Skip to content
2000
image of Exploring the Role of Deutetrabenazine in the Treatment of Chorea Linked with Huntington's Disease

Abstract

Background

This review investigates the efficacy of deutetrabenazine in the management of chorea related to HD. Motor, psychological, and cognitive symptoms characterize HD, a neurodegenerative disease. One prominent movement disorder associated with HD is chorea, which results in uncontrollably jerky movements of the muscles. HD has no known cure; instead, symptom management with a variety of medication options is the main goal. Effective management is essential because chorea has a significant impact on patients' quality of life. Dutetrabenazine is the first deuterated medication to receive approval from the US Food and Drug Administration (FDA) for the therapeutic treatment of chorea in Huntington's disease (HD).

Objectives

Treating chorea associated with HD may benefit from the use of deutetrabenazine. The novel compound deutetrabenazine contains deuterium. It inhibits CYP2D6 metabolism, prolongs the half-lives of active metabolites, and may cause persistent systemic exposure while maintaining significant pharmacological action. Deutetrabenazine decreases the release of monoamines, including dopamine, in the synaptic cleft by inhibiting the VMAT2 vesicular monoamine transporter. For chorea, this mechanism has a therapeutic effect. For the treatment of choreiform movement and tardive dyskinesia in HD, the FDA approved deutetrabenazine in 2017.

Conclusion

Here we highlight, Deutetrabenazine as a promising new treatment for Huntington's disease chorea, for patients with chorea, deutetrabenazine offers hope for an enhanced quality of life. To completely understand its effectiveness and potential advantages, additional research is necessary, including direct comparison studies, as a result of the mixed study results.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328312991241001051813
2024-10-15
2025-01-19
Loading full text...

Full text loading...

References

  1. MacDonald M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993 72 6 971 983 10.1016/0092‑8674(93)90585‑E 8458085
    [Google Scholar]
  2. Jankovic J. Roos R.A.C. Chorea associated with Huntington’s disease: To treat or not to treat? Mov. Disord. 2014 29 11 1414 1418 10.1002/mds.25996 25156927
    [Google Scholar]
  3. Coppen E.M. Roos R.A.C. Current pharmacological approaches to reduce Chorea in Huntington’s Disease. Drugs 2017 77 1 29 46 10.1007/s40265‑016‑0670‑4 27988871
    [Google Scholar]
  4. Walker F.O. Huntington’s disease. Lancet 2007 369 9557 218 228 10.1016/S0140‑6736(07)60111‑1 17240289
    [Google Scholar]
  5. Heo Y.A. Scott L.J. Deutetrabenazine: A review in chorea associated with Huntington’s Disease. Drugs 2017 77 17 1857 1864 10.1007/s40265‑017‑0831‑0 29080203
    [Google Scholar]
  6. McColgan P. Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018 25 1 24 34 10.1111/ene.13413 28817209
    [Google Scholar]
  7. Huntington Study Group Tetrabenazine as antichorea therapy in Huntington disease. Neurology 2006 66 3 366 372 10.1212/01.wnl.0000198586.85250.13 16476934
    [Google Scholar]
  8. Waln O. Jankovic J. An update on tardive dyskinesia: From phenomenology to treatment. Tremor Other Hyperkinet. Mov. (N. Y.) 2013 3 0 03 10.5334/tohm.165 23858394
    [Google Scholar]
  9. Jankovic J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin. Pharmacother. 2016 17 18 2461 2470 10.1080/14656566.2016.1258063 27819145
    [Google Scholar]
  10. Sung V.W. Gandhi S.K. Abler V. Davis B. Irwin D.E. Anderson K.E. Iyer R.G. Retrospective analysis of healthcare resource use, treatment patterns, and treatment-related events in patients with huntington’s disease–associated chorea initiated on tetrabenazine. J. Health Econ. Outcomes Res. 2018 6 1 15 24 10.36469/9779 32685569
    [Google Scholar]
  11. Reilmann R. Pharmacological treatment of chorea in Huntington’s disease–good clinical practice versus evidence‐based guideline. Mov. Disord. 2013 28 8 1030 1033 10.1002/mds.25500 23674480
    [Google Scholar]
  12. Reilmann R. Deutetrabenazine—not a revolution but welcome evolution for treating chorea in huntington disease. JAMA Neurol. 2016 73 12 1404 1406 10.1001/jamaneurol.2016.3916 27749952
