetic wounds entails a complex interplay between tissue destruction caused by hyperglycemia, neuropathy, ischemia, and compromised immune response. Extended inflammation, abnormal protease activity, and low oxygen levels in the tissue exacerbate the healing process. Comprehending these pathogenic mechanisms is essential for formulating efficacious therapeutic strategies.

Methodology

A thorough evaluation of the literature was done. Databases like SciFinder, ScienceDirect, PubMed, Google, Google Scholar, and the Egyptian Knowledge Bank were used to find pertinent publications. More than 200 articles and databases were studied to constitute this paper. The accuracy of the retrieved data was carefully reviewed and cross-checked. The current review aims to define wounds, various methods of classification, and various advancements for wound management as mentioned in scheme . Several multidisciplinary strategies, including debridement, unloading, antimicrobial stewardship, and innovative therapeutics, are currently needed to manage diabetic wounds. Debridement—the excision of non-viable tissue—is necessary to create an environment that is conducive to recovery. Biomechanical interventions and offloading help to prevent additional tissue damage caused by repetitive stress. Antimicrobial treatments fight infections, which are a common diabetic wound consequence. Promising supplementary treatments are provided by developments in cellular and tissue-based products, ozone therapy growth factors, bioengineered skin substitutes, and hyperbaric oxygen therapy.

Result

After applying article selection criteria and reviewing the quality of the methodology a total of 200 articles were selected to be included in the review. In this review, intricate interactions between peripheral neuropathy, vascular insufficiency, and hyperglycemia in the pathophysiology of diabetic wounds are explained. The efficacy of multimodal therapies is discussed in detail.

Discussion

A thorough comprehension of the complex mechanisms that underlie diabetic wounds is essential for efficient therapy. This review emphasizes how important multimodal approaches are to treating the complex pathophysiology of these wounds. Clinicians can greatly enhance the prognosis of patients with diabetic foot ulcers by addressing vascular insufficiency, neuropathy, infection, and poor healing.

Conclusion

Timely wound resolution remains a key difficulty despite the implementation of multimodal methods. To customize therapies, personalized medicine strategies utilizing genetic and proteomic biomarkers must be the main focus of future research. Furthermore, cutting-edge biotechnologies with the potential to transform diabetic wound treatment include optogenetics and nanomedicine.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328326480240927065600
2024-10-14
2024-11-26
Loading full text...

Full text loading...

References

  1. Encyclopedia Britannica. 2022 Available from: https://www.britannica.com/science/wound Accessed 29 February 2024.
  2. Kujath P. Michelsen A. Wounds - From physiology to wound dressing. Dtsch. Arztebl. Int. 2008 105 13 239 248 19629204
    [Google Scholar]
  3. Kumar B. Vijayakumar M. Govindarajan R. Pushpangadan P. Ethnopharmacological approaches to wound healing—Exploring medicinal plants of India. J. Ethnopharmacol. 2007 114 2 103 113 10.1016/j.jep.2007.08.010 17884316
    [Google Scholar]
  4. Karimi K. Odhav A. Kollipara R. Fike J. Stanford C. Hall J.C. Acute cutaneous necrosis: A guide to early diagnosis and treatment. J. Cutan. Med. Surg. 2017 21 5 425 437 10.1177/1203475417708164 28470091
    [Google Scholar]
  5. Sabale P. Bhimani B. Prajapati C. Sabale V. An overview of medicinal plants as wound healers. J. Appl. Pharm. Sci. 2012 2 11 143 150
    [Google Scholar]
  6. Dat A.D. Poon F. Pham K.B. Doust J. Aloe vera for treating acute and chronic wounds. Sao Paulo medical journal. Rev. Paul. Med. 2014 132 6 382
    [Google Scholar]
  7. Moreo K. Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager 2005 16 2 62 67, 67 10.1016/j.casemgr.2005.01.014 15818347
    [Google Scholar]
  8. Rudolph R. Hurowitz D. Putnam J. The economics of chronic wounds. Chronic problem wounds. Rudolph R. Noe J.M. Boston Little Brown & Co. 1983 173
    [Google Scholar]
  9. Balakumar P. Maung-U K. Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016 113 Pt A 600 609 10.1016/j.phrs.2016.09.040 27697647
    [Google Scholar]
  10. Gould L. Abadir P. Brem H. Carter M. Conner-Kerr T. Davidson J. DiPietro L. Falanga V. Fife C. Gardner S. Grice E. Harmon J. Hazzard W.R. High K.P. Houghton P. Jacobson N. Kirsner R.S. Kovacs E.J. Margolis D. McFarland Horne F. Reed M.J. Sullivan D.H. Thom S. Tomic-Canic M. Walston J. Whitney J.A. Williams J. Zieman S. Schmader K. Chronic wound repair and healing in older adults: Current status and future research. J. Am. Geriatr. Soc. 2015 63 3 427 438 10.1111/jgs.13332 25753048
    [Google Scholar]
  11. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014 6 265 265sr6 10.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  12. Hanefeld M. Duetting E. Bramlage P. Cardiac implications of hypoglycaemia in patients with diabetes – A systematic review. Cardiovasc. Diabetol. 2013 12 1 135 10.1186/1475‑2840‑12‑135 24053606
    [Google Scholar]
  13. Burgess J.L. Wyant W.A. Abdo Abujamra B. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  14. Boulton A. Armstrong D. Hardman M. Diagnosis and management of diabetic foot infections. American Diabetes Association Arlington, (VA) 2020
    [Google Scholar]
  15. Desmet C.M. Préat V. Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 2018 129 262 284 10.1016/j.addr.2018.02.001 29448035
    [Google Scholar]
  16. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005 67 1 3 21 10.1016/j.diabres.2004.09.004 15620429
    [Google Scholar]
  17. Kim B.Y. Kim C.H. Jung C.H. Mok J.O. Suh K.I. Kang S.K. Association between subclinical hypothyroidism and severe diabetic retinopathy in Korean patients with type 2 diabetes. Endocr. J. 2011 58 12 1065 1070 10.1507/endocrj.EJ11‑0199 21931224
    [Google Scholar]
  18. Choudhury H. Pandey M. Lim Y.Q. Low C.Y. Lee C.T. Marilyn T.C.L. Loh H.S. Lim Y.P. Lee C.F. Bhattamishra S.K. Kesharwani P. Gorain B. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater. Sci. Eng. C 2020 112 110925 10.1016/j.msec.2020.110925 32409075
    [Google Scholar]
  19. Nowak N.C. Menichella D.M. Miller R. Paller A.S. Cutaneous innervation in impaired diabetic wound healing. Transl. Res. 2021 236 87 108 10.1016/j.trsl.2021.05.003 34029747
    [Google Scholar]
  20. Diegelmann R.F. Evans M.C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004 9 1-3 283 289 10.2741/1184 14766366
    [Google Scholar]
  21. Lazarus G.S. Cooper D.M. Knighton D.R. Margolis D.J. Pecoraro R.E. Rodeheaver G. Robson M.C. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch. Dermatol. 1994 130 4 489 493 10.1001/archderm.1994.01690040093015 8166487
    [Google Scholar]
  22. Demidova-Rice T.N. Hamblin M.R. Herman I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv. Skin Wound Care 2012 25 7 304 314 10.1097/01.ASW.0000416006.55218.d0 22713781
    [Google Scholar]
  23. Shaw T.J. Martin P. Wound repair at a glance. J. Cell Sci. 2009 122 18 3209 3213 10.1242/jcs.031187 19726630
    [Google Scholar]
  24. MacKay D. Miller A.L. Nutritional support for wound healing. Altern. Med. Rev. 2003 8 4 359 377 14653765
    [Google Scholar]
  25. Tsala D.E. Amadou D. Habtemariam S. Natural wound healing and bioactive natural products. Phytopharmacology 2013 4 3 532 560
    [Google Scholar]
  26. Li J. Chen J. Kirsner R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007 25 1 9 18 10.1016/j.clindermatol.2006.09.007 17276196
    [Google Scholar]
  27. Lee Y.S. Wysocki A. Warburton D. Tuan T.L. Wound healing in development. Birth Defects Res. C Embryo Today 2012 96 3 213 222 10.1002/bdrc.21017 23109317
    [Google Scholar]
  28. Lawrence W.T. Diegelmann R.F. Growth factors in wound healing. Clin. Dermatol. 1994 12 1 157 169 10.1016/0738‑081X(94)90266‑6 8180938
    [Google Scholar]
  29. Wang P.H. Huang B.S. Horng H.C. Yeh C.C. Chen Y.J. Wound healing. J. Chin. Med. Assoc. 2018 81 2 94 101 10.1016/j.jcma.2017.11.002 29169897
    [Google Scholar]
  30. Cho J. Mosher D.F. Role of fibronectin assembly in platelet thrombus formation. J. Thromb. Haemost. 2006 4 7 1461 1469 10.1111/j.1538‑7836.2006.01943.x 16839338
    [Google Scholar]
  31. Rabhi-Sabile S. de Romeuf C. Pidard D. On the mechanism of plasmin-induced aggregation of human platelets: Implication of secreted von Willebrand factor. Thromb. Haemost. 1998 79 6 1191 1198 10.1055/s‑0037‑1615039 9657447
    [Google Scholar]
  32. Ono Y. Kurano M. Ohkawa R. Yokota H. Igarashi K. Aoki J. Tozuka M. Yatomi Y. Sphingosine 1-phosphate release from platelets during clot formation: Close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis. 2013 12 1 20 10.1186/1476‑511X‑12‑20 23418753
    [Google Scholar]
  33. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005 366 9498 1736 1743 10.1016/S0140‑6736(05)67700‑8 16291068
    [Google Scholar]