    [Google Scholar]
  13. Frank S. Testa C.M. Stamler D. Kayson E. Davis C. Edmondson M.C. Kinel S. Leavitt B. Oakes D. O’Neill C. Vaughan C. Goldstein J. Herzog M. Snively V. Whaley J. Wong C. Suter G. Jankovic J. Jimenez-Shahed J. Hunter C. Claassen D.O. Roman O.C. Sung V. Smith J. Janicki S. Clouse R. Saint-Hilaire M. Hohler A. Turpin D. James R.C. Rodriguez R. Rizer K. Anderson K.E. Heller H. Carlson A. Criswell S. Racette B.A. Revilla F.J. Nucifora F. Jr Margolis R.L. Ong M. Mendis T. Mendis N. Singer C. Quesada M. Paulsen J.S. Brashers-Krug T. Miller A. Kerr J. Dubinsky R.M. Gray C. Factor S.A. Sperin E. Molho E. Eglow M. Evans S. Kumar R. Reeves C. Samii A. Chouinard S. Beland M. Scott B.L. Hickey P.T. Esmail S. Fung W.L.A. Gibbons C. Qi L. Colcher A. Hackmyer C. McGarry A. Klos K. Gudesblatt M. Fafard L. Graffitti L. Schneider D.P. Dhall R. Wojcieszek J.M. LaFaver K. Duker A. Neefus E. Wilson-Perez H. Shprecher D. Wall P. Blindauer K.A. Wheeler L. Boyd J.T. Houston E. Farbman E.S. Agarwal P. Eberly S.W. Watts A. Tariot P.N. Feigin A. Evans S. Beck C. Orme C. Edicola J. Christopher E. Effect of deutetrabenazine on chorea among patients with huntington disease. JAMA 2016 316 1 40 50 10.1001/jama.2016.8655 27380342
    [Google Scholar]
  14. Chen J.J. Ondo W.G. Dashtipour K. Swope D.M. Tetrabenazine for the treatment of hyperkinetic movement disorders: A review of the literature. Clin. Ther. 2012 34 7 1487 1504 10.1016/j.clinthera.2012.06.010 22749259
    [Google Scholar]
  15. Kenney C. Hunter C. Jankovic J. Long‐term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders. Mov. Disord. 2007 22 2 193 197 10.1002/mds.21222 17133512
    [Google Scholar]
  16. Geschwind M.D. Paras N. Deutetrabenazine for treatment of chorea in huntington disease. JAMA 2016 316 1 33 35 10.1001/jama.2016.8011 27380339
    [Google Scholar]
  17. Galvan L. André V.M. Wang E.A. Cepeda C. Levine M.S. Functional differences between direct and indirect striatal output pathways in Huntington’s Disease. J. Huntingtons Dis. 2012 1 1 17 25 10.3233/JHD‑2012‑120009 25063187
    [Google Scholar]
  18. Albin R.L. Reiner A. Anderson K.D. Penney J.B. Young A.B. Striatal and nigral neuron subpopulations in rigid Huntington’s disease: Implications for the functional anatomy of chorea and rigidity‐akinesia. Ann. Neurol. 1990 27 4 357 365 10.1002/ana.410270403 1972318
    [Google Scholar]
  19. Ghosh R. Tabrizi S.J. Clinical features of Huntington’s Disease. Adv. Exp. Med. Biol. 2018 1049 1 28 10.1007/978‑3‑319‑71779‑1_1 29427096
    [Google Scholar]
  20. van de Zande N.A. Massey T.H. McLauchlan D. Pryce Roberts A. Zutt R. Wardle M. Payne G.C. Clenaghan C. Tijssen M.A.J. Rosser A.E. Peall K.J. Clinical characterization of dystonia in adult patients with Huntington’s disease. Eur. J. Neurol. 2017 24 9 1140 1147 10.1111/ene.13349 28661018
    [Google Scholar]
  21. Squitieri F. Berardelli A. Nargi E. Castellotti B. Mariotti C. Cannella M. Luisa Lavitrano M. De Grazia U. Gellera C. Ruggieri S. Atypical movement disorders in the early stages of Huntington’s disease: Clinical and genetic analysis. Clin. Genet. 2000 58 1 50 56 10.1034/j.1399‑0004.2000.580108.x 10945661
    [Google Scholar]
  22. Racette B.A. Perlmutter J.S. Levodopa responsive parkinsonism in an adult with Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 1998 65 4 577 579 10.1136/jnnp.65.4.577 9771791
    [Google Scholar]
  23. Thompson P.D. Bhatia K.P. Brown P. Davis M.B. Pires M. Quinn N.P. Luthert P. Honovar M. O’Brien M.D. Marsden C.D. Harding A.E. Cortical myoclonus in huntington’s disease. Mov. Disord. 1994 9 6 633 641 10.1002/mds.870090609 7845404
    [Google Scholar]
  24. Cui S.S. Ren R.J. Wang Y. Wang G. Chen S.D. Tics as an initial manifestation of juvenile Huntington’s disease: Case report and literature review. BMC Neurol. 2017 17 1 152 10.1186/s12883‑017‑0923‑1 28789621
    [Google Scholar]
  25. Sherman C.W. Iyer R. Abler V. Antonelli A. Carlozzi N.E. Perceptions of the impact of chorea on health-related quality of life in Huntington disease (HD): A qualitative analysis of individuals across the HD spectrum, family members, and clinicians. Neuropsychol. Rehabil. 2020 30 6 1150 1168 10.1080/09602011.2018.1564675 30849283