  34. Nagaraja S. Wallqvist A. Reifman J. Mitrophanov A.Y. Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation. J. Immunol. 2014 192 4 1824 1834 10.4049/jimmunol.1302481 24453259
    [Google Scholar]
  35. Sorg H. Tilkorn D.J. Hager S. Hauser J. Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017 58 1-2 81 94 10.1159/000454919 27974711
    [Google Scholar]
  36. Gurtner G.C. Werner S. Barrandon Y. Longaker M.T. Wound repair and regeneration. Nature 2008 453 7193 314 321 10.1038/nature07039 18480812
    [Google Scholar]
  37. Werner S. Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003 83 3 835 870 10.1152/physrev.2003.83.3.835 12843410
    [Google Scholar]
  38. Cross K.J. Mustoe T.A. Growth factors in wound healing. Surg. Clin. North Am. 2003 83 3 531 545, vi 10.1016/S0039‑6109(02)00202‑5 12822724
    [Google Scholar]
  39. Barker T.H. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials 2011 32 18 4211 4214 10.1016/j.biomaterials.2011.02.027 21515169
    [Google Scholar]
  40. Eckes B. Nischt R. Krieg T. Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair 2010 3 1 4 10.1186/1755‑1536‑3‑4 20222960
    [Google Scholar]
  41. Hunt T.K. The physiology of wound healing. Ann. Emerg. Med. 1988 17 12 1265 1273 10.1016/S0196‑0644(88)80351‑2 3057943
    [Google Scholar]
  42. Simon P.E. Outran H.A. Romo T. Pafford W. Pearson J.M. Yalamanchili H. Zoumalan R.A. Skin. Wound Healing 2014
    [Google Scholar]
  43. Desmoulière A. Redard M. Darby I. Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 1995 146 1 56 66 [PubMed]. 7856739
    [Google Scholar]
  44. Hunt T.K. Goodson W.H. Wound healing. Current surgical diagnosis and treatment. Way L.W. Norwalk, CT Appleton and Lange 1988 86 97
    [Google Scholar]
  45. Gao D. Zhang Y. Bowers D.T. Liu W. Ma M. Functional hydrogels for diabetic wound management. APL Bioeng. 2021 5 3 031503 10.1063/5.0046682 34286170
    [Google Scholar]
  46. Brem H. Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 2007 117 5 1219 1222 10.1172/JCI32169 17476353
    [Google Scholar]
  47. Flynn M.D. Tooke J.E. Aetiology of diabetic foot ulceration: A role for the microcirculation? Diabet. Med. 1992 9 4 320 329 10.1111/j.1464‑5491.1992.tb01790.x 1600701
    [Google Scholar]
  48. Hennessey P.J. Ford E.G. Black C.T. Andrassy R.J. Wound collagenase activity correlates directly with collagen glycosylation in diabetic rats. J. Pediatr. Surg. 1990 25 1 75 78 10.1016/S0022‑3468(05)80167‑8 2153794
    [Google Scholar]
  49. Marhoffer W. Stein M. Maeser E. Federlin K. Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care 1992 15 2 256 260 10.2337/diacare.15.2.256 1547682
    [Google Scholar]
  50. McMurtry A.L. Cho K. Young L.J.T. Nelson C.F. Greenhalgh D.G. Expression of HSP70 in healing wounds of diabetic and nondiabetic mice. J. Surg. Res. 1999 86 1 36 41 10.1006/jsre.1999.5700 10452866
    [Google Scholar]
  51. Koitka A. Impaired pressure-induced vasodilation at the foot in young adults with type diabetes. Diabetes 2004 53 721 725 10.2337/diabetes.53.3.721
    [Google Scholar]
  52. Clayton W. Jr Elasy T.A. A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clin. Diabetes 2009 27 2 52 58 10.2337/diaclin.27.2.52
    [Google Scholar]
  53. Schreml S. Szeimies R.M. Prantl L. Karrer S. Landthaler M. Babilas P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010 163 2 257 268 10.1111/j.1365‑2133.2010.09804.x 20394633
    [Google Scholar]
  54. Gosain A. DiPietro L.A. Aging and wound healing. World J. Surg. 2004 28 3 321 326 10.1007/s00268‑003‑7397‑6 14961191
    [Google Scholar]
  55. D’Alessandro S. Magnavacca A. Perego F. Fumagalli M. Sangiovanni E. Prato M. Dell’Agli M. Basilico N. Effect of hypoxia on gene expression in cell populations involved in wound healing. BioMed Res. Int. 2019 2019 1 20 10.1155/2019/2626374 31534956
    [Google Scholar]
  56. Blakytny R. Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med. 2006 23 6 594 608 10.1111/j.1464‑5491.2006.01773.x 16759300
    [Google Scholar]
  57. Deng L Du C Song P Chen T Rui S Armstrong DG Deng W The role of oxidative stress and antioxidants in diabetic wound healing. Oxidative Med. Cell. Longev. 2021 1 11 10.1155/2021/8852759
    [Google Scholar]
  58. Barker A.R. Rosson G.D. Dellon A.L. Wound healing in denervated tissue. Ann. Plast. Surg. 2006 57 3 339 342 10.1097/01.sap.0000221465.69826.b7 16929207
    [Google Scholar]
  59. Ibuki A. Kuriyama S. Toyosaki Y. Aiba M. Hidaka M. Horie Y. Fujimoto C. Isami F. Shibata E. Terauchi Y. Akase T. Aging-like physiological changes in the skin of Japanese obese diabetic patients. SAGE Open Med. 2018 6 10.1177/2050312118756662 29449943