    [Google Scholar]
  26. Thorley E.M. Iyer R.G. Wicks P. Curran C. Gandhi S.K. Abler V. Anderson K.E. Carlozzi N.E. Understanding how chorea affects health-related quality of life in huntington disease: An Online survey of patients and caregivers in the United States. Patient 2018 11 5 547 559 10.1007/s40271‑018‑0312‑x 29750428
    [Google Scholar]
  27. Sitek E.J. Thompson J.C. Craufurd D. Snowden J.S. Unawareness of deficits in Huntington’s disease. J. Huntingtons Dis. 2014 3 2 125 135 10.3233/JHD‑140109 25062855
    [Google Scholar]
  28. Isaacs D. Gibson J.S. Stovall J. Claassen D.O. The Impact of Anosognosia on Clinical and Patient-Reported Assessments of Psychiatric Symptoms in Huntington’s Disease. J. Huntingtons Dis. 2020 9 3 291 302 10.3233/JHD‑200410 32925080
    [Google Scholar]
  29. Simpson J.A. Lovecky D. Kogan J. Vetter L.A. Yohrling G.J. Survey of the Huntington’s Disease Patient and Caregiver Community Reveals Most Impactful Symptoms and Treatment Needs. J. Huntingtons Dis. 2016 5 4 395 403 10.3233/JHD‑160228 27983566
    [Google Scholar]
  30. Huntington Study Group Unified Huntington’s disease rating scale: Reliability and consistency. Mov. Disord. 1996 11 2 136 142 10.1002/mds.870110204 8684382
    [Google Scholar]
  31. Penney J.B. Jr Young A.B. Shoulson I. Starosta-Rubenstein S. Snodgrass S.R. Sanchez-Ramos J. Ramos-Arroyo M. Gomez F. Penchaszadeh G. Alvir J. Esteves J. DeQuiroz I. Marsol N. Moreno H. Conneally P.M. Bonilla E. Wexler N.S. Huntington’s disease in venezuela: 7 years of follow‐up on symptomatic and asymptomatic individuals. Mov. Disord. 1990 5 2 93 99 10.1002/mds.870050202 2139171
    [Google Scholar]
  32. Reilmann R. Bohlen S. Kirsten F. Ringelstein E.B. Lange H.W. Assessment of involuntary choreatic movements in Huntington’s disease—Toward objective and quantitative measures. Mov. Disord. 2011 26 12 2267 2273 10.1002/mds.23816 21661053
    [Google Scholar]
  33. Boo G.D. Tibben A. Hermans J. Maat A. Roos R.A.C. Subtle involuntary movements are not reliable indicators of incipient Huntington’s disease. Mov. Disord. 1998 13 1 96 99 10.1002/mds.870130120 9452333
    [Google Scholar]
  34. Mestre T.A. Forjaz M.J. Mahlknecht P. Cardoso F. Ferreira J.J. Reilmann R. Sampaio C. Goetz C.G. Cubo E. Martinez-Martin P. Stebbins G.T. Rating Scales for Motor Symptoms and Signs in Huntington’s Disease: Critique and Recommendations. Mov. Disord. Clin. Pract. (Hoboken) 2018 5 2 111 117 10.1002/mdc3.12571 30363393
    [Google Scholar]
  35. Johnson E. B. Rees E. M. Labuschagne I. Durr A. Leavitt B. R. Roos R. A. Reilmann R. Johnson H. Hobbs N. Z. Langbehn D. R. Stout J. C. Tabrizi S. J. Scahill R. I. The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia 2015 79 Pt A 138 46
    [Google Scholar]
  36. Tabrizi S.J. Reilmann R. Roos R.A.C. Durr A. Leavitt B. Owen G. Jones R. Johnson H. Craufurd D. Hicks S.L. Kennard C. Landwehrmeyer B. Stout J.C. Borowsky B. Scahill R.I. Frost C. Langbehn D.R. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: Analysis of 24 month observational data. Lancet Neurol. 2012 11 1 42 53 10.1016/S1474‑4422(11)70263‑0 22137354
    [Google Scholar]
  37. Rosenblatt A. Ranen G. Nance M. Paulsen J. A Physician's Guide to the Management of Huntington Disease. New York Huntington's Disease Society of America 1999
    [Google Scholar]
  38. Goodman A.O.G. Rogers L. Pilsworth S. McAllister C.J. Shneerson J.M. Morton A.J. Barker R.A. Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease. Curr. Neurol. Neurosci. Rep. 2011 11 2 211 217 10.1007/s11910‑010‑0163‑x 21103960
    [Google Scholar]
  39. Fish D.R. Sawyers D. Allen P.J. Blackie J.D. Lees A.J. Marsden C.D. The effect of sleep on the dyskinetic movements of Parkinson’s disease, Gilles de la Tourette syndrome, Huntington’s disease, and torsion dystonia. Arch. Neurol. 1991 48 2 210 214 10.1001/archneur.1991.00530140106023 1825167
    [Google Scholar]
  40. Hurelbrink C.B. Lewis S.J.G. Barker R.A. The use of the Actiwatch–Neurologica® system to objectively assess the involuntary movements and sleep–wake activity in patients with mild–moderate Huntington’s disease. J. Neurol. 2005 252 6 642 647 10.1007/s00415‑005‑0709‑z 15742112
    [Google Scholar]
  41. Ranjan S. Kohler S. Harrison M.B. Quigg M. Nocturnal Post‐arousal Chorea and Repetitive Ballistic Movement in Huntington’s Disease. Mov. Disord. Clin. Pract. (Hoboken) 2016 3 2 200 202 10.1002/mdc3.12258 30363612
    [Google Scholar]
  42. Andrzejewski K.L. Dowling A.V. Stamler D. Felong T.J. Harris D.A. Wong C. Cai H. Reilmann R. Little M.A. Gwin J.T. Biglan K.M. Dorsey E.R. Wearable sensors in Huntington Disease: A pilot study. J. Huntingtons Dis. 2016 5 2 199 206 10.3233/JHD‑160197 27341134
    [Google Scholar]
  43. Gordon M.F. Grachev I.D. Mazeh I. Dolan Y. Reilmann R. Loupe P.S. Fine S. Navon-Perry L. Gross N. Papapetropoulos S. Savola J.M. Hayden M.R. Quantification of motor function in huntington disease patients using wearable sensor devices. Digit. Biomark. 2019 3 3 103 115 10.1159/000502136 32095771
    [Google Scholar]
  44. Adams J.L. Dinesh K. Xiong M. Tarolli C.G. Sharma S. Sheth N. Aranyosi A.J. Zhu W. Goldenthal S. Biglan K.M. Dorsey E.R. Sharma G. Multiple wearable sensors in parkinson and huntington disease individuals: A pilot study in clinic and at home. Digit. Biomark. 2017 1 1 52 63 10.1159/000479018 32095745
    [Google Scholar]
  45. Evans S.J.W. Douglas I. Rawlins M.D. Wexler N.S. Tabrizi S.J. Smeeth L. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry 2013 84 10 1156 1160 10.1136/jnnp‑2012‑304636 23482661
    [Google Scholar]
  46. Fisher E.R. Hayden M.R. Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk. Mov. Disord. 2014 29 1 105 114 10.1002/mds.25717 24151181
    [Google Scholar]
  47. Nance M.A. Genetics of Huntington disease. Handb. Clin. Neurol. 2017 144 3 14 10.1016/B978‑0‑12‑801893‑4.00001‑8 28947123
    [Google Scholar]
  48. Kremer B. Goldberg P. Andrew S.E. Theilmann J. Telenius H. Zeisler J. Squitieri F. Lin B. Bassett A. Almqvist E. Bird T.D. Hayden M.R. A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 1994 330 20 1401 1406 10.1056/NEJM199405193302001 8159192
    [Google Scholar]
  49. Newsholme P. Lima M.M.R. Procopio J. Pithon-Curi T.C. Doi S.Q. Bazotte R.B. Curi R. Glutamine and glutamate as vital metabolites. Braz. J. Med. Biol. Res. 2003 36 2 153 163 10.1590/S0100‑879X2003000200002 12563517
    [Google Scholar]
  50. DiFiglia M. Sapp E. Chase K.O. Davies S.W. Bates G.P. Vonsattel J.P. Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997 277 5334 1990 1993 10.1126/science.277.5334.1990 9302293
    [Google Scholar]
  51. Becher M.W. Kotzuk J.A. Sharp A.H. Davies S.W. Bates G.P. Price D.L. Ross C.A. Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 1998 4 6 387 397 10.1006/nbdi.1998.0168 9666478
    [Google Scholar]
  52. Lutz R.E. In Trinucleotide repeat disorders. Seminars in pediatric neurology Amsterdam Elsevier 2007 26 33
    [Google Scholar]
  53. Tremblay R. Lee S. Rudy B. GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron 2016 91 2 260 292 10.1016/j.neuron.2016.06.033 27477017
    [Google Scholar]
  54. Alexander G.E. Crutcher M.D. Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci. 1990 13 7 266 271 10.1016/0166‑2236(90)90107‑L 1695401
    [Google Scholar]
  55. Nambu A. Tokuno H. Takada M. Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci. Res. 2002 43 2 111 117 10.1016/S0168‑0102(02)00027‑5 12067746
    [Google Scholar]
  56. Straub C. Saulnier J.L. Bègue A. Feng D.D. Huang K.W. Sabatini B.L. Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 2016 92 1 84 92 10.1016/j.neuron.2016.09.007 27710792
    [Google Scholar]
  57. Plotkin J.L. Goldberg J.A. Thinking outside the box (and arrow): Current themes in striatal dysfunction in movement disorders. Neuroscientist 2019 25 4 359 379 10.1177/1073858418807887 30379121
    [Google Scholar]
  58. Raymond L.A. André V.M. Cepeda C. Gladding C.M. Milnerwood A.J. Levine M.S. Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience 2011 198 252 273 10.1016/j.neuroscience.2011.08.052 21907762
    [Google Scholar]
  59. Wyant K.J. Ridder A.J. Dayalu P. Huntington’s Disease—Update on Treatments. Curr. Neurol. Neurosci. Rep. 2017 17 4 33 10.1007/s11910‑017‑0739‑9 28324302