    [Google Scholar]
  60. Greener B. Hughes A.A. Bannister N.P. Douglass J. Proteases and pH in chronic wounds. J. Wound Care 2005 14 2 59 61 10.12968/jowc.2005.14.2.26739 15739652
    [Google Scholar]
  61. Koïtka A. Abraham P. Bouhanick B. Sigaudo-Roussel D. Demiot C. Saumet J.L. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 2004 53 3 721 725 10.2337/diabetes.53.3.721 14988257
    [Google Scholar]
  62. Dworzański J. Strycharz-Dudziak M. Kliszczewska E. Kiełczykowska M. Dworzańska A. Drop B. Polz-Dacewicz M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS One 2020 15 3 e0230374 10.1371/journal.pone.0230374 32210468
    [Google Scholar]
  63. Henshaw F.R. Boughton P. Lo L. McLennan S.V. Twigg S.M. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: Potential role for CTGF in human diabetic foot ulcer healing. J. Diabetes Res. 2015 2015 1 10 10.1155/2015/236238 25789327
    [Google Scholar]
  64. James W.B. Classification of foot lesions in diabetic patients. Levin and O’Neals The Diabetic Foot. 2008 9 221 226
    [Google Scholar]
  65. Choudhary V. Choudhary M. Bollag W.B. Exploring skin wound healing models and the impact of natural lipids on the healing process. Int. J. Mol. Sci. 2024 25 7 3790 10.3390/ijms25073790 38612601
    [Google Scholar]
  66. Kravitz S.R. McGuire J. Shanahan S.D. Physical assessment of the diabetic foot. Adv. Skin Wound Care 2003 16 2 68 75 10.1097/00129334‑200303000‑00007 12690230
    [Google Scholar]
  67. Hoffman A.F. Evaluation of arterial blood flow in the lower extremity. Clin. Podiatr. Med. Surg. 1992 9 1 19 56 10.1016/S0891‑8422(23)00498‑6 1735062
    [Google Scholar]
  68. Caputo G.M. Cavanagh P.R. Ulbrecht J.S. Gibbons G.W. Karchmer A.W. Assessment and management of foot disease in patients with diabetes. N. Engl. J. Med. 1994 331 13 854 860 10.1056/NEJM199409293311307 7848417
    [Google Scholar]
  69. Fard A.S. Esmaelzadeh M. Larijani B. Assessment and treatment of diabetic foot ulcer. Int. J. Clin. Pract. 2007 61 11 1931 1938 10.1111/j.1742‑1241.2007.01534.x 17935551
    [Google Scholar]
  70. Spear M. When and how to culture a chronic wound. Wound Care Advisor 2014 3 23 25
    [Google Scholar]
  71. Alavi A. Niakosari F. Sibbald R.G. When and how to perform a biopsy on a chronic wound. Adv. Skin Wound Care 2010 23 3 132 140 10.1097/01.ASW.0000363515.09394.66 20177166
    [Google Scholar]
  72. Spear M. Best technique for obtaining wound cultures. Plast. Surg. Nurs. 2012 32 1 34 36 10.1097/PSN.0b013e31824a7e53 22395174
    [Google Scholar]
  73. Høiby N. Bjarnsholt T. Moser C. Bassi G.L. Coenye T. Donelli G. Hall-Stoodley L. Holá V. Imbert C. Kirketerp-Møller K. Lebeaux D. Oliver A. Ullmann A.J. Williams C. ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015 21 Suppl. 1 S1 S25 10.1016/j.cmi.2014.10.024 25596784
    [Google Scholar]
  74. Müller B. Christ-Crain M. Nylen E.S. Snider R. Becker K.L. Limits to the use of the procalcitonin level as a diagnostic marker. Clin. Infect. Dis. 2004 39 12 1867 1868 10.1086/426148 15578415
    [Google Scholar]
  75. Okamura Y. Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin. Chim. Acta 2011 412 23-24 2157 2161 10.1016/j.cca.2011.07.024 21839732
    [Google Scholar]
  76. Li S. Renick P. Senkowsky J. Nair A. Tang L. Diagnostics for wound infections. Adv. Wound Care 2021 10 6 317 327 10.1089/wound.2019.1103 32496977
    [Google Scholar]
  77. Lyons T.J. Basu A. Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers. Transl. Res. 2012 159 4 303 312 10.1016/j.trsl.2012.01.009 22424433
    [Google Scholar]
  78. Dmitriyeva M. Kozhakhmetova Z. Urazova S. Kozhakhmetov S. Turebayev D. Toleubayev M. Inflammatory biomarkers as predictors of infected diabetic foot ulcer. Curr. Diabetes Rev. 2022 18 6 e280921196867 10.2174/1573399817666210928144706 34602039
    [Google Scholar]
  79. Cheng P. Dong Y. Hu Z. Huang S. Cao X. Wang P. Xu H. Zhu J. Tang B. Biomarker prediction of postoperative healing of diabetic foot ulcers. J. Wound Ostomy Continence Nurs. 2021 48 4 339 344 10.1097/WON.0000000000000780 34186553
    [Google Scholar]
  80. Zhang D. Li Z. Wang Z. Zeng F. Xiao W. Yu A. MicroRNA-126: A promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy. Diabetes Metab. Syndr. Obes. 2019 12 1685 1696 10.2147/DMSO.S199705 31564936
    [Google Scholar]
  81. Pletsch-Borba L. Watzinger C. Turzanski Fortner R. Katzke V. Schwingshackl L. Sowah S.A. Hüsing A. Johnson T. Groß M.L. González Maldonado S. Hoffmeister M. Bugert P. Kaaks R. Grafetstätter M. Kühn T. Biomarkers of vascular injury and type 2 diabetes: A prospective study, systematic review and meta-analysis. J. Clin. Med. 2019 8 12 2075 10.3390/jcm8122075 31783601
    [Google Scholar]
  82. Lipsky B.A. Berendt A.R. Cornia P.B. Pile J.C. Peters E.J.G. Armstrong D.G. Deery H.G. Embil J.M. Joseph W.S. Karchmer A.W. Pinzur M.S. Senneville E. Infectious Diseases Society of America 2012 infectious diseases society of america clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012 54 12 e132 e173 10.1093/cid/cis346 22619242
    [Google Scholar]
  83. Schaper N.C. van Netten J.J. Apelqvist J. Bus S.A. Fitridge R. Game F. Monteiro-Soares M. Senneville E. IWGDF Editorial Board Practical guidelines on the prevention and management of diabetes‐related foot disease (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024 40 3 e3657 10.1002/dmrr.3657 37243927
    [Google Scholar]
  84. Braun L. Kim P.J. Margolis D. Peters E.J. Lavery L.A. Wound Healing Society What’s new in the literature: An update of new research since the original WHS diabetic foot ulcer guidelines in 2006. Wound Repair Regen. 2014 22 5 594 604 10.1111/wrr.12220 25139424
    [Google Scholar]
  85. Tan J.S. File T.M. Jr Diagnosis and treatment of diabetic foot infections. Best Pract. Res. Clin. Rheumatol. 1999 13 1 149 161 10.1053/berh.1999.0011 10952854
    [Google Scholar]
  86. Vas P.R.J. Edmonds M. Kavarthapu V. Rashid H. Ahluwalia R. Pankhurst C. Papanas N. The diabetic foot attack: “Tis too late to retreat!”. Int. J. Low. Extrem. Wounds 2018 17 1 7 13 10.1177/1534734618755582 29430981
    [Google Scholar]
  87. Kolossváry E. Farkas K. Colgan M.P. Edmonds M. Fitzgerald H.P. Fox M. Pécsvárady Z. Wautrecht J.C. Catalano M. VAS-Vascular-Independent Research and Education-European Organization 9 “No more amputations”: A complex scientific problem and a challenge for effective preventive strategy implementation on vascular field. Int. Angiol. 2017 36 2 107 115 10.23736/S0392‑9590.16.03673‑7 27310526
    [Google Scholar]
  88. de Oliveira A.L.M. Moore Z. Treatment of the diabetic foot by offloading: A systematic review. J. Wound Care 2015 24 12 560 570, 562-570 10.12968/jowc.2015.24.12.560 26654736
    [Google Scholar]
  89. Bus S.A. Armstrong D.G. Crews R.T. Gooday C. Jarl G. Kirketerp-Moller K. Viswanathan V. Lazzarini P.A. Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024 40 3 e3647 10.1002/dmrr.3647 37226568
    [Google Scholar]
  90. Chun D.I. Kim J. Kang E.M. An C.Y. Min T.H. Kim S. Cho J. Yi Y. Won S.H. Does amputation negatively influence the incidence of depression in diabetic foot patients?: A population-based nationwide study. Appl. Sci. 2022 12 3 1653 10.3390/app12031653
    [Google Scholar]
  91. Smith D.G. Ehde D.M. Legro M.W. Reiber G.E. del Aguila M. Boone D.A. Phantom limb, residual limb, and back pain after lower extremity amputations. Clin. Orthop. Relat. Res. 1999 361 361 29 38 10.1097/00003086‑199904000‑00005 10212593
    [Google Scholar]
  92. Fitzgerald R. Rogers L. Armstrong D.G. The wound healing spectrum: A timeline for the utilization of advanced technology. J Diabetic Foot Complications. 2009 1 3 63 75
    [Google Scholar]
  93. Drosou A. Falabella A. Kirsner R. Antiseptics on wounds: An area of controversy. Wounds 2003
    [Google Scholar]
  94. Brown C.D. Zitelli J.A. A review of topical agents for wounds and methods of wounding. Guidelines for wound management. J. Dermatol. Surg. Oncol. 1993 19 8 732 737 10.1111/j.1524‑4725.1993.tb00417.x 8349913
    [Google Scholar]
  95. Gilman A. Goodman L. The Pharmacological Basis of Therapeutics. New York Macmillan 1980
    [Google Scholar]
  96. Bergstrom N. Bennet M. Carlson C. Clinical Practice Guidelines Number 15: Treatment of Pressure Ulcers. Rockville, MD US Department for Health & Human Services 1994
    [Google Scholar]
  97. Kloth L.C. Berman J.E. Laatsch L.J. Kirchner P.A. Bactericidal and cytotoxic effects of chloramine-T on wound pathogens and human fibroblasts in vitro. Adv. Skin Wound Care 2007 20 6 331 345 10.1097/01.ASW.0000276408.53632.0b 17538259
    [Google Scholar]
  98. Ogut E. Yildirim F.B. Sarikcioglu L. Aydin M.A. Demi̇r N. Neuroprotective effects of ozone therapy after sciatic nerve cut injury. Kurume Med. J. 2018 65 4 137 144 10.2739/kurumemedj.MS654002 31391380
    [Google Scholar]
  99. Astasio-Picado Á. Babiano A.Á. López-Sánchez M. Lozano R.R. Cobos-Moreno P. Gómez-Martín B. Use of ozone therapy in diabetic foot ulcers. J. Pers. Med. 2023 13 10 1439 10.3390/jpm13101439 37888050
    [Google Scholar]