    [Google Scholar]
  60. Suchowersky O. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2013 80 10 970 10.1212/WNL.0b013e3182885eb3 23460621
    [Google Scholar]
  61. Bashir H. Jankovic J. Deutetrabenazine for the treatment of Huntington’s chorea. Expert Rev. Neurother. 2018 18 8 625 631 10.1080/14737175.2018.1500178 29996061
    [Google Scholar]
  62. Armstrong M.J. Miyasaki J.M. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology 2012 79 6 597 603 10.1212/WNL.0b013e318263c443 22815556
    [Google Scholar]
  63. Vijayakumar D. Jankovic J. Drug-induced dyskinesia, part 1: Treatment of levodopa-induced dyskinesia. Drugs 2016 76 7 759 777 10.1007/s40265‑016‑0566‑3 27091215
    [Google Scholar]
  64. Verhagen Metman L. Morris M.J. Farmer C. Gillespie M. Mosby K. Wuu J. Chase T.N. Huntington’s disease. Neurology 2002 59 5 694 699 10.1212/WNL.59.5.694 12221159
    [Google Scholar]
  65. Rosas H.D. Koroshetz W.J. Jenkins B.G. Chen Y.I. Hayden D.L. Beal M.F. Cudkowicz M.E. Riluzole therapy in Huntington’s disease (HD). Mov. Disord. 1999 14 2 326 330 10.1002/1531‑8257(199903)14:2<326::AID‑MDS1019>3.0.CO;2‑Q 10091628
    [Google Scholar]
  66. Seppi K. Mueller J. Bodner T. Brandauer E. Benke T. Weirich-Schwaiger H. Poewe W. Wenning G.K. Riluzole in Huntington’s disease (HD): An open label study with one year follow up. J. Neurol. 2001 248 10 866 869 10.1007/s004150170071 11697523
    [Google Scholar]
  67. Duggan L. Fenton M. Rathbone J. Dardennes R. El‐Dosoky A. Indran S. Olanzapine for schizophrenia. Cochrane Database Syst Rev. 2005 18 2 CD001359 10.1002/14651858.CD001359.pub2
    [Google Scholar]
  68. Squitieri F. Cannella M. Porcellini A. Brusa L. Simonelli M. Ruggieri S. Short-term effects of olanzapine in Huntington disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 2001 14 1 69 72 11234911
    [Google Scholar]
  69. Fulton B. Goa K.L. Olanzapine. Drugs 1997 53 2 281 298 10.2165/00003495‑199753020‑00007 9028746
    [Google Scholar]
  70. Ball M.P. Coons V.B. Buchanan R.W. A program for treating olanzapine-related weight gain. Psychiatr. Serv. 2001 52 7 967 969 10.1176/appi.ps.52.7.967 11433117
    [Google Scholar]
  71. Janssen P.A. Niemegeers C.J. Awouters F. Schellekens K.H. Megens A.A. Meert T.F. Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J. Pharmacol. Exp. Ther. 1988 244 2 685 693 2450200
    [Google Scholar]
  72. Duff K. Beglinger L.J. O’Rourke M.E. Nopoulos P. Paulson H.L. Paulsen J.S. Risperidone and the treatment of psychiatric, motor, and cognitive symptoms in Huntington’s disease. Ann. Clin. Psychiatry 2008 20 1 1 3 10.1080/10401230701844802 18297579
    [Google Scholar]
  73. Conley R.R. Mahmoud R. A randomized double-blind study of risperidone and olanzapine in the treatment of schizophrenia or schizoaffective disorder. Am. J. Psychiatry 2001 158 5 765 774 10.1176/appi.ajp.158.5.765 11329400
    [Google Scholar]
  74. Timmins G.S. Deuterated drugs: Where are we now? Expert Opin. Ther. Pat. 2014 24 10 1067 1075 10.1517/13543776.2014.943184 25069517
    [Google Scholar]
  75. Citrome L. Deutetrabenazine for tardive dyskinesia: A systematic review of the efficacy and safety profile for this newly approved novel medication-What is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract. 2017 71 11 e13030 10.1111/ijcp.13030 29024264
    [Google Scholar]
  76. Frank S. Treatment of Huntington’s disease. Neurotherapeutics 2014 11 1 153 160 10.1007/s13311‑013‑0244‑z 24366610
    [Google Scholar]
  77. Kopf S. Bourriquen F. Li W. Neumann H. Junge K. Beller M. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 2022 122 6 6634 6718 10.1021/acs.chemrev.1c00795 35179363
    [Google Scholar]
  78. Pirali T. Serafini M. Cargnin S. Genazzani A.A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 2019 62 11 5276 5297 10.1021/acs.jmedchem.8b01808 30640460
    [Google Scholar]
  79. Looker A.R. Wilde N. Ryan M.P. Roeper S. Ye Z. Lewandowski B.L. Utilizing o -Quinone Methide Chemistry: Synthesis of d 9 -Ivacaftor. J. Org. Chem. 2020 85 2 501 507 10.1021/acs.joc.9b02552 31846324
    [Google Scholar]