  100. Bayer M.E. Thurow H. Bayer M.H. Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29. Virology 1979 94 1 95 118 10.1016/0042‑6822(79)90441‑0 375578
    [Google Scholar]
  101. Dreaden E.C. Alkilany A.M. Huang X. Murphy C.J. El-Sayed M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012 41 7 2740 2779 10.1039/C1CS15237H 22109657
    [Google Scholar]
  102. Shi G. Chen W. Zhang Y. Dai X. Zhang X. Wu Z. An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir 2019 35 5 1837 1845 10.1021/acs.langmuir.8b01834 30086636
    [Google Scholar]
  103. Zheng Q. Chen C. Liu Y. Gao J. Li L. Yin C. Yuan X. Metal nanoparticles: Advanced and promising technology in diabetic wound therapy. Int. J. Nanomedicine 2024 19 965 992 10.2147/IJN.S434693 38293611
    [Google Scholar]
  104. Fathil M.A.M. Katas H. Antibacterial, anti-biofilm and pro-migratory effects of double layered hydrogels packaged with lactoferrin-dsirna-silver nanoparticles for chronic wound therapy. Pharmaceutics 2023 15 3 991 10.3390/pharmaceutics15030991 36986852
    [Google Scholar]
  105. Gu Y. Huang Y. Qiu Z. Xu Z. Li D. Chen L. Jiang J. Gao L. Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci. China Life Sci. 2020 63 1 68 79 10.1007/s11427‑019‑9590‑6 31463739
    [Google Scholar]
  106. Chigurupati S. Mughal M.R. Okun E. Das S. Kumar A. McCaffery M. Seal S. Mattson M.P. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 2013 34 9 2194 2201 10.1016/j.biomaterials.2012.11.061 23266256
    [Google Scholar]
  107. Wang Y.Y. Addisu K.D. Gebrie H.T. Darge H.F. Wu T.Y. Hong Z.X. Tsai H.C. Multifunctional thermosensitive hydrogel based on alginate and P(NIPAM-co-HEMIN) composites for accelerated diabetic wound healing. Int. J. Biol. Macromol. 2023 241 124540 10.1016/j.ijbiomac.2023.124540 37085062
    [Google Scholar]
  108. Yang J. Chu Z. Jiang Y. Zheng W. Sun J. Xu L. Ma Y. Wang W. Shao M. Qian H. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc-based composites for accelerating diabetes wound healing. Adv. Healthc. Mater. 2023 12 24 2300725 10.1002/adhm.202300725 37086396
    [Google Scholar]
  109. Pang Q. Jiang Z. Wu K. Hou R. Zhu Y. Nanomaterials-based wound dressing for advanced management of infected wound. Antibiotics 2023 12 2 351 10.3390/antibiotics12020351 36830262
    [Google Scholar]
  110. Yang L. Rong G.C. Wu Q.N. Diabetic foot ulcer: Challenges and future. World J. Diabetes 2022 13 12 1014 1034 10.4239/wjd.v13.i12.1014 36578870
    [Google Scholar]
  111. Creager M.A. White C.J. Hiatt W.R. Criqui M.H. Josephs S.C. Alberts M.J. Pearce W.H. Gray B.H. Rocha-Singh K.J. American Heart Association Atherosclerotic peripheral vascular disease symposium II. Circulation 2008 118 25 2811 2825 10.1161/CIRCULATIONAHA.108.191170 19106402
    [Google Scholar]
  112. Ahmed M.E. Widatalla A.B.H. Mahadi S.E.D.I. Shawer M.A. Elsayem H.A. Implementation of diabetic foot ulcer classification system for research purposes to predict lower extremity amputation. Int. J. Diabetes Dev. Ctries. 2009 29 1 1 5 10.4103/0973‑3930.50707 20062556
    [Google Scholar]
  113. Turzańska K. Adesanya O. Rajagopal A. Pryce M.T. Fitzgerald Hughes D. Improving the management and treatment of diabetic foot infection: Challenges and research opportunities. Int. J. Mol. Sci. 2023 24 4 3913 10.3390/ijms24043913 36835330
    [Google Scholar]
  114. Aalaa M. Mehrdad N. Bigdeli S. Dehnad A. Sohrabi Z. Arabshahi K.S. Challenges and expectations of diabetic foot care from the patients’ point of views. J. Diabetes Metab. Disord. 2021 20 2 1111 1118 10.1007/s40200‑021‑00825‑z 34900764
    [Google Scholar]
  115. Nirenjen S. Narayanan J. Tamilanban T. Subramaniyan V. Chitra V. Fuloria N.K. Wong L.S. Ramachawolran G. Sekar M. Gupta G. Fuloria S. Chinni S.V. Selvaraj S. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front. Immunol. 2023 14 14 1216321 10.3389/fimmu.2023.1216321 37575261
    [Google Scholar]
  116. Zheng S.Y. Wan X.X. Kambey P.A. Luo Y. Hu X.M. Liu Y.F. Shan J.Q. Chen Y.W. Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J. Diabetes 2023 14 4 364 395 10.4239/wjd.v14.i4.364 37122434
    [Google Scholar]
  117. Spampinato S.F. Caruso G.I. De Pasquale R. Sortino M.A. Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020 13 4 60 10.3390/ph13040060 32244718
    [Google Scholar]
  118. Armstrong D.G. Lipsky B.A. Diabetic foot infections: Stepwise medical and surgical management. Int. Wound J. 2004 1 2 123 132 10.1111/j.1742‑4801.2004.00035.x 16722884
    [Google Scholar]
  119. Moffatt C. Murray S. Keeley V. Aubeeluck A. Non‐adherence to treatment of chronic wounds: Patient versus professional perspectives. Int. Wound J. 2017 14 6 1305 1312 10.1111/iwj.12804 28857457