  80. Treitler D.S. Soumeillant M.C. Simmons E.M. Lin D. Inankur B. Rogers A.J. Dummeldinger M. Kolotuchin S. Chan C. Li J. Freitag A. Lora Gonzalez F. Smith M.J. Sfouggatakis C. Wang J. Benkovics T. Deerberg J. Simpson J.H. Chen K. Tymonko S. Development of a commercial process for deucravacitinib, a deuterated API for TYK2 inhibition. Org. Process Res. Dev. 2022 26 4 1202 1222 10.1021/acs.oprd.1c00468
    [Google Scholar]
  81. Atzrodt J. Derdau V. Fey T. Zimmermann J. The renaissance of H/D exchange. Angew. Chem. Int. Ed. 2007 46 41 7744 7765 10.1002/anie.200700039 17886815
    [Google Scholar]
  82. Atzrodt J. Derdau V. Kerr W.J. Reid M. C− H functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 2018 57 12 3022 3047 10.1002/anie.201708903 29024330
    [Google Scholar]
  83. Prakash G. Paul N. Oliver G.A. Werz D.B. Maiti D. C–H deuteration of organic compounds and potential drug candidates. Chem. Soc. Rev. 2022 51 8 3123 3163 10.1039/D0CS01496F 35320331
    [Google Scholar]
  84. Rowbotham J.S. Ramirez M.A. Lenz O. Reeve H.A. Vincent K.A. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques. Nat. Commun. 2020 11 1 1454 10.1038/s41467‑020‑15310‑z 32193396
    [Google Scholar]
  85. Loh Y.Y. Nagao K. Hoover A.J. Hesk D. Rivera N.R. Colletti S.L. Davies I.W. MacMillan D.W.C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 2017 358 6367 1182 1187 10.1126/science.aap9674 29123019
    [Google Scholar]
  86. Zhou R. Ma L. Yang X. Cao J. Recent advances in visible-light photocatalytic deuteration reactions. Org. Chem. Front. 2021 8 3 426 444 10.1039/D0QO01299H
    [Google Scholar]
  87. Shi Q. Xu M. Chang R. Ramanathan D. Peñin B. Funes-Ardoiz I. Ye J. Visible-light mediated catalytic asymmetric radical deuteration at non-benzylic positions. Nat. Commun. 2022 13 1 4453 10.1038/s41467‑022‑32238‑8 35915119
    [Google Scholar]
  88. Norcott P.L. Current electrochemical approaches to selective deuteration. Chem. Commun. (Camb.) 2022 58 18 2944 2953 10.1039/D2CC00344A 35166759
    [Google Scholar]
  89. Li N. Li Y. Wu X. Zhu C. Xie J. Radical deuteration. Chem. Soc. Rev. 2022 51 15 6291 6306 10.1039/D1CS00907A 35856093
    [Google Scholar]
  90. Wang L. Xia Y. Derdau V. Studer A. Remote Site‐Selective Radical C(sp 3 )−H Monodeuteration of Amides using D 2 O. Angew. Chem. Int. Ed. 2021 60 34 18645 18650 10.1002/anie.202104254
    [Google Scholar]
  91. Steverlynck J. Sitdikov R. Rueping M. The deuterated “Magic Methyl” group: A guide to site‐selective trideuteromethyl incorporation and labeling by using CD 3 reagents. Chemistry 2021 27 46 11751 11772 10.1002/chem.202101179 34076925
    [Google Scholar]
  92. Sun Q. Soulé J.F. Broadening of horizons in the synthesis of CD 3 -labeled molecules. Chem. Soc. Rev. 2021 50 19 10806 10835 10.1039/D1CS00544H 34605827
    [Google Scholar]
  93. Niemann N. Jimenez-Shahed J. Deutetrabenazine in the treatment of tardive dyskinesia. Neurodegener. Dis. Manag. 2019 9 2 59 71 10.2217/nmt‑2018‑0042 30702019
    [Google Scholar]
  94. Ray P.C. Pawar Y.D. Singare D.T. Deshpande T.N. Singh G.P. Novel process for preparation of tetrabenazine and deutetrabenazine. Org. Process Res. Dev. 2018 22 4 520 526 10.1021/acs.oprd.8b00011
    [Google Scholar]
  95. Schmidt C. First deuterated drug approved. Nat. Biotechnol. 2017 35 6 493 494 10.1038/nbt0617‑493 28591114
    [Google Scholar]
  96. Hayden M.R. Leavitt B.R. Yasothan U. Kirkpatrick P. Tetrabenazine. Nat. Rev. Drug Discov. 2009 8 1 17 18 10.1038/nrd2784 19116624
    [Google Scholar]
  97. Gant T.G. Using deuterium in drug discovery: Leaving the label in the drug. J. Med. Chem. 2014 57 9 3595 3611 10.1021/jm4007998 24294889
    [Google Scholar]
  98. Belleau B. Burba J. Pindell M. Reiffenstein J. Effect of deuterium substitution in sympathomimetic amines on adrenergic responses. Science 1961 133 3446 102 104 10.1126/science.133.3446.102 17769335
    [Google Scholar]
  99. Schneider F. Erisson L. Beygi H. Bradbury M. Cohen-Barak O. Grachev I.D. Guzy S. Loupe P.S. Levi M. McDonald M. Savola J.M. Papapetropoulos S. Tracewell W.G. Velinova M. Spiegelstein O. Pharmacokinetics, metabolism and safety of deuterated L‐DOPA (SD‐1077)/carbidopa compared to L‐DOPA/carbidopa following single oral dose administration in healthy subjects. Br. J. Clin. Pharmacol. 2018 84 10 2422 2432 10.1111/bcp.13702 29959802
    [Google Scholar]
  100. Mullard A. Deuterated drugs draw heavier backing. Nat. Rev. Drug Discov. 2016 15 4 219 221 10.1038/nrd.2016.63 27032821
    [Google Scholar]
  101. Russak E.M. Bednarczyk E.M. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Ann. Pharmacother. 2019 53 2 211 216 10.1177/1060028018797110 30136594
    [Google Scholar]
  102. Timmins G.S. Deuterated drugs; updates and obviousness analysis. Expert Opin. Ther. Pat. 2017 27 12 1353 1361 10.1080/13543776.2017.1378350 28885861
    [Google Scholar]
  103. FDA Novel Drug Approvals for 2021. 2021 Available From: https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2021
  104. Stahl S.M. Comparing pharmacologic mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: Does one have advantages over the other? CNS Spectr. 2018 23 4 239 247 10.1017/S1092852918001219 30160230
    [Google Scholar]
  105. Fernandez H.H. Factor S.A. Hauser R.A. Jimenez-Shahed J. Ondo W.G. Jarskog L.F. Meltzer H.Y. Woods S.W. Bega D. LeDoux M.S. Shprecher D.R. Davis C. Davis M.D. Stamler D. Anderson K.E. Randomized controlled trial of deutetrabenazine for tardive dyskinesia. Neurology 2017 88 21 2003 2010 10.1212/WNL.0000000000003960 28446646
    [Google Scholar]
  106. Cox D.S. Levi M. Rabinovich-Guilatt L. Truong D. Stamler D. 127 cardiovascular safety assessment of deutetrabenazine in healthy volunteers and implications for patients with huntington disease or tardive dyskinesia. CNS Spectr. 2018 23 1 80 10.1017/S109285291800024X
    [Google Scholar]
  107. Grigoriadis D.E. Smith E. Hoare S.R.J. Madan A. Bozigian H. Pharmacologic characterization of valbenazine (NBI-98854) and its metabolites. J. Pharmacol. Exp. Ther. 2017 361 3 454 461 10.1124/jpet.116.239160 28404690
    [Google Scholar]
  108. Schneider F. Bradbury M. Baillie T.A. Stamler D. Hellriegel E. Cox D.S. Loupe P.S. Savola J.M. Rabinovich-Guilatt L. Pharmacokinetic and metabolic profile of deutetrabenazine (TEV‐50717) compared with tetrabenazine in healthy volunteers. Clin. Transl. Sci. 2020 13 4 707 717 10.1111/cts.12754 32155315
    [Google Scholar]
  109. DeWitt S.H. Maryanoff B.E. Deuterated drug molecules: Focus on FDA-approved deutetrabenazine. Biochemistry 2018 57 5 472 473 10.1021/acs.biochem.7b00765 29160059
    [Google Scholar]
  110. Teva Pharmaceuticals Highlights of prescribing information. 2017
  111. Stamler D. Bradbury M. De Boer L. Offman E. A relative bioavailability study of three dose strengths and four dose levels of SD-809, a potential treatment for movement disorders (P1.054). Neurology 2016 86 P1.054 10.1212/WNL.86.16_supplement.P1.054
    [Google Scholar]
  112. Schneider F. Stamler D. Bradbury M. Loupe P.S. Hellriegel E. Cox D.S. Savola J.M. Gordon M.F. Rabinovich-Guilatt L. Pharmacokinetics of deutetrabenazine and tetrabenazine: Dose proportionality and food effect. Clin. Pharmacol. Drug Dev. 2021 10 6 647 659 10.1002/cpdd.882 33038289
    [Google Scholar]
  113. Teva. Pharmaceuticals USA Inc. AUSTEDO (deutetrabenazine): US prescribing information. 2017 Available From: https://www.austedo.com/globalassets/austedo/prescribing-information.pdf
  114. Richard A. Frank S. Deutetrabenazine in the treatment of Huntington’s disease. Neurodegener. Dis. Manag. 2019 9 1 31 37 10.2217/nmt‑2018‑0040 30624137
    [Google Scholar]
  115. Frank S. Stamler D. Kayson E. Claassen D.O. Colcher A. Davis C. Duker A. Eberly S. Elmer L. Furr-Stimming E. Gudesblatt M. Hunter C. Jankovic J. Kostyk S.K. Kumar R. Loy C. Mallonee W. Oakes D. Scott B.L. Sung V. Goldstein J. Vaughan C. Testa C.M. Safety of converting from tetrabenazine to deutetrabenazine for the treatment of Chorea. JAMA Neurol. 2017 74 8 977 982 10.1001/jamaneurol.2017.1352 28692723
    [Google Scholar]
  116. US National Institutes of Health ClinicalTrials.gov is a place to learn about clinical studies from around the world. 2017 Available From: https://clinicaltrials.gov/