    [Google Scholar]
  120. Martínez Delgado M.M. Clinical case: Complicated diabetic foot ulcer. Rev. Esp. Sanid. Penit. 2018 20 3 121 124 30908567
    [Google Scholar]
  121. Human S. Mogotlane S. Professional practice: A SA nursing perspective. Diabetic neuropathy, Pearson 2017
    [Google Scholar]
  122. Kong L.Y. Ramirez-GarciaLuna J.L. Fraser R.D.J. Wang S.C. A 57-year-old man with type 1 diabetes mellitus and a chronic foot ulcer successfully managed with a remote patient-facing wound care smartphone application. Am. J. Case Rep. 2021 22 e933879 10.12659/AJCR.933879 34910717
    [Google Scholar]
  123. Babamiri B. Nikkhah F. Faraji N. Goli R. Moghaddam N.V. Rahimi K. Diabetic foot ulcer: Successful healing with combination therapy, including surgical debridement, maggot therapy, and negative pressure wound therapy. Int. J. Surg. Case Rep. 2023 110 108695 10.1016/j.ijscr.2023.108695 37603913
    [Google Scholar]
  124. Haycocks S. A new approach to debridement of wounds in people with diabetes: A case study series. Diabet Foot J 2017 120 125
    [Google Scholar]
  125. Fang W.C. Lan C.C.E. The epidermal keratinocyte as a therapeutic target for management of diabetic wounds. Int. J. Mol. Sci. 2023 24 5 4290 10.3390/ijms24054290 36901720
    [Google Scholar]
  126. Braun L.R. Lamel S.A. Richmond N.A. Kirsner R.S. Topical timolol for recalcitrant wounds. JAMA Dermatol. 2013 149 12 1400 1402 10.1001/jamadermatol.2013.7135 24172892
    [Google Scholar]
  127. Legrand D. Elass E. Carpentier M. Mazurier J. Lactoferrin. Cell. Mol. Life Sci. 2005 62 22 2549 2559 10.1007/s00018‑005‑5370‑2 16261255
    [Google Scholar]
  128. Sosne G. Szliter E.A. Barrett R. Kernacki K.A. Kleinman H. Hazlett L.D. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res. 2002 74 2 293 299 10.1006/exer.2001.1125 11950239
    [Google Scholar]
  129. Quattrini C. Jeziorska M. Malik R.A. Small fiber neuropathy in diabetes: clinical consequence and assessment. Int. J. Low. Extrem. Wounds 2004 3 1 16 21 10.1177/1534734603262483 15866784
    [Google Scholar]
  130. Corral C.J. Siddiqui A. Wu L. Farrell C.L. Lyons D. Mustoe T.A. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch. Surg. 1999 134 2 200 205 10.1001/archsurg.134.2.200 10025464
    [Google Scholar]
  131. Frank S. Hübner G. Breier G. Longaker M.T. Greenhalgh D.G. Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem. 1995 270 21 12607 12613 10.1074/jbc.270.21.12607 7759509
    [Google Scholar]
  132. Crean J.K. Furlong F. Mitchell D. Mcardle E. Godson C. Martin F. Crean J.K. Furlong F. Mitchell D. Mcardle E. Godson C. Martin F. Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B‐mediated phosphorylation and cytoplasmic translocation of p27 Kip‐1. FASEB J. 2006 20 10 1712 1714 10.1096/fj.05‑5010fje 16790529
    [Google Scholar]
  133. Cañedo-Dorantes L. Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int. J. Inflamm. 2019 2019 1 15 10.1155/2019/3706315 31275545
    [Google Scholar]
  134. Mace K.A. Hansen S.L. Myers C. Young D.M. Boudreau N. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J. Cell Sci. 2005 118 12 2567 2577 10.1242/jcs.02399 15914537
    [Google Scholar]
  135. Dizaj S.M. Jafari S. Khosroushahi A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett. 2014 9 1 252 10.1186/1556‑276X‑9‑252 24936161
    [Google Scholar]
  136. Wang L. Gao Y. Zhao X. Guo C. Wang X. Yang Y. Han C. Zhao L. Qin Y. Liu L. Huang C. Wang W. HOXD3 was negatively regulated by YY1 recruiting HDAC1 to suppress progression of hepatocellular carcinoma cells via ITGA2 pathway. Cell Prolif. 2020 53 8 e12835 10.1111/cpr.12835 32557953
    [Google Scholar]
  137. Zhang D.K. Yu J.J. Li Y.M. Wei L.N. Yu Y. Feng Y.H. Wang X. A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice. Mediators Inflamm. 2012 2012 1 9 10.1155/2012/751629 23125487
    [Google Scholar]
  138. Zhao-Fleming H. Hand A. Zhang K. Polak R. Northcut A. Jacob D. Dissanaike S. Rumbaugh K.P. Effect of non-steroidal anti-inflammatory drugs on post-surgical complications against the backdrop of the opioid crisis. Burns Trauma 2018 6 25 10.1186/s41038‑018‑0128‑x 30221175
    [Google Scholar]
  139. Weigelt M.A. Lev-Tov H.A. Tomic-Canic M. Lee W.D. Williams R. Strasfeld D. Kirsner R.S. Herman I.M. Advanced wound diagnostics: Toward transforming wound care into precision medicine. Adv. Wound Care 2022 11 6 330 359 10.1089/wound.2020.1319 34128387
    [Google Scholar]