  117. Frank S. Testa C. Edmondson M.C. Goldstein J. Kayson E. Leavitt B.R. Oakes D. O’Neill C. Vaughan C. Whaley J. Gross N. Gordon M.F. Savola J.M. Frank S. Testa C. Stamler D. Kayson E. Edmondson M.C. Leavitt B.R. Oakes D. O’Neill C. Vaughan C. Goldstein J. Bockus M. Leyva S. Snively V. Whaley J. Wong C. Mallonee W.M. Suter G. Jankovic J. Jimenez-Shahed J. Hunter C. Claassen D.O. West L. Roman O. Sung V. Smith J. Clouse R. Saint-Hilaire M. Turpin D. James R. Rodriguez R. Rizer K. Anderson K. Heller H. Ahmad A. Criswell S. Racette B.A. Nucifora F.C. Jr Churchill G. Ong M.J. Mendis T. Mendis N. Singer C. Paulsen J.S. Kerr J. Dubinsky R. Gray C. Factor S.A. Sperin E. Molho E. Evans S. Nickels B. Bergen C. Jaynes J. Reeves C. Segro V. Samii A. Christopher E. Del Castillo D. Chouinard S. Perry-Trice P. Esmail S. Fung W.L.A. Gibbons C. Colcher A. Hackmyer C. McGarry A. Klos K. Gudesblatt M. Schneider D. Dhall R. Simpson E. Wojcieszek J. Hurt A. LaFaver K. Robinson A. Revilla F.J. Duker A.P. Neefus E. Wilson-Perez H. Shprecher D. Hohnholt T. Wall P. Boyd J. Houston E. Farbman E.S. Poynor S. Agarwal P. Leon J. Eberly S. Watts A. Tariot P. Feigin A. Evans S.R. Beck C.A. The safety of deutetrabenazine for chorea in huntington disease: An open-label extension study. CNS Drugs 2022 36 11 1207 1216 10.1007/s40263‑022‑00956‑8 36242718
    [Google Scholar]
  118. Carroll J.B. Bates G.P. Steffan J. Saft C. Tabrizi S.J. Treating the whole body in Huntington’s disease. Lancet Neurol. 2015 14 11 1135 1142 10.1016/S1474‑4422(15)00177‑5 26466780
    [Google Scholar]
  119. Walker R. H. Chorea. Continuum (Minneap Minn) 2013 19 5 Movement Disorders 1242 63
    [Google Scholar]
  120. Anderson K.E. Stamler D. Davis M.D. Factor S.A. Hauser R.A. Isojärvi J. Jarskog L.F. Jimenez-Shahed J. Kumar R. McEvoy J.P. Ochudlo S. Ondo W.G. Fernandez H.H. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Psychiatry 2017 4 8 595 604 10.1016/S2215‑0366(17)30236‑5 28668671
    [Google Scholar]
  121. Curtis K. Sung V. Real‐world experience with deutetrabenazine for huntington disease chorea. J. Clin. Pharmacol. 2024 64 2 178 181 10.1002/jcph.2336 37565322
    [Google Scholar]
  122. Stamler D. Bradbury M. Brown F. The pharmacokinetics and safety of deuterated-tetrabenazine (P07.210). Neurol. J. 2013 80 7_supplement P07.210
    [Google Scholar]
  123. Stamler D.A. Bradbury M.J. Brown F. The pharmacokinetics and safety of deuterated-tetrabenazine (P07.210). Neurology 2013 2013 80
    [Google Scholar]
  124. Rodrigues F.B. Duarte G.S. Costa J. Ferreira J.J. Wild E.J. Tetrabenazine versus deutetrabenazine for huntington’s disease: Twins or distant cousins? Mov. Disord. Clin. Pract. (Hoboken) 2017 4 4 582 585 10.1002/mdc3.12483 28920068
    [Google Scholar]
  125. Claassen D.O. Carroll B. De Boer L.M. Wu E. Ayyagari R. Gandhi S. Stamler D. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J. Clin. Mov. Disord. 2017 4 1 3 10.1186/s40734‑017‑0051‑5 28265459
    [Google Scholar]
  126. Battaglia S. Di Fazio C. Mazzà M. Tamietto M. Avenanti A. Targeting human glucocorticoid receptors in fear learning: A multiscale integrated approach to study functional connectivity. Int. J. Mol. Sci. 2024 25 2 864 10.3390/ijms25020864 38255937
    [Google Scholar]
  127. Tanaka M. Battaglia S. Giménez-Llort L. Chen C. Hepsomali P. Avenanti A. Vécsei L. Innovation at the intersection: Emerging translational research in neurology and psychiatry. Cells 2024 13 10 790 10.3390/cells13100790 38786014
    [Google Scholar]
  128. Pagotto G.L.O. Santos L.M.O. Osman N. Lamas C.B. Laurindo L.F. Pomini K.T. Guissoni L.M. Lima E.P. Goulart R.A. Catharin V.M.C.S. Direito R. Tanaka M. Barbalho S.M. Ginkgo biloba: A leaf of hope in the fight against alzheimer’s Dementia: Clinical trial systematic review. Antioxidants 2024 13 6 651 10.3390/antiox13060651 38929090
    [Google Scholar]
  129. Török N. Tanaka M. Vécsei L. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. Int. J. Mol. Sci. 2020 21 24 9338 10.3390/ijms21249338 33302404
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328312991241001051813
Loading
/content/journals/crcep/10.2174/0127724328312991241001051813
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: tetrabenazine ; chorea ; clinical trials ; VMAT2 ; Deutetrabenazine ; Huntington’s disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test