  140. Dash B.C. Korutla L. Vallabhajosyula P. Hsia H.C. Unlocking the potential of induced pluripotent stem cells for wound healing: The next frontier of regenerative medicine. Adv. Wound Care (New Rochelle) 2022 11 11 622 638 10.1089/wound.2021.0049 34155919
    [Google Scholar]
  141. Pavez Loriè E. Baatout S. Choukér A. Buchheim J.I. Baselet B. Dello Russo C. Wotring V. Monici M. Morbidelli L. Gagliardi D. Stingl J.C. Surdo L. Yip V.L.M. The future of personalized medicine in space: From observations to countermeasures. Front. Bioeng. Biotechnol. 2021 9 739747 10.3389/fbioe.2021.739747 34966726
    [Google Scholar]
  142. Santurro A. Vullo A.M. Borro M. Gentile G. La Russa R. Simmaco M. Frati P. Fineschi V. Personalized medicine applied to forensic sciences: New advances and perspectives for a tailored forensic approach. Curr. Pharm. Biotechnol. 2017 18 3 263 273 10.2174/1389201018666170207141525 28176637
    [Google Scholar]
  143. Almadani Y.H. Vorstenbosch J. Davison P.G. Murphy A.M. Wound healing: A comprehensive review. Semin. Plast. Surg. 2021 35 3 141 144 10.1055/s‑0041‑1731791 34526860
    [Google Scholar]
  144. Golebiewska E.M. Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015 29 3 153 162 10.1016/j.blre.2014.10.003 25468720
    [Google Scholar]
  145. Rosen B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002 529 1 86 92 10.1016/S0014‑5793(02)03186‑1 12354618
    [Google Scholar]
  146. Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997 276 5309 75 81 10.1126/science.276.5309.75 9082989
    [Google Scholar]
  147. Gonzalez A.C. Costa T.F. Andrade Z.A. Medrado A.R. Wound healing - A literature review. An Bras Dermatol. 2016
    [Google Scholar]
  148. Cotran R.S. Abbas A.K. Fausto N. Robbins S.L. Kumar V. Robbins & Cotran: Pathology - Pathological Basis of Disease. Elsevier New York 2005
    [Google Scholar]
  149. Moura J. Madureira P. Leal E.C. Fonseca A.C. Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin. Immunol. 2019 200 43 54 10.1016/j.clim.2019.02.002 30735729
    [Google Scholar]
  150. Bondar A. Popa A. Papanas N. Popoviciu M. Vesa C. Sabau M. Daina C. Stoica R. Katsiki N. Stoian A. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options (Review). Exp. Ther. Med. 2021 22 1 690 10.3892/etm.2021.10122 33986855
    [Google Scholar]
  151. Shah P Inturi R Anne D Jadhav D Viswambharan V Khadilkar R Wagner's classification as a tool for treating diabetic foot ulcers: Our observations at a suburban teaching hospital. Cureus 2022 14 1 21501 10.7759/cureus.21501
    [Google Scholar]
  152. Meggitt B. Surgical management of the diabetic foot. Br. J. Hosp. Med. 1976 16 227 232
    [Google Scholar]
  153. Wagner F.W. Jr The dysvascular foot: A system for diagnosis and treatment. Foot Ankle 1981 2 2 64 122 10.1177/107110078100200202 7319435
    [Google Scholar]
  154. Ren J. Yang M. Xu F. Chen J. Ma S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci. 2019 233 116728 10.1016/j.lfs.2019.116728 31386877
    [Google Scholar]
  155. Ogut E. Armagan K. Evaluation of the potential impact of medical ozone therapy on covid-19: A review study. Ozone: Sci. Eng. 2022 45 4 1 19 10.1080/01919512.2022.2065242
    [Google Scholar]
  156. Anzali B.C. Goli R. Torabzadeh A. Kiani A. Rasouli M. Balaneji S.M. Healing refractory diabetic foot ulcers (DFUs) by ozone therapy and silver dressing: A case report. Int. J. Surg. Case Rep. 2023 105 107970 10.1016/j.ijscr.2023.107970 36924601
    [Google Scholar]
  157. Khan S.A. Kushmakov R. Gandhi J. Seyam O. Jiang W. Joshi G. Smith N.L. Ozone therapy for diabetic foot. Med. Gas Res. 2018 8 3 111 115 10.4103/2045‑9912.241076 30319766
    [Google Scholar]
  158. Parizad N. Hajimohammadi K. Goli R. Mohammadpour Y. Faraji N. Makhdomi K. Surgical debridement and maggot debridement therapy (MDT) bring the light of hope to patients with diabetic foot ulcers (DFUs): A case report. Int. J. Surg. Case Rep. 2022 99 107723 10.1016/j.ijscr.2022.107723 36261953
    [Google Scholar]
  159. Boulton AJM Armstrong DG Löndahl M New Evidence-Based Therapies for Complex Diabetic Foot Wounds. Arlington (VA) American Diabetes Association 2022 10.2337/db2022‑02
    [Google Scholar]
  160. Oses C. Olivares B. Ezquer M. Acosta C. Bosch P. Donoso M. Léniz P. Ezquer F. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 2017 12 5 e0178011 10.1371/journal.pone.0178011 28542352
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328326480240927065600
Loading
/content/journals/crcep/10.2174/0127724328326480240927065600
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Diabetic wound ; molecular mechanism ; wound care ; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test